Handlungsplanung

Dr. M. Helmert, Prof. Dr. B. Nebel G. Röger Sommersemester 2010

Universität Freiburg Institut für Informatik

Übungsblatt 4 Abgabe: 1. Juni 2010

Aufgabe 4.1 (Progression und Regression, 2.5 + 2.5 Punkte)

Geben Sie jeweils eine Familie von Planungsaufgaben Π_n an, so dass die Größe von Π_n polynomiell in n ist, und dass

- (a) eine Breitensuche mit der Regressionsmethode nur polynomiell viele Knoten (in n) expandiert, während eine Breitensuche mit der Progressionsmethode exponentiell viele Knoten expandieren muss.
- (b) eine Breitensuche mit der Progressionsmethode nur polynomiell viele Knoten (in n) expandiert, während eine Breitensuche mit der Regressionsmethode exponentiell viele Knoten expandieren muss.

Begründen Sie Ihre Antwort.

Aufgabe 4.2 (Regression, Komplexität, 5 Punkte)

Beim Aufbau eines Suchbaums mit Regression ist es häufig sinnvoll, Knoten $regr_o(\phi)$ daraufhin zu überprüfen, ob $regr_o(\phi) \equiv \bot$ (leere Zustandsmenge, nicht erreichbar) oder ob $regr_o(\phi) \models \phi$ (Zustandsmenge $regr_o(\phi)$ wird höchstens kleiner, nicht leichter zu erreichen als ϕ), um den Suchbaum möglichst früh beschneiden zu können. Zeigen Sie, dass beide Tests coNP-schwer sind.

Hinweis: Jeweils Reduktion von UNSAT.

Die Übungsblätter dürfen in Gruppen von zwei Studenten bearbeitet werden. Bitte schreiben Sie beide Namen auf Ihre Lösung.