Principles of AI Planning
2. Transition systems and planning tasks

Malte Helmert and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

April 27th, 2010
Transition systems
Definition (transition system)

A transition system is a 5-tuple \(\mathcal{T} = \langle S, L, T, s_0, S_\star \rangle \) where

- \(S \) is a finite set of states,
- \(L \) is a finite set of (transition) labels,
- \(T \subseteq S \times L \times S \) is the transition relation,
- \(s_0 \in S \) is the initial state, and
- \(S_\star \subseteq S \) is the set of goal states.

We say that \(\mathcal{T} \) has the transition \(\langle s, \ell, s' \rangle \) if \(\langle s, \ell, s' \rangle \in T \).

We also write this \(s \xrightarrow{\ell} s' \), or \(s \rightarrow s' \) when not interested in \(\ell \).

Note: Transition systems are also called state spaces.
Transition systems are often depicted as **directed arc-labeled graphs** with marks to indicate the initial state and goal states.
Transition system terminology

We use common graph theory terms for transition systems:

- \(s' \) successor of \(s \) if \(s \rightarrow s' \)
- \(s \) predecessor of \(s' \) if \(s \rightarrow s' \)
- \(s' \) reachable from \(s \) if there exists a sequence of transitions
 \(s^{(0)} \xrightarrow{\ell_1} s^{(1)}, \ldots, s^{(n-1)} \xrightarrow{\ell_n} s^{(n)} \) s.t. \(s^{(0)} = s \) and \(s^{(n)} = s' \)
 - Note: \(n = 0 \) possible; then \(s = s' \)
 - \(\ell_1, \ldots, \ell_n \) is called path from \(s \) to \(s' \)
 - \(s^{(0)}, \ldots, s^{(n)} \) is also called path from \(s \) to \(s' \)
 - length of that path is \(n \)
- additional terms: strongly connected, weakly connected, strong/weak connected components, \ldots
Transition system terminology (ctd.)

Some additional terminology:

- s' reachable (without reference state) means reachable from initial state s_0
- solution or goal path from s: path from s to some $s' \in S^*$
 - if s is omitted, $s = s_0$ is implied
- transition system solvable if a goal path from s_0 exists
Definition (deterministic transition system)

A transition system with transitions \(T \) is called deterministic if for all states \(s \) and labels \(\ell \), there is at most one state \(s' \) with \(s \xrightarrow{\ell} s' \).

Example: previously shown transition system
Running example: blocks world

Throughout the course, we will often use the blocks world domain as an example.

In the blocks world, a number of differently coloured blocks are arranged on our table.

Our job is to rearrange them according to a given goal.
Blocks world rules

Location on the table does not matter.

\[\begin{array}{ccc}
\text{Location on the table does not matter.} & = & \\
\includegraphics[width=1in]{block1.png} & = & \includegraphics[width=1in]{block2.png}
\end{array}\]

Location on a block does not matter.

\[\begin{array}{ccc}
\text{Location on a block does not matter.} & = & \\
\includegraphics[width=1in]{block3.png} & = & \includegraphics[width=1in]{block4.png}
\end{array}\]
Blocks world rules (ctd.)

At most one block may be below a block.

At most one block may be on top of a block.
Blocks world transition system for three blocks

(Transition labels omitted for clarity.)
Blocks world computational properties

<table>
<thead>
<tr>
<th>blocks</th>
<th>states</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>501</td>
</tr>
<tr>
<td>6</td>
<td>4051</td>
</tr>
<tr>
<td>7</td>
<td>37633</td>
</tr>
<tr>
<td>8</td>
<td>394353</td>
</tr>
<tr>
<td>9</td>
<td>4596553</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>blocks</th>
<th>states</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>58941091</td>
</tr>
<tr>
<td>11</td>
<td>824073141</td>
</tr>
<tr>
<td>12</td>
<td>12470162233</td>
</tr>
<tr>
<td>13</td>
<td>202976401213</td>
</tr>
<tr>
<td>14</td>
<td>3535017524403</td>
</tr>
<tr>
<td>15</td>
<td>65573803186921</td>
</tr>
<tr>
<td>16</td>
<td>1290434218669921</td>
</tr>
<tr>
<td>17</td>
<td>26846616451246353</td>
</tr>
<tr>
<td>18</td>
<td>588633468315403843</td>
</tr>
</tbody>
</table>

- **Finding a solution** is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration).
- **Finding a shortest solution** is NP-complete (for a compact description of the problem).
Planning tasks
Compact representations

- Classical (i.e., deterministic) planning is in essence the problem of finding solutions in huge transition systems.
- The transition systems we are usually interested in are too large to explicitly enumerate all states or transitions.
- Hence, the input to a planning algorithm must be given in a more concise form.
- In the rest of chapter, we discuss how to represent planning tasks in a suitable way.
State variables

How to represent huge state sets without enumerating them?

- represent different aspects of the world in terms of different state variables

→ a state is a valuation of state variables

- n state variables with m possible values each induce m^n different states

→ exponentially more compact than “flat” representations

- Example: n variables suffice for blocks world with n blocks
Blocks world with finite-domain state variables

Describe blocks world state with three state variables:

- *location-of-A*: \{B, C, table\}
- *location-of-B*: \{A, C, table\}
- *location-of-C*: \{A, B, table\}

Example

\[
\begin{align*}
s(\text{location-of-A}) &= \text{table} \\
s(\text{location-of-B}) &= A \\
s(\text{location-of-C}) &= \text{table}
\end{align*}
\]

Not all valuations correspond to intended blocks world states. **Example**: \(s\) with \(s(\text{location-of-A}) = B, s(\text{location-of-B}) = A\).
Boolean state variables

Problem:

- How to succinctly represent transitions and goal states?

Idea: Use propositional logic

- state variables: propositional variables (0 or 1)
- goal states: defined by a propositional formula
- transitions: defined by actions given by
 - precondition: when is the action applicable?
 - effect: how does it change the valuation?

Note: general finite-domain state variables can be compactly encoded as Boolean variables
Blocks world with Boolean state variables

Example

\[
\begin{align*}
 s(A\text{-}on\text{-}B) &= 0 \\
 s(A\text{-}on\text{-}C) &= 0 \\
 s(A\text{-}on\text{-}table) &= 1 \\
 s(B\text{-}on\text{-}A) &= 1 \\
 s(B\text{-}on\text{-}C) &= 0 \\
 s(B\text{-}on\text{-}table) &= 0 \\
 s(C\text{-}on\text{-}A) &= 0 \\
 s(C\text{-}on\text{-}B) &= 0 \\
 s(C\text{-}on\text{-}table) &= 1
\end{align*}
\]
Definition (propositional formula)

Let A be a set of atomic propositions (here: state variables). The propositional formulae over A are constructed by finite application of the following rules:

- \top and \bot are propositional formulae (truth and falsity).
- For all $a \in A$, a is a propositional formula (atom).
- If φ is a propositional formula, then so is $\neg \varphi$ (negation).
- If φ and ψ are propositional formula, then so are $(\varphi \lor \psi)$ (disjunction) and $(\varphi \land \psi)$ (conjunction).

Note: We often omit the word “propositional”.
Propositional logic conventions

Abbreviations:

- $(\varphi \rightarrow \psi)$ is short for $(\neg \varphi \lor \psi)$ (implication)
- $(\varphi \leftrightarrow \psi)$ is short for $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$ (equivalence)
- Parentheses omitted when not necessary
- (\neg) binds more tightly than binary connectives
- (\land) binds more tightly than (\lor) than (\rightarrow) than (\leftrightarrow)
Definition (propositional valuation)

A valuation of propositions \(A \) is a function \(v : A \to \{0, 1\} \).

Define the notation \(v \models \varphi \) (\(v \) satisfies \(\varphi \); \(v \) is a model of \(\varphi \); \(\varphi \) is true under \(v \)) for valuations \(v \) and formulae \(\varphi \) by

- \(v \models T \)
- \(v \not\models \bot \)
- \(v \models a \) iff \(v(a) = 1 \), for \(a \in A \).
- \(v \models \neg\varphi \) iff \(v \not\models \varphi \)
- \(v \models \varphi \lor \psi \) iff \(v \models \varphi \) or \(v \models \psi \)
- \(v \models \varphi \land \psi \) iff \(v \models \varphi \) and \(v \models \psi \)
Propositional logic terminology

- A propositional formula φ is **satisfiable** if there is at least one valuation v so that $v \models \varphi$.
- Otherwise it is **unsatisfiable**.
- A propositional formula φ is **valid** or a **tautology** if $v \models \varphi$ for all valuations v.
- A propositional formula ψ is a **logical consequence** of a propositional formula φ, written $\varphi \models \psi$, if $v \models \psi$ for all valuations v with $v \models \varphi$.
- Two propositional formulae φ and ψ are **logically equivalent**, written $\varphi \equiv \psi$, if $\varphi \models \psi$ and $\psi \models \varphi$.

Question: How to phrase these in terms of **models**?
Propositional logic terminology (ctd.)

- A propositional formula that is a proposition a or a negated proposition $\neg a$ for some $a \in A$ is a literal.
- A formula that is a disjunction of literals is a clause. This includes unit clauses l consisting of a single literal, and the empty clause \bot consisting of zero literals.

Normal forms: NNF, CNF, DNF
Transitions for state sets described by propositions A can be concisely represented as operators or actions $\langle \chi, e \rangle$ where

- the **precondition** χ is a propositional formula over A describing the set of states in which the transition can be taken (states in which a transition starts), and

- the **effect** e describes how the resulting successor states are obtained from the state where the transitions is taken (where the transition goes).
Example: blocks world operators

Blocks world operators

To model blocks world operators conveniently, we use auxiliary state variables A-clear, B-clear, and C-clear to denote that there is nothing on top of a given block.

Then blocks world operators can be modeled as:

- $\langle A$-clear $\land A$-on-$T \land B$-clear, A-on-$B \land \neg A$-on-$T \land \neg B$-clear \rangle
- $\langle A$-clear $\land A$-on-$T \land C$-clear, A-on-$C \land \neg A$-on-$T \land \neg C$-clear \rangle
- $\langle A$-clear $\land A$-on-B, A-on-$T \land \neg A$-on-$B \land B$-clear \rangle
- $\langle A$-clear $\land A$-on-C, A-on-$T \land \neg A$-on-$C \land C$-clear \rangle
- $\langle A$-clear $\land A$-on-$B \land C$-clear, A-on-$C \land \neg A$-on-$B \land B$-clear $\land \neg C$-clear \rangle
- $\langle A$-clear $\land A$-on-$C \land B$-clear, A-on-$B \land \neg A$-on-$C \land C$-clear $\land \neg B$-clear \rangle
- ...
Effects (for deterministic operators)

Definition (effects)

(Deterministic) effects are recursively defined as follows:

- If $a \in A$ is a state variable, then a and $\neg a$ are effects (atomic effect).
- If e_1, \ldots, e_n are effects, then $e_1 \land \cdots \land e_n$ is an effect (conjunctive effect).
 The special case with $n = 0$ is the empty effect \top.
- If χ is a propositional formula and e is an effect, then $\chi \triangleright e$ is an effect (conditional effect).

Atomic effects a and $\neg a$ are best understood as assignments $a := 1$ and $a := 0$, respectively.
Effect example

$\chi \triangleright e$ means that change e takes place if χ is true in the current state.

Example

Increment 4-bit number $b_3 b_2 b_1 b_0$ represented as four state variables b_0, \ldots, b_3:

$$
(\neg b_0 \triangleright b_0) \land \\
((\neg b_1 \land b_0) \triangleright (b_1 \land \neg b_0)) \land \\
((\neg b_2 \land b_1 \land b_0) \triangleright (b_2 \land \neg b_1 \land \neg b_0)) \land \\
((\neg b_3 \land b_2 \land b_1 \land b_0) \triangleright (b_3 \land \neg b_2 \land \neg b_1 \land \neg b_0))
$$
Operator semantics

Definition (changes caused by an operator)

For each effect e and state s, we define the change set of e in s, written $[e]_s$, as the following set of literals:

- $[a]_s = \{a\}$ and $[-a]_s = \{-a\}$ for atomic effects a, $-a$
- $[e_1 \land \cdots \land e_n]_s = [e_1]_s \cup \cdots \cup [e_n]_s$
- $[\chi \triangleright e]_s = [e]_s$ if $s \models \chi$ and $[\chi \triangleright e]_s = \emptyset$ otherwise

Definition (applicable operators)

Operator $\langle \chi, e \rangle$ is applicable in a state s iff $s \models \chi$ and $[e]_s$ is consistent (i.e., does not contain two complementary literals).
Operator semantics (ctd.)

Definition (successor state)
The successor state $\text{app}_o(s)$ of s with respect to operator $o = \langle \chi, e \rangle$ is the state s' with $s' \models [e]_s$ and $s'(v) = s(v)$ for all state variables v not mentioned in $[e]_s$. This is defined only if o is applicable in s.

Example
Consider the operator $\langle a, \neg a \land (\neg c \triangleright \neg b) \rangle$ and the state $s = \{a \mapsto 1, b \mapsto 1, c \mapsto 1, d \mapsto 1\}$. The operator is applicable because $s \models a$ and $[\neg a \land (\neg c \triangleright \neg b)]_s = \{\neg a\}$ is consistent. Applying the operator results in the successor state $\text{app}_{\langle a, \neg a \land (\neg c \triangleright \neg b) \rangle}(s) = \{a \mapsto 0, b \mapsto 1, c \mapsto 1, d \mapsto 1\}$.
A deterministic planning task is a 4-tuple $\Pi = (A, I, O, \gamma)$ where

- A is a finite set of state variables (propositions),
- I is a valuation over A called the initial state,
- O is a finite set of operators over A, and
- γ is a formula over A called the goal.

Notes:

- In this course, we usually omit the word “deterministic” since all our tasks are deterministic.
- In the general literature “planning task” often refers to broader problem classes, e.g. including nondeterminism.
Definition (induced transition system of a planning task)

Every planning task $\Pi = \langle A, I, O, \gamma \rangle$ induces a corresponding deterministic transition system $T(\Pi) = \langle S, L, T, s_0, S_\star \rangle$:

- S is the set of all valuations of A,
- L is the set of operators O,
- $T = \{ \langle s, o, s' \rangle \mid s \in S, \ o \text{ applicable in } s, \ s' = app_o(s) \}$,
- $s_0 = I$, and
- $S_\star = \{ s \in S \mid s \models \gamma \}$
Planning tasks: terminology

- Terminology for transitions systems is also applied to the planning tasks that induce them.
- For example, when we speak of the states of Π, we mean the states of $T(\Pi)$.
- A sequence of operators that forms a goal path of $T(\Pi)$ is called a plan of Π.
By **planning**, we mean the following two algorithmic problems:

<table>
<thead>
<tr>
<th>Definition (satisficing planning)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given: a planning task Π</td>
</tr>
<tr>
<td>Output: a plan for Π, or unsolvable if no plan for Π exists</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (optimal planning)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given: a planning task Π</td>
</tr>
<tr>
<td>Output: a plan for Π with minimal length among all plans for Π, or unsolvable if no plan for Π exists</td>
</tr>
</tbody>
</table>
Summary

- **Transition systems** are a kind of directed graph (typically huge) that encode how the state of the world can change.

- **Planning tasks** are compact representations for transition systems, suitable as input for planning algorithms.

- Planning tasks are based on concepts from propositional logic, suitably enhanced to model state change.

- **States** of planning tasks are propositional valuations.

- **Operators** of planning tasks describe *when* (precondition) and *how* (effect) to change the current state of the world.

- In **satisficing planning**, we must find a solution to planning tasks (or show that no solution exists).

- In **optimal planning**, we must additionally guarantee that generated solutions are of the shortest possible length.