Principles of AI Planning

2. Transition systems and planning tasks

Malte Helmert and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

April 27th, 2010
Principles of AI Planning
April 27th, 2010 — 2. Transition systems and planning tasks

2.1 Transition systems

2.2 Planning tasks
2.1 Transition systems

- Definition
- Blocks world
Transition systems

Definition (transition system)

A transition system is a 5-tuple $T = \langle S, L, T, s_0, S_\star \rangle$ where

- S is a finite set of states,
- L is a finite set of (transition) labels,
- $T \subseteq S \times L \times S$ is the transition relation,
- $s_0 \in S$ is the initial state, and
- $S_\star \subseteq S$ is the set of goal states.

We say that T has the transition $\langle s, \ell, s' \rangle$ if $\langle s, \ell, s' \rangle \in T$.

We also write this $s \xrightarrow{\ell} s'$, or $s \rightarrow s'$ when not interested in ℓ.

Note: Transition systems are also called state spaces.
Transition systems: example

Transition systems are often depicted as **directed arc-labeled graphs** with marks to indicate the initial state and goal states.
Transition system terminology

We use common graph theory terms for transition systems:

- s' successor of s if $s \rightarrow s'$
- s predecessor of s' if $s \rightarrow s'$
- s' reachable from s if there exists a sequence of transitions

 $s^{(0)} \xrightarrow{\ell_1} s^{(1)}, \ldots, s^{(n-1)} \xrightarrow{\ell_n} s^{(n)}$ s.t. $s^{(0)} = s$ and $s^{(n)} = s'$

 - Note: $n = 0$ possible; then $s = s'$
 - ℓ_1, \ldots, ℓ_n is called path from s to s'
 - $s^{(0)}, \ldots, s^{(n)}$ is also called path from s to s'
 - length of that path is n

- additional terms: strongly connected, weakly connected, strong/weak connected components, ...
Transition system terminology (ctd.)

Some additional terminology:

- **s′ reachable** (without reference state) means reachable from initial state s_0
- **solution or goal path** from s: path from s to some $s' \in S_*$
 - if s is omitted, $s = s_0$ is implied
- transition system **solvable** if a goal path from s_0 exists
Deterministic transition systems

Definition (deterministic transition system)
A transition system with transitions T is called deterministic if for all states s and labels ℓ, there is at most one state s' with $s \xrightarrow{\ell} s'$.

Example: previously shown transition system
Running example: blocks world

- Throughout the course, we will often use the blocks world domain as an example.
- In the blocks world, a number of differently coloured blocks are arranged on our table.
- Our job is to rearrange them according to a given goal.
Blocks world rules

Location on the table does not matter.

\[
\begin{array}{c}
\text{Red} \quad \text{Blue} \\
\text{Green} \\
\end{array} \quad \equiv \quad \begin{array}{c}
\text{Red} \\
\text{Blue} \quad \text{Green} \\
\end{array}
\]

Location on a block does not matter.

\[
\begin{array}{c}
\text{Red} \\
\text{Blue} \quad \text{Green} \\
\text{Red} \\
\end{array} \quad \equiv \quad \begin{array}{c}
\text{Red} \quad \text{Green} \\
\text{Red} \\
\end{array}
\]
Blocks world rules (ctd.)

At most one block may be below a block.

At most one block may be on top of a block.
Blocks world transition system for three blocks
(Transition labels omitted for clarity.)
Blocks world computational properties

<table>
<thead>
<tr>
<th>blocks</th>
<th>states</th>
<th>blocks</th>
<th>states</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>58941091</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>11</td>
<td>824073141</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>12</td>
<td>12470162233</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
<td>13</td>
<td>202976401213</td>
</tr>
<tr>
<td>5</td>
<td>501</td>
<td>14</td>
<td>3535017524403</td>
</tr>
<tr>
<td>6</td>
<td>4051</td>
<td>15</td>
<td>65573803186921</td>
</tr>
<tr>
<td>7</td>
<td>37633</td>
<td>16</td>
<td>1290434218669921</td>
</tr>
<tr>
<td>8</td>
<td>394353</td>
<td>17</td>
<td>26846616451246353</td>
</tr>
<tr>
<td>9</td>
<td>4596553</td>
<td>18</td>
<td>588633468315403843</td>
</tr>
</tbody>
</table>

- Finding a solution is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration).
- Finding a shortest solution is NP-complete (for a compact description of the problem).
2.2 Planning tasks

- State variables
- Propositional logic
- Operators
- Deterministic planning tasks
Compact representations

- Classical (i.e., deterministic) planning is in essence the problem of finding solutions in huge transition systems.
- The transition systems we are usually interested in are too large to explicitly enumerate all states or transitions.
- Hence, the input to a planning algorithm must be given in a more concise form.
- In the rest of chapter, we discuss how to represent planning tasks in a suitable way.
State variables

How to represent huge state sets without enumerating them?

- represent different aspects of the world in terms of different state variables

\(\rightarrow\) a state is a valuation of state variables

- \(n\) state variables with \(m\) possible values each induce \(m^n\) different states

\(\rightarrow\) exponentially more compact than “flat” representations

- Example: \(n\) variables suffice for blocks world with \(n\) blocks
Blocks world with finite-domain state variables

Describe blocks world state with three state variables:

- `location-of-A`: \{B, C, table\}
- `location-of-B`: \{A, C, table\}
- `location-of-C`: \{A, B, table\}

Example

\[
\begin{align*}
 s(location-of-A) &= \text{table} \\
 s(location-of-B) &= A \\
 s(location-of-C) &= \text{table}
\end{align*}
\]

Not all valuations correspond to intended blocks world states.

Example: \(s\) with \(s(location-of-A) = B\), \(s(location-of-B) = A\).
Boolean state variables

Problem:
- How to succinctly represent transitions and goal states?

Idea: Use propositional logic
- state variables: propositional variables (0 or 1)
- goal states: defined by a propositional formula
- transitions: defined by actions given by
 - precondition: when is the action applicable?
 - effect: how does it change the valuation?

Note: general finite-domain state variables can be compactly encoded as Boolean variables
Blocks world with Boolean state variables

Example

\begin{align*}
s(A-on-B) &= 0 \\
s(A-on-C) &= 0 \\
s(A-on-table) &= 1 \\
s(B-on-A) &= 1 \\
s(B-on-C) &= 0 \\
s(B-on-table) &= 0 \\
s(C-on-A) &= 0 \\
s(C-on-B) &= 0 \\
s(C-on-table) &= 1
\end{align*}
Syntax of propositional logic

Definition (propositional formula)
Let A be a set of atomic propositions (here: state variables).
The propositional formulae over A are constructed by finite application of
the following rules:

- \top and \bot are propositional formulae (truth and falsity).
- For all $a \in A$, a is a propositional formula (atom).
- If φ is a propositional formula, then so is $\neg \varphi$ (negation).
- If φ and ψ are propositional formula, then so are
 $(\varphi \lor \psi)$ (disjunction) and $(\varphi \land \psi)$ (conjunction).

Note: We often omit the word “propositional”.
Propositional logic conventions

Abbreviations:

- $(\varphi \rightarrow \psi)$ is short for $(\neg \varphi \lor \psi)$ (implication)
- $(\varphi \leftrightarrow \psi)$ is short for $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$ (equivalence)
- parentheses omitted when not necessary
- (\neg) binds more tightly than binary connectives
- (\land) binds more tightly than (\lor) than (\rightarrow) than (\leftrightarrow)
Semantics of propositional logic

Definition (propositional valuation)

A **valuation** of propositions A is a function $v : A \rightarrow \{0, 1\}$.

Define the notation $v \models \varphi$ (**v satisfies** φ; **v is a model** of φ; **φ is true** under v) for valuations v and formulae φ by

- $v \models T$
- $v \not\models \bot$
- $v \models a$ iff $v(a) = 1$, for $a \in A$.
- $v \models \neg \varphi$ iff $v \not\models \varphi$
- $v \models \varphi \lor \psi$ iff $v \models \varphi$ or $v \models \psi$
- $v \models \varphi \land \psi$ iff $v \models \varphi$ and $v \models \psi$
Propositional logic terminology

- A propositional formula φ is **satisfiable** if there is at least one valuation v so that $v \models \varphi$.
- Otherwise it is **unsatisfiable**.
- A propositional formula φ is **valid** or a **tautology** if $v \models \varphi$ for all valuations v.
- A propositional formula ψ is a **logical consequence** of a propositional formula φ, written $\varphi \models \psi$, if $v \models \psi$ for all valuations v with $v \models \varphi$.
- Two propositional formulae φ and ψ are **logically equivalent**, written $\varphi \equiv \psi$, if $\varphi \models \psi$ and $\psi \models \varphi$.

Question: How to phrase these in terms of models?
Propositional logic terminology (ctd.)

- A propositional formula that is a proposition a or a negated proposition $\neg a$ for some $a \in A$ is a literal.
- A formula that is a disjunction of literals is a clause. This includes unit clauses l consisting of a single literal, and the empty clause \bot consisting of zero literals.

Normal forms: NNF, CNF, DNF
Operators

Transitions for state sets described by propositions A can be concisely represented as operators or actions $⟨χ, e⟩$ where

- the **precondition** $χ$ is a propositional formula over A describing the set of states in which the transition can be taken (states in which a transition starts), and

- the **effect** e describes how the resulting successor states are obtained from the state where the transitions is taken (where the transition goes).
Example: blocks world operators

Blocks world operators

To model blocks world operators conveniently, we use auxiliary state variables \(A\text{-clear} \), \(B\text{-clear} \), and \(C\text{-clear} \) to denote that there is nothing on top of a given block.

Then blocks world operators can be modeled as:

- \(\langle A\text{-clear} \land A\text{-on}\text{-}T \land B\text{-clear}, \ A\text{-on}\text{-}B \land \neg A\text{-on}\text{-}T \land \neg B\text{-clear} \rangle \)
- \(\langle A\text{-clear} \land A\text{-on}\text{-}T \land C\text{-clear}, \ A\text{-on}\text{-}C \land \neg A\text{-on}\text{-}T \land \neg C\text{-clear} \rangle \)
- \(\langle A\text{-clear} \land A\text{-on}\text{-}B, \ A\text{-on}\text{-}T \land \neg A\text{-on}\text{-}B \land B\text{-clear} \rangle \)
- \(\langle A\text{-clear} \land A\text{-on}\text{-}C, \ A\text{-on}\text{-}T \land \neg A\text{-on}\text{-}C \land C\text{-clear} \rangle \)
- \(\langle A\text{-clear} \land A\text{-on}\text{-}B \land C\text{-clear}, \ A\text{-on}\text{-}C \land \neg A\text{-on}\text{-}B \land B\text{-clear} \land \neg C\text{-clear} \rangle \)
- \(\langle A\text{-clear} \land A\text{-on}\text{-}C \land B\text{-clear}, \ A\text{-on}\text{-}B \land \neg A\text{-on}\text{-}C \land C\text{-clear} \land \neg B\text{-clear} \rangle \)
- \(\ldots \)
Effects (for deterministic operators)

Definition (effects)

(Deterministic) effects are recursively defined as follows:

- If \(a \in A \) is a state variable, then \(a \) and \(\neg a \) are effects (atomic effect).
- If \(e_1, \ldots, e_n \) are effects, then \(e_1 \land \cdots \land e_n \) is an effect (conjunctive effect).
 The special case with \(n = 0 \) is the empty effect \(\top \).
- If \(\chi \) is a propositional formula and \(e \) is an effect, then \(\chi \triangleright e \) is an effect (conditional effect).

Atomic effects \(a \) and \(\neg a \) are best understood as assignments \(a := 1 \) and \(a := 0 \), respectively.
Effect example

\(\chi \triangleright e \) means that change \(e \) takes place if \(\chi \) is true in the current state.

Example

Increment 4-bit number \(b_3 b_2 b_1 b_0 \) represented as four state variables \(b_0, \ldots, b_3 \):

\[
(\neg b_0 \triangleright b_0) \land \\
((\neg b_1 \land b_0) \triangleright (b_1 \land \neg b_0)) \land \\
((\neg b_2 \land b_1 \land b_0) \triangleright (b_2 \land \neg b_1 \land \neg b_0)) \land \\
((\neg b_3 \land b_2 \land b_1 \land b_0) \triangleright (b_3 \land \neg b_2 \land \neg b_1 \land \neg b_0))
\]
Operator semantics

Definition (changes caused by an operator)
For each effect e and state s, we define the change set of e in s, written $[e]_s$, as the following set of literals:

- $[a]_s = \{a\}$ and $[\neg a]_s = \{\neg a\}$ for atomic effects a, $\neg a$
- $[e_1 \land \cdots \land e_n]_s = [e_1]_s \cup \cdots \cup [e_n]_s$
- $[\chi \triangleright e]_s = [e]_s$ if $s \models \chi$ and $[\chi \triangleright e]_s = \emptyset$ otherwise

Definition (applicable operators)
Operator $\langle \chi, e \rangle$ is applicable in a state s iff $s \models \chi$ and $[e]_s$ is consistent (i.e., does not contain two complementary literals).
Planning tasks

Operators

Operator semantics (ctd.)

Definition (successor state)

The successor state $\text{app}_o(s)$ of s with respect to operator $o = \langle \chi, e \rangle$ is the state s' with $s' \models [e]_s$ and $s'(v) = s(v)$ for all state variables v not mentioned in $[e]_s$.

This is defined only if o is applicable in s.

Example

Consider the operator $\langle a, \neg a \land (\neg c \triangleright \neg b) \rangle$ and the state $s = \{a \mapsto 1, b \mapsto 1, c \mapsto 1, d \mapsto 1\}$.

The operator is applicable because $s \models a$ and $[\neg a \land (\neg c \triangleright \neg b)]_s = \{\neg a\}$ is consistent.

Applying the operator results in the successor state $\text{app}_{\langle a, \neg a \land (\neg c \triangleright \neg b) \rangle}(s) = \{a \mapsto 0, b \mapsto 1, c \mapsto 1, d \mapsto 1\}$.
Deterministic planning tasks

Definition (deterministic planning task)

A deterministic planning task is a 4-tuple \(\Pi = \langle A, I, O, \gamma \rangle \) where

- \(A \) is a finite set of state variables (propositions),
- \(I \) is a valuation over \(A \) called the initial state,
- \(O \) is a finite set of operators over \(A \), and
- \(\gamma \) is a formula over \(A \) called the goal.

Notes:

- In this course, we usually omit the word “deterministic” since all our tasks are deterministic.
- In the general literature “planning task” often refers to broader problem classes, e.g. including nondeterminism.
Mapping planning tasks to transition systems

Definition (induced transition system of a planning task)

Every planning task $\Pi = \langle A, I, O, \gamma \rangle$ induces a corresponding deterministic transition system $T(\Pi) = \langle S, L, T, s_0, S_\star \rangle$:

- S is the set of all valuations of A,
- L is the set of operators O,
- $T = \{ \langle s, o, s' \rangle \mid s \in S, \text{ o applicable in } s, \text{ s' = app}_o(s) \}$,
- $s_0 = I$, and
- $S_\star = \{ s \in S \mid s \models \gamma \}$,
Planning tasks: terminology

- Terminology for transitions systems is also applied to the planning tasks that induce them.
- For example, when we speak of the states of Π, we mean the states of $\mathcal{T}(\Pi)$.
- A sequence of operators that forms a goal path of $\mathcal{T}(\Pi)$ is called a plan of Π.
Planning

By planning, we mean the following two algorithmic problems:

Definition (satisficing planning)
Given: a planning task Π
Output: a plan for Π, or **unsolvable** if no plan for Π exists

Definition (optimal planning)
Given: a planning task Π
Output: a plan for Π with minimal length among all plans for Π, or **unsolvable** if no plan for Π exists
Summary

- **Transition systems** are a kind of directed graph (typically huge) that encode how the state of the world can change.

- **Planning tasks** are compact representations for transition systems, suitable as input for planning algorithms.

- Planning tasks are based on concepts from **propositional logic**, suitably enhanced to model state change.

- **States** of planning tasks are propositional valuations.

- **Operators** of planning tasks describe *when* (precondition) and *how* (effect) to change the current state of the world.

- In **satisficing planning**, we must find a solution to planning tasks (or show that no solution exists).

- In **optimal planning**, we must additionally guarantee that generated solutions are of the shortest possible length.