Principles of AI Planning

1. Introduction

Malte Helmert and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

April 22nd, 2010
About the course
Lecturers

Dr. Malte Helmert

- **email**: helmert@informatik.uni-freiburg.de
- **office**: room 052-00-044
- **consultation**: by appointment (email)

Prof. Dr. Bernhard Nebel

- **email**: nebel@informatik.uni-freiburg.de
- **office**: room 052-00-029
- **consultation**: Wednesdays, 13:00-14:00
People

Assistant

Gabi Röger

- **email**: roeger@informatik.uni-freiburg.de
- **office**: room 052-00-041
- **consultation**: by appointment (email)
Tutors

Jendrik Seipp
 - email: jendrik.seipp@mars.uni-freiburg.de

Silvan Sievers
 - email: sievers@informatik.uni-freiburg.de
Lectures
- **time:** Tuesday 16:15-18:00, Thursday 14:15-15:00
- **place:** 101 00-026

Exercises
- **time:** Thursday 15:15-16:00
- **place:** SR 101 01-016, SR 101 01-018
Course web site

http://www.informatik.uni-freiburg.de/~ki/teaching/ss10/aip/

- main page: course description
- lecture page: slides
- exercise page: assignments, model solutions, software
- bibliography page: literature references and papers
no textbook, no script
slides handed out during lectures and available on the web
additional resources: bibliography page on web + ask us!

Acknowledgments:
- slides based on earlier courses by Jussi Rintanen, Bernhard Nebel and Malte Helmert
- many figures by Gabi Röger
Target audience

Students of Computer Science:
- Master of Science, any year
- Bachelor of Science, ~3rd year

Students of Applied Computer Science:
- Master of Science, ~2nd year

Other students:
- advanced study period (~4th year)
Prerequisites

Course prerequisites:

- **propositional logic**: syntax and semantics
- **foundations of AI**: search, heuristic search
- **computational complexity theory**: decision problems, reductions, NP-completeness
Credit points & exam

- 6 ECTS points
- special lecture in concentration subject
 Artificial Intelligence and Robotics
- oral exam of about 30 minutes
Exercises (written assignments):

- handed out on Tuesdays
- due Tuesday following week, before the lecture
- discussed Thursday that week
- may solve in groups of two students (2 ≠ 3)
- may earn bonus marks for oral exam
Projects (programming assignments):

- handed out every now and then
- more time to work on than for exercises
- may solve in groups of two students \((2 = 2) \)
- language: Java (maybe open for some projects)
- solutions that obviously do not work: 0 marks
 - may fix bugs uncovered by our testing
 if still within submission deadline
- may earn bonus marks for oral exam
Bonus marks

- may earn up to 10 bonus marks in exercises
- may earn up to 10 bonus marks in projects
- max. possible: 20 bonus marks
- 10 bonus marks ≈ $\frac{1}{3}$ grade improvement (e.g., 1.7 → 1.3)

Bonus marks from exercises

- compute total score percentage for the semester
- $\leq 50\%$: no bonus marks
- 1 bonus mark for each 5% above 50%

Bonus marks from projects

- no minimum requirement: each project directly yields a certain number of bonus marks
- max. bonus marks from projects capped at 10
Plagiarism

What is plagiarism?

- passing off solutions as your own that are not based on your ideas (work of other students, Internet, books, ...)
- http://en.wikipedia.org/wiki/Plagiarism is a good intro

Consequence: no bonus marks for the course

- We may (!) be generous on first offense.
- Don’t tell us “We did the work together.”
- Don’t tell us “I did not know this was not allowed.”
Introduction
What is planning?

Planning

“Planning is the art and practice of thinking before acting.”
— Patrik Haslum

- intelligent decision making: What actions to take?
- general-purpose problem representation
- algorithms for solving any problem expressible in the representation
- application areas:
 - high-level planning for intelligent robots
 - autonomous systems: NASA Deep Space One, . . .
 - problem solving (single-agent games like Rubik’s cube)
Why is planning difficult?

- solutions to classical planning problems are **paths from an initial state to a goal state** in the transition graph
 - efficiently solvable by Dijkstra’s algorithm in \(O(|V| \log |V| + |E|) \) time
 - Why don’t we solve all planning problems this way?
- state spaces may be **huge**: \(10^{10}, 10^{100}, 10^{1000}, \ldots \) states
 - constructing the transition graph is infeasible!
 - planning algorithms try to avoid constructing whole graph
- planning algorithms are often much more efficient than obvious solution methods constructing the transition graph and using e.g. Dijkstra’s algorithm
Different classes of problems

- **dynamics**: deterministic, nondeterministic or probabilistic
- **observability**: full, partial or none
- **horizon**: finite or infinite
-
- 1. classical planning
- 2. conditional planning with full observability
- 3. conditional planning with partial observability
- 4. conformant planning
- 5. Markov decision processes (MDP)
- 6. partially observable MDPs (POMDP)
Different classes of problems

- **dynamics**: deterministic, nondeterministic or probabilistic
- **observability**: full, partial or none
- **horizon**: finite or infinite
- . . .

1. **classical planning**
2. conditional planning with full observability
3. conditional planning with partial observability
4. conformant planning
5. Markov decision processes (MDP)
6. partially observable MDPs (POMDP)
Different classes of problems

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite

1. classical planning
2. conditional planning with full observability
3. conditional planning with partial observability
4. conformant planning
5. Markov decision processes (MDP)
6. partially observable MDPs (POMDP)
Different classes of problems

- **dynamics**: deterministic, **nondeterministic** or probabilistic
- **observability**: full, **partial** or none
- **horizon**: finite or infinite
- ...

1. classical planning
2. conditional planning with full observability
3. **conditional planning with partial observability**
4. conformant planning
5. Markov decision processes (MDP)
6. partially observable MDPs (POMDP)
Different classes of problems

- **dynamics**: deterministic, nondeterministic or probabilistic
- **observability**: full, partial or none
- **horizon**: finite or infinite
- ...

1. classical planning
2. conditional planning with full observability
3. conditional planning with partial observability
4. **conformant planning**
5. Markov decision processes (MDP)
6. partially observable MDPs (POMDP)
Different classes of problems

- **dynamics**: deterministic, nondeterministic or **probabilistic**
- **observability**: full, partial or none
- **horizon**: finite or infinite
- ...

1. **classical planning**
2. **conditional planning with full observability**
3. **conditional planning with partial observability**
4. **conformant planning**
5. **Markov decision processes (MDP)**
6. **partially observable MDPs (POMDP)**
Different classes of problems

- dynamics: deterministic, nondeterministic or probabilistic
- observability: full, partial or none
- horizon: finite or infinite

1. classical planning
2. conditional planning with full observability
3. conditional planning with partial observability
4. conformant planning
5. Markov decision processes (MDP)
6. partially observable MDPs (POMDP)
Properties of the world: dynamics

Deterministic dynamics
Action + current state uniquely determine successor state.

Nondeterministic dynamics
For each action and current state there may be several possible successor states.

Probabilistic dynamics
For each action and current state there is a probability distribution over possible successor states.

Analogy: deterministic versus nondeterministic automata
Deterministic dynamics example

Moving objects with a robotic hand: move the green block onto the blue block.
Nondeterministic dynamics example

Moving objects with an **unreliable** robotic hand: move the green block onto the blue block.
Probabilistic dynamics example

Moving objects with an **unreliable** robotic hand: move the green block onto the blue block.

```
| Probability | Move
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p = 0.9</td>
<td></td>
</tr>
<tr>
<td>p = 0.1</td>
<td></td>
</tr>
</tbody>
</table>
```

![Diagram showing the movement of objects with probabilities]
Properties of the world: observability

<table>
<thead>
<tr>
<th>Full observability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations/sensing determine current world state uniquely.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Partial observability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations determine current world state only partially: we only know that current state is one of several possible ones.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No observability</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no observations to narrow down possible current states. However, can use knowledge of action dynamics to deduce which states we might be in.</td>
</tr>
</tbody>
</table>

Consequence: If observability is not full, must represent the **knowledge** an agent has.
What difference does observability make?

Camera A

Camera B

Goal
Different objectives

1. Reach a goal state.
 - Example: Earn 500 Euro.

2. Stay in goal states indefinitely (infinite horizon).
 - Example: Never allow bank account balance to be negative.

3. Maximize the probability of reaching a goal state.
 - Example: To be able to finance buying a house by 2022 study hard and save money.

4. Collect the maximal expected rewards/minimal expected costs (infinite horizon).
 - Example: Maximize your future income.

5. ...
Relation to games and game theory

- Game theory addresses decision making in multi-agent setting: “Assuming that the other agents are rational, what do I have to do to achieve my goals?”
- Game theory is related to multi-agent planning.
- In this course we concentrate on single-agent planning.
- Some of the techniques are also applicable to special cases of multi-agent planning.
 - Example: Finding a winning strategy of a game like chess. In this case it is not necessary to distinguish between an intelligent opponent and a randomly behaving opponent.
- Game theory in general is about optimal strategies which do not necessarily guarantee winning. For example card games like poker do not have a winning strategy.
What do you learn in this course?

- emphasis on **classical** planning ("simplest" case)
- **theoretical background** for planning
 - formal problem definition
 - basic theoretical notions
 (e.g., normal forms, progression, regression)
 - computational complexity of planning
- **algorithms** for planning:
 - based on **heuristic search**
 - based on satisfiability testing (**SAT**)
 - based on exhaustive search with logic-based data structures (**BDDs**)

Many of these techniques are applicable to problems outside AI as well.

- **hands-on experience** with a classical planner (optional)