
SA-1

Foundations of AI

6. Board Games

Search Strategies for Games, Games
with Chance, State of the Art
Wolfram Burgard, Andreas Karwath,

Bernhard Nebel, and Martin Riedmiller

06/2

Contents

� Board Games

� Minimax Search

� Alpha-Beta Search

� Games with an Element of Chance

� State of the Art

06/3

Why Board Games?

Board games are one of the oldest branches of AI
(Shannon and Turing 1950).

� Board games present a very abstract and pure
form of competition between two opponents and
clearly require a form of “intelligence”.

� The states of a game are easy to represent.

� The possible actions of the players are well-
defined.

� Realization of the game as a search problem

� The world states are fully accessible

� It is nonetheless a contingency problem,
because the characteristics of the opponent are
not known in advance.

06/4

Problems

Board games are not only difficult because they are
contingency problems, but also because the search
trees can become astronomically large.

Examples:

• Chess: On average 35 possible actions from every
position, 100 possible moves � 35100 ≈ 10150 nodes in the
search tree (with “only” 1040 legal chess positions).

• Go: On average 200 possible actions with ca. 300 moves
�200300 ≈ 10700 nodes.

Good game programs have the properties that they

• delete irrelevant branches of the game tree,

• use good evaluation functions for in-between states, and

• look ahead as many moves as possible.

06/5

Terminology of Two-Person Board
Games

� Players are MAX and MIN, where MAX begins.

� Initial position (e.g., board arrangement)

� Operators (= legal moves)

� Termination test, determines when the game
is over. Terminal state = game over.

� Strategy. In contrast to regular searches,
where a path from beginning to end is simply
a solution, MAX must come up with a strategy
to reach a terminal state regardless of what
MIN does � correct reactions to all of MIN’s
moves.

06/6

Tic-Tac-Toe Example

Every step of the search tree, also called game tree, is given the player’s
name whose turn it is (MAX- and MIN-steps).

When it is possible, as it is here, to produce the full search tree (game
tree), the minimax algorithm delivers an optimal strategy for MAX.

06/7

Minimax

1. Generate the complete game tree using depth-first
search.

2. Apply the utility function to each terminal state.

3. Beginning with the terminal states, determine the
utility of the predecessor nodes as follows:

• Node is a MIN-node
Value is the minimum of the successor nodes

• Node is a MAX-node
Value is the maximum of the successor nodes

• From the initial state (root of the game tree), MAX
chooses the move that leads to the highest value
(minimax decision).

Note: Minimax assumes that MIN plays perfectly.
Every weakness (i.e. every mistake MIN makes)
can only improve the result for MAX.

06/8

Minimax Example

06/9

Minimax Algorithm

Recursively calculates the best move from the initial state.

Note: Minimax only works when the game tree is not
too deep. Otherwise, the minimax value must be
approximated.

06/10

Evaluation Function

When the search space is too large, the game tree can be
created to a certain depth only. The art is to correctly
evaluate the playing position of the leaves.

Example of simple evaluation criteria in chess:

� Material value: pawn 1, knight/bishop 3, rook 5, queen 9.

� Other: king safety, good pawn structure

� Rule of thumb: 3-point advantage = certain victory

The choice of evaluation function is decisive!

The value assigned to a state of play should reflect the
chances of winning, i.e., the chance of winning with a
1-point advantage should be less than with a 3-point
advantage.

06/11

Evaluation Function - General

The preferred evaluation functions are weighted, linear
functions:

w1f1 + w2f2 + … + wnfn

where the w’s are the weights, and the f’s are the
features. [e.g., w1 = 3, f1 = number of our own knights
on the board]

Assumption: The criteria are independent.

The weights can be learned. The criteria, however, must
be given (noone knows how they can be learned).

06/12

When Should we Stop Growing the Tree?

� Fixed-depth search

� Better: iterative deepening search (with cut-off at
the goal limit)

� …but only evaluate “peaceful” positions that won’t
cause large fluctuations in the evaluation function
in the following moves.

� e.g., follow a sequence of forced moves through to
the end.

06/13

Horizon Problem

� Black has a slight material advantage

� …but will eventually lose (pawn becomes a queen)

� A fixed-depth search cannot detect this because it thinks
it can avoid it (on the other side of the horizon - because
black is concentrating on the check with the rook, to
which white must react).

06/14

Alpha-Beta Pruning

We do not need to consider all nodes.

06/15

Alpha-Beta Pruning: General

If m > n we will never reach node n in the game.

06/16

Alpha-Beta Pruning

Minimax algorithm with depth-first search

α = the value of the best (i.e., highest-value)
choice we have found so far at any choice
point along the path for MAX.

β = the value of the best (i.e., lowest-value)
choice we have found so far at any choice
point along the path for MIN.

06/17

When Can we Prune?

The following applies:

α values of MAX nodes can never decrease

β values of MIN nodes can never increase

(1) Prune below the MIN node whose β-bound is less
than or equal to the α-bound of its MAX-predecessor
node.

(2) Prune below the MAX node whose α-bound is greater
than or equal to the β-bound of its MIN-predecessor
node.

� Provides the same results as the complete minimax
search to the same depth (because only irrelevant
nodes are eliminated).

06/18

Alpha-Beta Search Algorithm

Initial call with MAX-VALUE(initial-state, –∞, +∞)

06/19

Alpha-Beta Pruning Example

06/20

Alpha-Beta Pruning Example

06/21

Alpha-Beta Pruning Example

06/22

Alpha-Beta Pruning Example

06/23

Alpha-Beta Pruning Example

06/24

Efficiency Gain

� The alpha-beta search cuts the largest amount off the
tree when we examine the best move first.

� In the best case (always the best move first), the
search expenditure is reduced to O(bd/2).

� In the average case (randomly distributed moves), the
search expenditure is reduced to O((b/log b)d)

� For b < 100, we attain O(b3d/4).

� Practical case: A simple ordering heuristic brings the
performance close to the best case.

� We can search twice as deep in the same amount of
time

� In chess, we can thus reach a depth of 6-7 moves.

06/25

Games that Include an Element of
Chance

White has just rolled 6-5 and has 4 legal moves.

06/26

Game Tree for Backgammon

In addition to MIN- and MAX nodes, we need chance nodes
(for the dice).

06/27

Calculation of the Expected Value

Utility function for chance nodes C over MAX:

di: possible dice rolls

P(di): probability of obtaining that roll

S(C,di): attainable positions from C with roll di

utility(s): Evaluation of s

expectimax(C) = Σ P(di) max (utility(s))

expectimin likewise
S∈∈∈∈S(C,di)i

06/28

Problems
� Order-preserving transformations on evaluation values

change the best move:

� Search costs increase: Instead of O(bd), we get
O((bxn)d), where n is the number of possible dice
outcomes.

� In Backgammon (n=21, b=20, can be 4000) the
maximum for d is 2.

06/29

Card Games

� Recently card games such as bridge and poker have been
addressed as well

� One approach: simulate play with open cards and then
average over all possible plays (or make a Monte Carlo
simulation) using minimax (perhaps modified)

� Pick the move with the best expected result (usually all
moves will lead to a loss, but some give better results)

� Averaging over clairvoyancy

� Although “incorrect”, appears to give reasonable results

06/30

State of the Art

Checkers, draughts (by international rules): A program
called CHINOOK is the official world champion in man-
computer competition (acknowledges by ACF and EDA)
and the highest-rated player:
CHINOOK: 2712 Ron King: 2632
Asa Long: 2631 Don Lafferty: 2625

Backgammon: The BKG program defeated the official
world champion in 1980. A newer program TD-Gammon
is among the top 3 players.

Othello: Very good, even on normal computers. In 1997,
the Logistello program defeated the human world
champion.

Go: The best programs (Zen, Mogo, Crazystone) are
rated as good as strong amateurs (1kyu/1dan) on the
Internet Go servers. However, its usually easy to adapt to
the weaknesses of these programs.

06/31

Chess (1)

Chess as “Drosophila” of AI research.

• A limited number of rules produces an unlimited
number of courses of play. In a game of 40 moves,
there are 1.5 x 10128 possible courses of play.

• Victory comes through logic, intuition, creativity, and
previous knowledge.

• Only special chess intelligence, no “general
knowledge”

06/32

Chess (2)
In 1997, world chess master G. Kasparow was beaten by
a computer in a match of 6 games.

Deep Blue (IBM Thomas J. Watson Research Center)

� Special hardware (32 processors with 8 chips, 2 Mi.
calculations per second)

� Heuristic search

� Case-based reasoning and learning techniques

� 1996 Knowledge based on 600 000 chess games

� 1997 Knowledge based on 2 million chess games

� Training through grand masters

� Duel between the “machine-like human Kasparow vs.
the human machine Deep Blue.”

Chess (3)

Nowadays, ordinary PC hardware is enough …

But note that the machine ELO points are not strictly
comparable to human ELO points …

06/33

Name Strength (ELO)

Rybka 2.3.1 2962

G. Kasperow 2828

V. Anand 2758

A. Karpow 2710

Deep Blue 2680

06/34

The Reasons for Success…

� Alpha-Beta-Search

� … with dynamic decision-making for uncertain positions

� Good (but usually simple) evaluation functions

� Large databases of opening moves.

� Very large game termination databases (for checkers,
all 10-piece situations)

� And very fast and parallel processors!

06/35

Summary

� A game can be defined by the initial state, the operators
(legal moves), a terminal test and a utility function
(outcome of the game).

� In two-player board games, the minimax algorithm can
determine the best move by enumerating the entire
game tree.

� The alpha-beta algorithm produces the same result but
is more efficient because it prunes away irrelevant
branches.

� Usually, it is not feasible to construct the complete game
tree, so the utility of some states must be determined by
an evaluation function.

� Games of chance can be handled by an extension of the
alpha-beta algorithm.

