Description Logics – Decidability and Complexity

Decidability & Undecidability

Polynomial Cases

Complexity of \mathcal{ALC} Subsumption

Expressive Power vs. Complexity

The Complexity of Subsumption in TBoxes

Outlook

Decidability

L_2 is the fragment of first-order predicate logic using only two different variable names (note: variable names can be reused!).

$L_2^=$ the same including equality.

Theorem

$L_2^=$ is decidable.

Corollary

Subsumption and satisfiability of concept descriptions is decidable in description logics using only the following concept and role forming operators: $C \sqcap D$, $C \sqcup D$, $\neg C$, $\forall r.C$, $\exists r.C$, $r \sqsubseteq s$, $r \sqcap s$, $r \sqcup s$, $\neg r$, r^{-1}.

Potential problems: Role composition and cardinality restrictions for role fillers. Cardinality restrictions, however, are not a real problem.

Undecidability

- $r \circ s$, $r \sqcap s$, $\neg r$, 1 [Schild 88]
- not relevant; Tarski had shown that already! – for relation algebras
- $r \circ s$, $r = s$, $C \sqcap D$, $\forall r.C$ [Schmidt-Schauß 89]
- This is in fact a fragment of the early description logic \mathcal{KL}-ONE, where people had hoped to come up with a complete subsumption algorithm
Decidable, Polynomial-Time Cases

- FL^- has obviously a polynomial subsumption problem (in the empty TBox) – the SUB algorithm needs only quadratic time.
- Donini et al [IJCAI 91] have shown that in the following languages subsumption can be decided using only polynomial time (and they are maximal wrt. this property):

\[
C \rightarrow A | \neg A | C \sqcap C' | \forall r.C | (\geq n r) | (\leq n r), \ r \rightarrow t | r^{-1}
\]

and

\[
C \rightarrow A | C \sqcap C' | \forall r.C | \exists r, \ r \rightarrow t | r^{-1} | r \sqcap r' | r \circ r'
\]

Open:

\[
C \rightarrow A | C \sqcap C' | \forall r.C | (\geq n r) | (\leq n r), \ r \rightarrow t | r \circ r'.
\]
Computational Complexity of \(ALC \) Subsumption

Lemma (Upper Bound for \(ALC \))

\(ALC \) subsumption, unsatisfiability and satisfiability are all in PSPACE.

Proof.

This follows from the tableau algorithm for \(ALC \). Although there may be exponentially many closed constraint systems, we can visit them step by step generating only one at a time. When closing a system, we have to consider only one role at a time – resulting in an only polynomial space requirement, i.e., satisfiability can be decided in PSPACE.

Theorem (Complexity of \(ALC \))

\(ALC \) subsumption, unsatisfiability and satisfiability are all PSPACE-complete.

Further Consequences of the Reducibility of \(K \) to \(ALC \)

- In the reduction we used only one role symbol. Are there modal logics that would require more than one such role symbol?
- The multi-modal logic \(K(n) \) has \(n \) different Box operators \(\Box_i \) (for \(n \) different agents)
- \(ALC \) is a notational variant of \(K(n) \) [Schild, IJCAI-91]
- Are there perhaps other modal logics that correspond to other descriptions logics?
- propositional dynamic logic (PDL), e.g., transitive closure, composition, role inverse, ...
- DL can be thought as fragments of first-order predicate logic. However, they are much more similar to modal logics
- Algorithms and complexity results can be borrowed. Works also the other way around

Expressive Power vs. Complexity

- Of course, one wants to have a description logic with high expressive power. However, high expressive power implies usually that the computational complexity of the reasoning problems might also be high, e.g., \(FL^- \) vs. \(ALC \)
- Does it make sense to use a language such as \(ALC \) or even extensions (corresponding to PDL) with higher complexity?
- There are three approaches to this problem:
 1. Use only small description logics with complete inference algorithms
 2. Use expressive description logics, but employ incomplete inference algorithms
 3. Use expressive description logics with complete inference algorithms
- For a long time, only options 1 and 2 were studied. Meanwhile, most researcher concentrate on option 3!

Is Subsumption in the Empty TBox Enough?

- We have shown that we can reduce concept subsumption in a given TBox to concept subsumption in the empty TBox.
- However, it is not obvious that this can be done in polynomial time
- In particular, in the following example unfolding leads to an exponential blowup:

\[
C_1 \equiv \forall r. C_0 \sqcap \forall s. C_0 \\
C_2 \equiv \forall r. C_1 \sqcap \forall s. C_1 \\
\vdots \\
C_n \equiv \forall r. C_{n-1} \sqcap \forall s. C_{n-1}
\]

- Unfolding \(C_n \) leads to a concept description with a size \(\Omega(2^n) \)
- Is it possible to avoid this blowup?
- Can we avoid exponential preprocessing?
TBox Subsumption for Small Languages

▶ **Question**: Can we decide in polynomial time TBox subsumption for a description logic such as \mathcal{FL}^-, for which concept subsumption in the empty TBox can be decided in polynomial time?

▶ Let us consider \mathcal{FL}_0: $C \sqcap D, \forall r.C$ with terminological axioms.

▶ Subsumption without a TBox can be done easily, using a structural subsumption algorithm.

▶ Unfolding + structural subsumption gives us an exponential algorithm.

The Complexity of TBox Subsumption

Theorem (Complexity of TBox subsumption)

TBox subsumption for \mathcal{FL}_0 is NP-hard.

Proof sketch.

We use the NDFA-equivalence problem, which is NP-complete for cycle-free automata and PSPACE-complete for general NDFAs. We transform a cycle-free NDFA to a \mathcal{FL}_0-terminology with the mapping π as follows:

- automaton $A \mapsto$ terminology T_A
- state $q \mapsto$ concept name q
- terminal state $q_f \mapsto$ concept name q_f
- input symbol $r \mapsto$ role name r
- r-transition from q to q' $\mapsto q \sqcap \forall r. q'$

In general, we have: $L(q) \subseteq L(q')$ iff $q' \sqsubseteq_T q$, from which the correctness of the reduction and the complexity result follows.

What Does This Complexity Result Mean?

▶ Note that for expressive languages such as \mathcal{ALC}, we do not notice any difference!

▶ The TBox subsumption complexity result for less expressive languages does not play a large role in practice

▶ Pathological situations do not happen very often

▶ In fact, if the definition depth is logarithmic in the size of the TBox, the whole problem vanishes.

▶ However, in order to protect oneself against such problems, one often uses lazy unfolding

▶ Similarly, also for the \mathcal{ALC} concept descriptions, one notices that they are usually very well behaved.
Outlook

- Description logics have a long history (Tarski’s relation algebras and Brachman’s KL-ONE)
- Early on, either small languages with provably easy reasoning problems (e.g., the system CLASSIC) or large languages with incomplete inference algorithms (e.g., the system Loom) were used.
- Meanwhile, one uses complete algorithms on very large description logics (e.g., SHIQ), e.g. in the systems FaCT and RACER
- RACER can handle KBs with up to 160,000 concepts (example from unified medical language system) in reasonable time (less than one day computing time)
- Description logics are used as the semantic backbone for OWL (a Web-language extending RDF)

Literature