Motivation

Reasoning Problems & Algorithms

- **Satisfiability** or **subsumption** of concept descriptions
- **Satisfiability** or **instance relation** in ABoxes
- **Structural subsumption algorithms**
 - Normalization of concept descriptions and structural comparison
 - Very fast, but can only be used for small DLs
- **Tableau algorithms**
 - Similar to modal tableau methods
 - Meanwhile the method of choice

Structural Subsumption Algorithms

- **Small Logic** \mathcal{FL}^-
 - $C \cap D$
 - $\forall r.C$
 - $\exists r$ (simple existential quantification)

- **Idea**
 1. In the conjunction, collect all universally quantified expressions (also called **value restrictions**) with the same role and build complex value restriction:

 $$\forall r.C \cap \forall r.D \rightarrow \forall r.(C \cap D).$$

 2. Compare all conjuncts with each other. For each conjunct in the subsuming concept there should be a corresponding one in the subsumed one.
Example

\[
D = \text{Human} \sqcap \exists \text{has-child} \sqcap \forall \text{has-child.Human} \sqcap \\
\text{has-child}.\text{Human}
\]

\[
C = \text{Human} \sqcap \text{Female} \sqcap \exists \text{has-child} \sqcap \\
\forall \text{has-child.Human} \sqcap \\
\exists \text{has-child}.\text{Human} \sqcap \forall \text{has-child.Female} \sqcap \exists \text{has-child}.\text{Female}
\]

Check: \(C \subseteq D \)

1. Collect value restrictions in \(D \): ...

2. Compare:
 1. For Human in \(D \), we have Human in \(C \)
 2. For \(\exists \text{has-child} \) in \(D \), we have ...
 3. For \(\forall \text{has-child} \) in \(D \), we have ...
 2.3.1 For Human ...
 2.3.2 For \(\exists \text{has-child} \) ...

\(\Rightarrow C \) is subsumed by \(D \)!

Soundness

Theorem (Soundness)

\(\text{SUB}(C, D) \Rightarrow C \subseteq D \)

Proof sketch.

Reordering of terms (1):

a) Commutativity and associativity are trivial

b) Value restriction law. We show: \((\forall r.(C \sqcap D))^I = (\forall r.C \sqcap \forall r.D)^I \)

Assumption: \(d \in (\forall r.(C \sqcap D))^I \)

Case 1: \(\exists \epsilon : (d, \epsilon) \in I^I \)

Case 2: \(\exists \epsilon : (d, \epsilon) \in I^I \Rightarrow \epsilon \in (C \sqcap D)^I \Rightarrow \epsilon \in C^I, \epsilon \in D^I \)

Since \(\epsilon \) is arbitrary: \(d \in (\forall r.C)^I, d \in (\forall r.D)^I \) then \(d \) must also be conjunction, i.e., \((\forall r.(C \sqcap D))^I \subseteq (\forall r.C \sqcap \forall r.D)^I \)

Other direction is similar

(2+3+4): Induction on the nesting depth of \(\forall \)-expressions

Completeness

Theorem (Completeness)

\(C \subseteq D \Rightarrow \text{SUB}(C, D) \)

Proof idea.

One shows the contrapositive:

\(\neg \text{SUB}(C, D) \Rightarrow C \nsubseteq D \)

Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element \(d \) such that

\(d \in C^I, \) but \(d \notin D^I \)
Generalizing the Algorithm

Extensions of \mathcal{FL}^- by

- $\neg A$ (atomic negation),
- $(\leq n r), (\geq n r)$ (cardinality restrictions),
- $r \circ s$ (role composition)

does not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a simple structural subsumption algorithm -- having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison.

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).

ABox Reasoning

Idea: abstraction + classification

- Complete ABox by propagating value restrictions to role fillers
- Compute for each object its most specialized concepts
- These can then be handled using the ordinary subsumption algorithm

Tableau Method

Idea: Decide (un-)satisfiability of a concept description C by trying to systematically construct a model for C. If that is successful, C is satisfiable. Otherwise C is unsatisfiable.
Reductions

1. **Unfolding**
 \[\exists \text{has-child}. \text{Male} \sqcap \exists \text{has-child}. \text{Female} \sqsubseteq \exists \text{has-child}. (\text{Male} \sqcap \text{Female}) \]

2. **Reduction to unsatisfiability**
 Let
 \[\exists \text{has-child}. \text{Male} \sqcap \exists \text{has-child}. \text{Female} \sqcap \neg (\exists \text{has-child}. (\text{Male} \sqcap \text{Female})) \]
 unsatisfiable?

3. **Negation normal form** (move negations inside):
 \[\exists \text{has-child}. \text{Male} \sqcap \exists \text{has-child}. \text{Female} \sqcap \forall \text{has-child}. (\neg \text{Male} \sqcup \neg \text{Female}) \]

4. **Try to construct a model**

Model Construction (1)

1. **Assumption**: There exists an object \(x \) in the interpretation of our concept:
 \[x \in (\exists \ldots)^I \]

2. This implies that \(x \) is in the interpretation of all conjuncts:
 \[x \in (\exists \text{has-child}. \text{Male})^I \]
 \[x \in (\exists \text{has-child}. \text{Female})^I \]
 \[x \in (\forall \text{has-child}. (\neg \text{Male} \sqcup \neg \text{Female}))^I \]

3. This implies that there should be objects \(y \) and \(z \) such that
 \((x, y) \in \text{has-child}^I, (x, z) \in \text{has-child}^I, y \in \text{Male}^I \) and \(z \in \text{Female}^I \) and ...

Model Construction (2)

\[x : \exists \text{has-child}. \text{Male} \]
\[x : \exists \text{has-child}. \text{Female} \]

Model Construction (3)

\[x : \exists \text{has-child}. \text{Male} \]
\[x : \exists \text{has-child}. \text{Female} \]
\[x : \forall \text{has-child}. (\neg \text{Male} \sqcup \neg \text{Female}) \]
Tableau Subsumption Method Model Construction

Model Construction (4)

\[x : \exists \text{has-child}. \text{Male} \]
\[x : \exists \text{has-child}. \text{Female} \]
\[x : \forall \text{has-child}.(\neg \text{Male} \sqcup \neg \text{Female}) \]
\[y : \neg \text{Male} \]

\[\text{has-child} \quad \text{has-child} \]
\[\text{Male} \quad \text{Female} \]

\[\text{\neg Male} \text{ Contradiction} \]

\[\text{\Rightarrow Model constructed!} \]

Tableau Subsumption Method Equivalences & NNF

Tableau Method (1): NNF

\[C \equiv D \text{ iff } C \sqsubseteq D \text{ and } D \sqsubseteq C. \]

Now we have the following equivalences:

\[\neg(C \sqcap D) \equiv \neg C \sqcup \neg D \]
\[\neg(C \sqcup D) \equiv \neg C \sqcap \neg D \]
\[\neg \neg C \equiv C \]
\[\neg(\forall r. C) \equiv \exists r. \neg C \]
\[\neg(\exists r. C) \equiv \forall r. \neg C \]

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated: **negation normal form (NNF)**

Theorem (NNF)

The negation normal form of an \mathcal{ALC} concept can be computed in polynomial time.

Tableau Subsumption Method Constraint Systems

Tableau Method (2): Constraint Systems

A **constraint** is a syntactical object of the form: \[x : C \text{ or } xry \], where C is a concept description in NNF, r is a role name and x and y are **variable names**.

Let I be an interpretation. An **I-assignment** α is a function that maps each variable symbol to an object of the universe D.

A constraint $x : C (xry)$ is **satisfied** by an I-assignment α, if $\alpha(x) \in C^I \land ((\alpha(x), \alpha(y)) \in r^I)$.

A **constraint system** S is a finite, non-empty set of constraints. An I-assignment α satisfies S if α satisfies each constraint in S. S is **satisfiable** if there exists I and α such that α satisfies S.

Theorem

An \mathcal{ALC} concept C in NNF is satisfiable iff the system \{ $x : C$ \} is satisfiable.
Tableau Method (3): Transforming Constraint Systems

Transformation rules:

1. \(S \rightarrow \sqcap \{ x: C_1, x: C_2 \} \cup S \)
 if \((x: C_1 \sqcap C_2) \in S \) and either \((x: C_1) \) or \((x: C_2) \) or both are not in \(S \).

2. \(S \rightarrow \sqcup \{ x: D \} \cup S \)
 if \((x: C_1 \sqcup C_2) \in S \) and neither \((x: C_1) \in S \) nor \((x: C_2) \in S \) and \(D = C_1 \) or \(D = C_2 \).

3. \(S \rightarrow \exists \{ xry, y: C \} \cup S \)
 if \((x: \exists r.C) \in S \), \(y \) is a fresh variable, and there is no \(z \) s.t. \((xrz) \in S \) and \((z: C) \in S \).

4. \(S \rightarrow \forall \{ y: C \} \cup S \)
 if \((x: \forall r.C), (xry) \in S \) and \((y: C) \notin S \).

Deterministic rules (1,3,4) vs. non-deterministic (2).
Generating rules (3) vs. non-generating (1,2,4).

Tableau Method (4): Invariances

Theorem (Invariance)
Let \(S \) and \(T \) be constraint systems:

1. If \(T \) has been generated by applying a deterministic rule to \(S \), then \(S \) is satisfiable iff \(T \) is satisfiable.

2. If \(T \) has been generated by applying a non-deterministic rule to \(S \), then \(S \) is satisfiable if \(T \) is satisfiable. Furthermore, if a non-deterministic rule can be applied to \(S \), then it can be applied such that \(S \) is satisfiable iff the resulting system \(T \) is satisfiable.

Theorem (Termination)
Let \(C \) be an \(ALC \) concept description in NNF. Then there exists no infinite chain of transformations starting from the constraint system \(\{ x: C \} \).

Tableau Method (5): Soundness and Completeness

A constraint system is called closed if no transformation rule can be applied.

A clash is a pair of constraints of the form \(x: A \) and \(x: \neg A \), where \(A \) is a concept name.

Theorem (Soundness and Completeness)
A closed constraint system is satisfiable iff it does not contain a clash.

Proof idea.
\(\Rightarrow \): obvious. \(\Leftarrow \): Construct a model by using the concept labels.

Space Requirements

Because the tableau method is non-deterministic (\(\rightarrow \sqcap \) rule) ... there could be exponentially many closed constraint systems in the end. Interestingly, even one constraint system can have exponential size.

Example:
\[\exists r.A \sqcap \exists r.B \sqcap \forall r.(\exists r.A \sqcap \exists r.B \sqcap \forall r.((...))) \]

However: One can modify the algorithm so that it needs only poly. space. Idea: Generating a \(y \) only for one \(\exists r.C \) and then proceeding into the depth.
ABox Reasoning

ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA):

- **Normalize** and **unfold** and add inequalities for all pairs of objects mentioned in the ABox.
- Strictly speaking, in \mathcal{ALC} we do not need this because we are never forced to identify two objects.

Literature

