Principles of Knowledge Representation and Reasoning
Description Logics – Algorithms

Bernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

July 22, 2008
Description Logics – Algorithms

Motivation

Structural Subsumption Algorithms

Tableau Subsumption Method
Reasoning Problems & Algorithms

- **Satisfiability** or *subsumption* of concept descriptions
- **Satisfiability** or *instance relation* in ABoxes
- **Structural subsumption algorithms**
 - *Normalization* of concept descriptions and *structural comparison*
 - very fast, but can only be used for small DLs
- **Tableau algorithms**
 - Similar to modal tableau methods
 - Meanwhile the method of choice
Structural Subsumption Algorithms

- **Small Logic** \mathcal{FL}^-
 - $C \cap D$
 - $\forall r. C$
 - $\exists r$ (simple existential quantification)

- **Idea**

 1. In the conjunction, collect all *universally quantified expressions* (also called *value restrictions*) with the same role and build *complex value restriction*:

 $\forall r. C \cap \forall r. D \rightarrow \forall r. (C \cap D)$.

 2. Compare all conjuncts with each other. For each conjunct in the subsuming concept there should be a *corresponding one* in the subsumed one.
Example

\[D = \text{Human} \sqcap \exists \text{has-child} \sqcap \forall \text{has-child. Human} \sqcap \forall \text{has-child.} \exists \text{has-child} \]

\[C = \text{Human} \sqcap \text{Female} \sqcap \exists \text{has-child} \sqcap \forall \text{has-child. (Human} \sqcap \text{Female} \sqcap \exists \text{has-child}) \]

Check: \(C \subseteq D \)

1. Collect value restrictions in \(D \): \(\ldots \forall \text{has-child. (Human} \sqcap \exists \text{has-child}) \)

2. Compare:
 2.1 For \(\text{Human} \) in \(D \), we have \(\text{Human} \) in \(C \)
 2.2 For \(\exists \text{has-child} \) in \(D \), we have \(\ldots \)
 2.3 For \(\forall \text{has-child.} (...) \) in \(D \), we have \(\ldots \)
 2.3.1 For \(\text{Human} \) \(\ldots \)
 2.3.2 For \(\exists \text{has-child} \) \(\ldots \)

\(\leadsto C \) is subsumed by \(D \)!
Subsumption Algorithm

SUB(*C*, *D*) algorithm:

1. Reorder terms (**commutativity**, **associativity** and **value restriction law**):
 \[
 C = \bigcap A_i \cap \bigcap \exists r_j \cap \bigcap \forall r_k : C_k
 \]
 \[
 D = \bigcap B_l \cap \bigcap \exists s_m \cap \bigcap \forall s_n : D_n
 \]

2. For each *B_l* in *D*, is there an *A_i* in *C* with *A_i* = *B_l*?
3. For each *∃s_m* in *D*, is there an *∃r_j* in *C* with *s_m* = *r_j*?
4. For each *∀s_n* : *D_n* in *D*, is there a *∀r_k* : *C_k* in *C* such that *C_k* ⊑ *D_n* and *s_n* = *r_k*?

\[\leadsto C \sqsubseteq D \text{ iff all questions are answered positively}\]
Soundness

Theorem (Soundness)

\[\text{SUB}(C, D) \Rightarrow C \sqsubseteq D \]

Proof sketch.

Reordering of terms \((1)\):

a) Commutativity and associativity are trivial

b) Value restriction law. We show:
\[(\forall r.(C \sqcap D))^\mathcal{I} = (\forall r.C \sqcap \forall r.D)^\mathcal{I} \]

Assumption: \(d \in (\forall r.(C \sqcap D))^\mathcal{I} \)

Case 1: \(\exists e : (d, e) \in r^\mathcal{I} \) \(\checkmark \)

Case 2: \(\exists e : (d, e) \in r^\mathcal{I} \Rightarrow e \in (C \sqcap D)^\mathcal{I} \Rightarrow e \in C^\mathcal{I}, e \in D^\mathcal{I} \)

Since \(e \) is arbitrary: \(d \in (\forall r.C)^\mathcal{I}, d \in (\forall r.D)^\mathcal{I} \) then \(d \) must also be conjunction, i.e.,
\[(\forall r.(C \sqcap D))^\mathcal{I} \subseteq (\forall r.C \sqcap \forall r.D)^\mathcal{I} \]

Other direction is similar

\((2+3+4)\): Induction on the nesting depth of \(\forall \)-expressions
Completeness

Theorem (Completeness)

\[C \subseteq D \Rightarrow SUB(C, D) \]

Proof idea.

One shows the contrapositive:

\[\neg SUB(C, D) \Rightarrow C \nsubseteq D \]

Idea: If one of the rules leads to a negative answer, we use this to construct an interpretation with a special element \(d \) such that

\[d \in C^I, \text{ but } d \notin D^I \]
Generalizing the Algorithm

Extensions of \mathcal{FL}^- by

- $\neg A$ (atomic negation),
- $(\leq n \ r)$, $(\geq n \ r)$ (cardinality restrictions),
- $r \circ s$ (role composition)

does not lead to any problems.

However: If we use full existential restrictions, then it is very unlikely that we can come up with a *simple* structural subsumption algorithm – having the same flavor as the one above.

More precisely: There is (most probably) no algorithm that uses polynomially many reorderings and simplifications and allows for a simple structural comparison.

Reason: Subsumption for $\mathcal{FL}^- + \exists r.C$ is NP-hard (Nutt).
ABox Reasoning

Idea: *abstraction* + *classification*

- **Complete** ABox by propagating value restrictions to role fillers
- Compute for each object its *most specialized concepts*
- These can then be handled using the ordinary subsumption algorithm
Tableau Method

- **Logic** ALC
 - $C \sqcap D$
 - $C \sqcup D$
 - $\neg C$
 - $\forall r. C$
 - $\exists r. C$

- **Idea:** Decide (un-)satisfiability of a concept description C by trying to *systematically construct* a model for C. If that is successful, C is satisfiable. Otherwise C is unsatisfiable.
Example: Subsumption in a TBox

TBox

Hermaphrodite \equiv Male \sqcap Female

Parents-of-sons-and-daughters \equiv \exists has-child. Male \sqcap \exists has-child. Female

Parents-of-hermaphrodite \equiv \exists has-child. Hermaphrodite

Query

Parents-of-sons-and-daughters \sqsubseteq_T Parents-of-hermaphrodites
Reductions

1. **Unfolding**
 \[\exists \text{has-child}. \text{Male} \sqcap \exists \text{has-child}. \text{Female} \sqsubseteq \exists \text{has-child}. (\text{Male} \sqcap \text{Female}) \]

2. **Reduction to unsatisfiability**
 Is
 \[\exists \text{has-child}. \text{Male} \sqcap \exists \text{has-child}. \text{Female} \sqcap \neg (\exists \text{has-child}. (\text{Male} \sqcap \text{Female})) \]
 unsatisfiable?

3. **Negation normal form** (move negations inside):
 \[\exists \text{has-child}. \text{Male} \sqcap \exists \text{has-child}. \text{Female} \sqcap \forall \text{has-child}. (\neg \text{Male} \sqcup \neg \text{Female}) \]

4. **Try to construct a model**
Model Construction (1)

1. **Assumption**: There exists an object x in the interpretation of our concept:

 $$x \in (\exists \ldots)^I$$

2. This implies that x is in the interpretation of all conjuncts:

 $$x \in (\exists \text{has-child. Male})^I$$
 $$x \in (\exists \text{has-child. Female})^I$$
 $$x \in (\forall \text{has-child.} (\neg \text{Male} \sqcup \neg \text{Female}))^I$$

3. This implies that there should be objects y and z such that
 $$(x, y) \in \text{has-child}^I, (x, z) \in \text{has-child}^I, y \in \text{Male}^I \text{ and } z \in \text{Female}^I \text{ and } \ldots$$
Model Construction (2)

\[x : \exists \text{has-child}.\text{Male} \]
\[x : \exists \text{has-child}.\text{Female} \]
Model Construction (3)

\[x : \exists \text{has-child}.\text{Male} \]
\[x : \exists \text{has-child}.\text{Female} \]
\[x : \forall \text{has-child}.(\neg\text{Male} \sqcup \neg\text{Female}) \]
Model Construction (4)

\[x : \exists \text{has-child}. \text{Male} \]
\[x : \exists \text{has-child}. \text{Female} \]
\[x : \forall \text{has-child}. (\neg \text{Male} \sqcup \neg \text{Female}) \]
\[y : \neg \text{Male} \]

\begin{center}
\begin{tikzpicture}
 \node (x) at (0,0) {x};
 \node (y) at (-1,-1) {y} child {node {$\neg \text{Male}$} edge from parent[red, thick, -implies]};
 \node (z) at (1,-1) {z} child {node {$\neg \text{Male}$} edge from parent[red, thick, -implies]};
 \node (male) at (-1,-2) {$\neg \text{Male}$};
 \node (female) at (1,-2) {$\neg \text{Female}$};
 \node (contradiction) at (0,-3) {Contradiction};
 \draw (x) -- (y) -- (male) -- (contradiction);\end{tikzpicture}
\end{center}
Model Construction (5)

\[x : \exists \text{has-child}.\text{Male} \]
\[x : \exists \text{has-child}.\text{Female} \]
\[x : \forall \text{has-child}.(\neg \text{Male} \lor \neg \text{Female}) \]
\[y : \neg \text{Female} \]
\[z : \neg \text{Male} \]

\[\text{Model constructed!} \]
Tableau Method (1): NNF

$C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$.

Now we have the following equivalences:

\[
\neg(C \sqcap D) \equiv \neg C \sqcup \neg D \\
\neg(C \sqcup D) \equiv \neg C \sqcap \neg D \\
\neg\neg C \equiv C \\
\neg(\forall r.C) \equiv \exists r.\neg C \\
\neg(\exists r.C) \equiv \forall r.\neg C
\]

These equivalences can be used to move all negations signs to the inside, resulting in concept description where only concept names are negated:

\textit{negation normal form (NNF)}

\textbf{Theorem (NNF)}

\textit{The negation normal form of an \textit{ALC} concept can be computed in polynomial time.}
Tableau Method (2): Constraint Systems

A constraint is a syntactical object of the form: \(x : C \) or \(xry \), where \(C \) is a concept description in NNF, \(r \) is a role name and \(x \) and \(y \) are variable names.

Let \(\mathcal{I} \) be an interpretation. An \(\mathcal{I} \)-assignment \(\alpha \) is a function that maps each variable symbol to an object of the universe \(D \).

A constraint \(x : C \ (xry) \) is satisfied by an \(\mathcal{I} \)-assignment \(\alpha \), if \(\alpha(x) \in C^\mathcal{I} \) \(((\alpha(x), \alpha(y)) \in r^\mathcal{I}) \).

A constraint system \(S \) is a finite, non-empty set of constraints. An \(\mathcal{I} \)-assignment \(\alpha \) satisfies \(S \) if \(\alpha \) satisfies each constraint in \(S \). \(S \) is satisfiable if there exists \(\mathcal{I} \) and \(\alpha \) such that \(\alpha \) satisfies \(S \).

Theorem

An \(\mathcal{ALC} \) concept \(C \) in NNF is satisfiable iff the system \(\{x : C\} \) is satisfiable.
Tableau Method (3): Transforming Constraint Systems

Transformation rules:

1. $S \rightarrow \sqcap \{x : C_1, x : C_2\} \cup S$
 if $(x : C_1 \cap C_2) \in S$ and either $(x : C_1)$ or $(x : C_2)$ or both are not in S.

2. $S \rightarrow \sqcup \{x : D\} \cup S$
 if $(x : C_1 \sqcup C_2) \in S$ and neither $(x : C_1) \in S$ nor $(x : C_2) \in S$ and $D = C_1$ or $D = C_2$.

3. $S \rightarrow \exists \{xry, y : C\} \cup S$
 if $(x : \exists r.C) \in S$, y is a fresh variable, and there is no z s.t. $(xrz) \in S$ and $(z : C) \in S$.

4. $S \rightarrow \forall \{y : C\} \cup S$
 if $(x : \forall r.C), (xry) \in S$ and $(y : C) \not\in S$.

Deterministic rules (1,3,4) vs. non-deterministic (2).
Generating rules (3) vs. non-generating (1,2,4).
Tableau Method (4): Invariances

Theorem (Invariance)
Let S and T be constraint systems:

1. If T has been generated by applying a deterministic rule to S, then S is satisfiable iff T is satisfiable.

2. If T has been generated by applying a non-deterministic rule to S, then S is satisfiable if T is satisfiable. Furthermore, if a non-deterministic rule can be applied to S, then it can be applied such that S is satisfiable iff the resulting system T is satisfiable.

Theorem (Termination)
Let C be an \mathcal{ALC} concept description in NNF. Then there exists no infinite chain of transformations starting from the constraint system $\{x : C\}$.
Tableau Subsumption Method Soundness and Completeness

Tableau Method (5): Soundness and Completeness

A constraint system is called **closed** if no transformation rule can be applied.

A **clash** is a pair of constraints of the form $x : A$ and $x : \neg A$, where A is a concept name.

Theorem (Soundness and Completeness)

A *closed constraint system is satisfiable iff it does not contain a clash*.

Proof idea.

\Rightarrow: obvious. \Leftarrow: Construct a model by using the concept labels.
Space Requirements

Because the tableau method is *non-deterministic* (\(\rightarrow_\Box\) rule) . . . there could be exponentially many closed constraint systems in the end. Interestingly, even one constraint system can have *exponential size*.

Example:

\[
\exists r. A \sqcap \exists r. B \sqcap \\
\forall r. \left(\exists r. A \sqcap \exists r. B \sqcap \\
\forall r. (\exists r. A \sqcap \exists r. B \sqcap \\
\forall r. (\ldots))\right)
\]

However: One can modify the algorithm so that it needs only poly. space.

Idea: Generating a \(y\) only for one \(\exists r. C\) and then proceeding into the depth.
ABox satisfiability can also be decided using the tableau method if we can add constraints of the form $x \neq y$ (for UNA):

- **Normalize** and **unfold** and add inequalities for all pairs of objects mentioned in the ABox.
- Strictly speaking, in \mathcal{ALC} we do not need this because we are never **forced** to identify two objects.

