Principles of Knowledge Representation and Reasoning
Description Logics – Reasoning Services and Reductions

Bernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

July 15, 2008
1 Motivation
2 Basic Reasoning Services
3 Eliminating the TBox
4 General TBox Reasoning Services
5 General ABox Reasoning Services
6 Summary and Outlook
Example TBox & ABox

Male $\equiv \neg$Female
Human \sqsubseteq Living_entity
Woman \equiv Human \sqcap Female
Man \equiv Human \sqcap Male
Mother \equiv Woman \sqcap \existshas-child.Human
Father \equiv Man \sqcap \existshas-child.Human
Parent \equiv Father \sqcup Mother
Grandmother
\equiv Woman \sqcap \existshas-child.Parent
Mother-without-daughter
\equiv Mother \sqcap \forallhas-child.Male
Mother-with-many-children
\equiv Mother \sqcap (≥ 3 has-child)

DIANA: Woman
ELIZABETH: Woman
CHARLES: Man
EDWARD: Man
ANDREW: Man
DIANA: Mother-without-daughter
(ELIZABETH, CHARLES): has-child
(ELIZABETH, EDWARD): has-child
(ELIZABETH, ANDREW): has-child
(DIANA, WILLIAM): has-child
(CHARLES, WILLIAM): has-child
Example TBox & ABox

Male ⊑ ¬Female
Human ⊑ Living.entity
Woman ⊑ Human ⊓ Female
Man ⊑ Human ⊓ Male
Mother ⊑ Woman ⊓ ∃has-child.Human
Father ⊑ Man ⊓ ∃has-child.Human
Parent ⊑ Father ⊔ Mother
Grandmother
 ⊑ Woman ⊓ ∃has-child.Parent
Mother-without-daughter
 ⊑ Mother ⊓ ∀has-child.Male
Mother-with-many-children
 ⊑ Mother ⊓ (∃3 has-child)

DIANA: Woman
ELIZABETH: Woman
CHARLES: Man
EDWARD: Man
ANDREW: Man
DIANA: Mother-without-daughter
 (ELIZABETH, CHARLES): has-child
 (ELIZABETH, EDWARD): has-child
 (ELIZABETH, ANDREW): has-child
 (DIANA, WILLIAM): has-child
 (CHARLES, WILLIAM): has-child
Motivation: Reasoning Services

What do we want to know?
- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?
- These problems can be reduced to logical satisfiability or implication – using the logical semantics.
- We take a different route: We will try to simplify these problems and then we specify direct inference methods.
Motivation: Reasoning Services

- **What do we want to know?**
- **We want to check whether the knowledge base is reasonable:**
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
- **What can we conclude from the represented knowledge?**
 - Is concept \(X \) subsumed by concept \(Y \)?
 - Is an object a instance of a concept \(X \)?
- **These problems can be reduced to logical satisfiability or implication – using the logical semantics.**
- **We take a different route: We will try to simplify these problems and then we specify direct inference methods.**
What do we want to know?

We want to check whether the knowledge base is reasonable:
- Is each defined concept in a TBox satisfiable?
- Is a given TBox satisfiable?
- Is a given ABox satisfiable?

What can we conclude from the represented knowledge?
- Is concept X subsumed by concept Y?
- Is an object a instance of a concept X?

These problems can be reduced to logical satisfiability or implication – using the logical semantics.

We take a different route: We will try to simplify these problems and then we specify direct inference methods.
Motivation: Reasoning Services

What do we want to know?
We want to check whether the knowledge base is reasonable:
- Is each defined concept in a TBox satisfiable?
- Is a given TBox satisfiable?
- Is a given ABox satisfiable?

What can we conclude from the represented knowledge?
- Is concept \(X \) subsumed by concept \(Y \)?
- Is an object a instance of a concept \(X \)?

These problems can be reduced to logical satisfiability or implication – using the logical semantics.

We take a different route: We will try to simplify these problems and then we specify direct inference methods.
Motivation: Reasoning Services

- What do we want to know?
- We want to check whether the *knowledge base* is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
- What can we **conclude** from the represented knowledge?
 - Is concept X **subsumed** by concept Y?
 - Is an object a **instance** of a concept X?
- These problems can be **reduced** to logical satisfiability or implication – using the logical semantics.
- We take a different route: We will try to simplify these problems and then we specify **direct inference methods**.
Motivation: Reasoning Services

What do we want to know?

- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

What can we conclude from the represented knowledge?

- Is concept X subsumed by concept Y?
- Is an object a instance of a concept X?

These problems can be reduced to logical satisfiability or implication – using the logical semantics.

We take a different route: We will try to simplify these problems and then we specify direct inference methods.
Motivation: Reasoning Services

- What do we want to know?
 - We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?

- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?

- These problems can be reduced to logical satisfiability or implication – using the logical semantics.

- We take a different route: We will try to simplify these problems and then we specify direct inference methods.
Motivation: Reasoning Services

What do we want to know?

We want to check whether the knowledge base is reasonable:

- Is each defined concept in a TBox satisfiable?
- Is a given TBox satisfiable?
- Is a given ABox satisfiable?

What can we conclude from the represented knowledge?

- Is concept \(X \) subsumed by concept \(Y \)?
- Is an object a instance of a concept \(X \)?

These problems can be reduced to logical satisfiability or implication – using the logical semantics.

We take a different route: We will try to simplify these problems and then we specify direct inference methods.
Motivation: Reasoning Services

What do we want to know?

We want to check whether the knowledge base is reasonable:

- Is each defined concept in a TBox satisfiable?
- Is a given TBox satisfiable?
- Is a given ABox satisfiable?

What can we conclude from the represented knowledge?

- Is concept X subsumed by concept Y?
- Is an object a instance of a concept X?

These problems can be reduced to logical satisfiability or implication – using the logical semantics.

We take a different route: We will try to simplify these problems and then we specify direct inference methods.
Motivation: Reasoning Services

What do we want to know?

We want to check whether the knowledge base is reasonable:
- Is each defined concept in a TBox satisfiable?
- Is a given TBox satisfiable?
- Is a given ABox satisfiable?

What can we conclude from the represented knowledge?
- Is concept X subsumed by concept Y?
- Is an object a instance of a concept X?

These problems can be reduced to logical satisfiability or implication – using the logical semantics.

We take a different route: We will try to simplify these problems and then we specify direct inference methods.
Motivation: Given a TBox T and a concept description C, does C make sense, i.e., is C **satisfiable**?

Test:
- Does there exist a *model* I of T such that $C^I \neq \emptyset$?
- Is the formula $\exists x : C(x)$ together with the formulas resulting from the translation of T satisfiable?

Example: Mother-without-daughter \sqcap ∀has-child.Female is unsatisfiable.
Satisfiability of Concept Descriptions in a TBox

Motivation: Given a TBox \mathcal{T} and a concept description C, does C make sense, i.e., is C satisfiable?

Test:
- Does there exist a *model* \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$?
- Is the formula $\exists x: C(x)$ together with the formulas resulting from the translation of \mathcal{T} satisfiable?

Example: Mother-without-daughter \sqcap \forall has-child.Female is unsatisfiable.
Satisfiability of Concept Descriptions in a TBox

Motivation: Given a TBox \mathcal{T} and a concept description C, does C make sense, i.e., is C satisfiable?

Test:
- Does there exist a model \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$?
- Is the formula $\exists x : C(x)$ together with the formulas resulting from the translation of \mathcal{T} satisfiable?

Example: Mother-without-daughter \sqcap \forallhas-child.Female is unsatisfiable.
Satisfiability of Concept Descriptions in a TBox

- **Motivation**: Given a TBox \mathcal{T} and a concept description C, does C make sense, i.e., is C **satisfiable**?

- **Test**:
 - Does there exist a *model* \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$?
 - Is the formula $\exists x : C(x)$ together with the formulas resulting from the translation of \mathcal{T} satisfiable?

- **Example**: Mother-without-daughter \sqcap \forallhas-child.Female is unsatisfiable.
Satisfiability of Concept Descriptions (without a TBox)

- **Motivation**: Given a concept description C in “isolation”, i.e., in an empty TBox, does C make sense, i.e., is C satisfiable?

- **Test**:
 - Does there exist an interpretation I such that $C^I \neq \emptyset$?
 - Is the formula $\exists x: C(x)$ satisfiable?

- **Example**: $\text{Woman} \sqcap (\leq 0 \text{ has-child}) \sqcap (\geq 1 \text{ has-child})$ is unsatisfiable.
Satisfiability of Concept Descriptions
(without a TBox)

- **Motivation**: Given a concept description C in “isolation”, i.e., in an *empty TBox*, does C make sense, i.e., is C satisfiable?

- **Test**:
 - Does there exist an *interpretation* I such that $C^I \neq \emptyset$?
 - Is the formula $\exists x: C(x)$ satisfiable?

- **Example**: Woman $\sqcap (\leq 0 \text{ has-child}) \sqcap (\geq 1 \text{ has-child})$ is unsatisfiable.
Motivation: Given a concept description \(C \) in "isolation", i.e., in an empty TBox, does \(C \) make sense, i.e., is \(C \) satisfiable?

Test:
- Does there exist an interpretation \(\mathcal{I} \) such that \(C^\mathcal{I} \neq \emptyset \)?
- Is the formula \(\exists x : C(x) \) satisfiable?

Example: Woman \(\sqcap (\leq 0 \text{has-child}) \sqcap (\geq 1 \text{has-child}) \) is unsatisfiable.
Satisfiability of Concept Descriptions (without a TBox)

Motivation: Given a concept description C in “isolation”, i.e., in an *empty TBox*, does C make sense, i.e., is C satisfiable?

Test:
- Does there exist an *interpretation* \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$?
- Is the formula $\exists x : C(x)$ satisfiable?

Example: $\text{Woman} \sqcap (\leq 0 \text{ has-child}) \sqcap (\geq 1 \text{ has-child})$ is unsatisfiable.
We can **reduce** satisfiability in a TBox to simple satisfiability.

Idea:
- Since TBoxes are *cycle-free*, one can understand a concept definition as a kind of “macro”
- For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be *expanded* until C contains only undefined concept symbols
- An *expanded* concept description is then satisfiable iff C is satisfiable in \mathcal{T}
- **Problem:** What do we do with partial definitions (using \sqsubseteq)?
Reduction: Getting Rid of the TBox

We can **reduce** satisfiability in a TBox to simple satisfiability.

Idea:
- Since TBoxes are *cycle-free*, one can understand a concept definition as a kind of “macro”
- For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be **expanded** until C contains only undefined concept symbols
- An **expanded** concept description is then satisfiable iff C is satisfiable in \mathcal{T}
- **Problem**: What do we do with partial definitions (using \sqsubseteq)?
Reduction: Getting Rid of the TBox

We can **reduce** satisfiability in a TBox to simple satisfiability.

Idea:
- Since TBoxes are *cycle-free*, one can understand a concept definition as a kind of “macro”
- For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be **expanded** until C contains only undefined concept symbols
- An *expanded* concept description is then satisfiable iff C is satisfiable in \mathcal{T}
- **Problem:** What do we do with partial definitions (using ⊑)?
We can **reduce** satisfiability in a TBox to simple satisfiability.

Idea:
- Since TBoxes are *cycle-free*, one can understand a concept definition as a kind of “macro”
- For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be *expanded* until C contains only undefined concept symbols
- An *expanded* concept description is then satisfiable iff C is satisfiable in \mathcal{T}
- **Problem:** What do we do with partial definitions (using \sqsubseteq)?
We can **reduce** satisfiability in a TBox to simple satisfiability.

Idea:

- Since TBoxes are *cycle-free*, one can understand a concept definition as a kind of “macro”
- For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be **expanded** until C contains only undefined concept symbols
- An **expanded** concept description is then satisfiable iff C is satisfiable in \mathcal{T}
- **Problem**: What do we do with partial definitions (using \sqsubseteq)?
A terminology is called **normalized** when it does not contain definitions using \(\sqsubseteq \).

In order to *normalize* a terminology, replace

\[
A \sqsubseteq C
\]

by

\[
A \equiv A^* \sqcap C,
\]

where \(A^* \) is a **fresh** concept symbol (not appearing elsewhere in \(\mathcal{T} \)).

If \(\mathcal{T} \) is a terminology, the normalized terminology is denoted by \(\mathcal{T} \).
Normalized Terminologies

- A terminology is called **normalized** when it does not contain definitions using \sqsubseteq.
- In order to **normalize** a terminology, replace

 $A \sqsubseteq C$

 by

 $A \equiv A^* \sqcap C$,

 where A^* is a **fresh** concept symbol (not appearing elsewhere in \mathcal{T}).
- If \mathcal{T} is a terminology, the normalized terminology is denoted by $\tilde{\mathcal{T}}$.

Normalized Terminologies

A terminology is called **normalized** when it does not contain definitions using \sqsubseteq.

In order to **normalize** a terminology, replace

$$A \sqsubseteq C$$

by

$$A \equiv A^* \sqcap C,$$

where A^* is a **fresh** concept symbol (not appearing elsewhere in \mathcal{T}).

If \mathcal{T} is a terminology, the normalized terminology is denoted by $\tilde{\mathcal{T}}$.

Normalized Terminologies

- A terminology is called **normalized** when it does not contain definitions using \sqsubseteq.
- In order to *normalize* a terminology, replace

\[A \sqsubseteq C \]

by

\[A \sqsupseteq A^* \cap C, \]

where A^* is a **fresh** concept symbol (not appearing elsewhere in T).
- If T is a terminology, the normalized terminology is denoted by \tilde{T}.
Normalizing is Reasonable

Theorem (Normalization Invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ (and vice versa) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^\mathcal{I} = A^{\mathcal{I}'}.$$

Proof.

“\Rightarrow”: Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \sqsubseteq A^* \sqcap C) \in \tilde{\mathcal{T}}$. Then set $A^*_{\mathcal{I}'} = A^\mathcal{I}$. \mathcal{I}' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

“\Leftarrow” Given a model \mathcal{I}' of $\tilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we looked for.
Normalizing is Reasonable

Theorem (Normalization Invariance)

If \(\mathcal{I} \) is a model of the terminology \(\mathcal{T} \), then there exists a model \(\mathcal{I}' \) of \(\tilde{\mathcal{T}} \) (and vice versa) such that for all concept symbols \(A \) appearing in \(\mathcal{T} \) we have:

\[
A^\mathcal{I} = A^\mathcal{I}'.
\]

Proof.

“\(\Rightarrow \)” : Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). This model should be extended to \(\mathcal{I}' \) so that the freshly introduced concept symbols also get interpretations. Assume \((A \sqsubseteq C) \in \mathcal{T} \), i.e., we have \((A \sqsubseteq A^* \sqcap C) \in \tilde{\mathcal{T}} \). Then set \(A^*^\mathcal{I}' = A^\mathcal{I} \). \(\mathcal{I}' \) obviously satisfies \(\tilde{\mathcal{T}} \) and has the same interpretation for all symbols in \(\mathcal{T} \).

"\(\Leftarrow \)" : Given a model \(\mathcal{I}' \) of \(\tilde{\mathcal{T}} \), its restriction to symbols of \(\mathcal{T} \) is the interpretation we looked for.
Normalizing is Reasonable

Theorem (Normalization Invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\widetilde{\mathcal{T}}$ (and vice versa) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^\mathcal{I} = A^{\mathcal{I}'}.$$

Proof.

"\Rightarrow": Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \triangleright A^* \sqcap C) \in \widetilde{\mathcal{T}}$. Then set $A^{*\mathcal{I}'} = A^\mathcal{I}$. \mathcal{I}' obviously satisfies $\widetilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

\Leftarrow: Given a model \mathcal{I}' of $\widetilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we looked for.
Normalizing is Reasonable

Theorem (Normalization Invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\widetilde{\mathcal{T}}$ (and vice versa) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^\mathcal{I} = A^\mathcal{I'}.$$

Proof.

\Rightarrow: Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \doteq A^* \sqcap C') \in \widetilde{\mathcal{T}}$. Then set $A^{*\mathcal{I'}} = A^\mathcal{I}$. \mathcal{I}' obviously satisfies $\widetilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

\Leftarrow: Given a model \mathcal{I}' of $\widetilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we looked for.
Theorem (Normalization Invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\widetilde{\mathcal{T}}$ (and vice versa) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^\mathcal{I} = A^{\mathcal{I}'}.$$

Proof.

"⇒": Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C') \in \mathcal{T}$, i.e., we have $(A \models A^* \sqcap C') \in \widetilde{\mathcal{T}}$. Then set $A^{*\mathcal{I}'} = A^{\mathcal{I}}$. \mathcal{I}' obviously satisfies $\widetilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

"⇐": Given a model \mathcal{I}' of $\widetilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we looked for.
Theorem (Normalization Invariance)

If \mathcal{I} is a model of the terminology \mathcal{T}, then there exists a model \mathcal{I}' of $\tilde{\mathcal{T}}$ (and vice versa) such that for all concept symbols A appearing in \mathcal{T} we have:

$$A^\mathcal{I} = A^\mathcal{I}' .$$

Proof.

"⇒": Let \mathcal{I} be a model of \mathcal{T}. This model should be extended to \mathcal{I}' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in \mathcal{T}$, i.e., we have $(A \triangleq A^* \sqcap C) \in \tilde{\mathcal{T}}$. Then set $A^{\mathcal{I}'} = A^\mathcal{I}$. \mathcal{I}' obviously satisfies $\tilde{\mathcal{T}}$ and has the same interpretation for all symbols in \mathcal{T}.

"⇐": Given a model \mathcal{I}' of $\tilde{\mathcal{T}}$, its restriction to symbols of \mathcal{T} is the interpretation we looked for.
Normalizing is Reasonable

Theorem (Normalization Invariance)

If I is a model of the terminology T, then there exists a model I' of \tilde{T} (and vice versa) such that for all concept symbols A appearing in T we have:

$$A^I = A^{I'}.$$

Proof.

\Rightarrow: Let I be a model of T. This model should be extended to I' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in T$, i.e., we have $(A \vdash A^* \sqcap C) \in \tilde{T}$. Then set $A^{I'} = A^I$. I' obviously satisfies \tilde{T} and has the same interpretation for all symbols in T.

\Leftarrow: Given a model I' of \tilde{T}, its restriction to symbols of T is the interpretation we looked for.
We say that a *normalized TBox* is **unfolded by one step** when all defined concept symbols on the right sides are replaced by their defining terms.

Example: \(\text{Mother} \equiv \text{Woman} \sqcap \ldots \) is unfolded to \(\text{Mother} \equiv (\text{Human} \sqcap \text{Female}) \sqcap \ldots \).

We write \(U(T) \) to denote a one-step unfolding and \(U^n(T) \) to denote an *\(n \)-step unfolding*.

We say \(T \) is **unfolded** if \(U(T) = T \).

We say that \(U^n(T) \) is the **unfolding** of \(T \) if \(U^n(T) = U^{n+1}(T) \). If such an unfolding exists, it is denoted by \(\hat{T} \).
TBox Unfolding

- We say that a *normalized TBox* is **unfolded by one step** when all defined concept symbols on the right sides are replaced by their defining terms.

 Example: Mother \equiv Woman $\sqcap \ldots$ is unfolded to Mother \equiv (Human \sqcap Female) $\sqcap \ldots$

- We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an *n-step unfolding*.

- We say T is **unfolded** if $U(T) = T$.

- We say that $U^n(T)$ is the **unfolding** of T if $U^n(T) = U^{n+1}(T)$. If such an unfolding exists, it is denoted by \hat{T}.
TBox Unfolding

- We say that a *normalized TBox* is **unfolded by one step** when all defined concept symbols on the right sides are replaced by their defining terms.

- **Example:** Mother \equiv Woman $\sqcap \ldots$ is unfolded to Mother \equiv (Human \sqcap Female) $\sqcap \ldots$

- We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an *n-step unfolding*.

- We say T is **unfolded** if $U(T) = T$.

- We say that $U^n(T)$ is the **unfolding** of T if $U^n(T) = U^{n+1}(T)$. If such an unfolding exists, it is denoted by \hat{T}.
TBox Unfolding

- We say that a *normalized TBox* is **unfolded by one step** when all defined concept symbols on the right sides are replaced by their defining terms.

 Example: Mother \equiv Woman \(\sqcap\ldots\) is unfolded to Mother $\equiv (\text{Human} \sqcap \text{Female}) \sqcap\ldots$

- We write \(U(T)\) to denote a one-step unfolding and \(U^n(T)\) to denote an **\(n\)-step unfolding**.

- We say \(T\) is **unfolded** if \(U(T) = T\).

- We say that \(U^n(T)\) is the **unfolding** of \(T\) if \(U^n(T) = U^{n+1}(T)\). If such an unfolding exists, it is denoted by \(\hat{T}\).
TBox Unfolding

- We say that a normalized TBox is **unfolded by one step** when all defined concept symbols on the right sides are replaced by their defining terms.

 Example: Mother \sqsubseteq Woman $\sqcap \ldots$ is unfolded to Mother \sqsubseteq (Human \sqcap Female) $\sqcap \ldots$

- We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an **n-step unfolding**.

- We say T is **unfolded** if $U(T) = T$.

- We say that $U^n(T)$ is the **unfolding** of T if $U^n(T) = U^{n+1}(T)$. If such an unfolding exists, it is denoted by \hat{T}.
Properties of Unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

For each normalized terminology \mathcal{T}, there exists its unfolding $\hat{\mathcal{T}}$.

Proof idea.

The main reason is that terminologies have to be *cycle-free*. The proof can be done by induction of the *definition depth* of concepts.
Properties of Unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

For each normalized terminology \mathcal{T}, there exists its unfolding $\hat{\mathcal{T}}$.

Proof idea.

The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.
Properties of Unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

For each normalized terminology \mathcal{T}, there exists its unfolding $\hat{\mathcal{T}}$.

Proof idea.

The main reason is that terminologies have to be *cycle-free*. The proof can be done by induction of the *definition depth* of concepts.
Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\(\mathcal{I} \) is a model of a normalized terminology \(\mathcal{T} \) iff it is a model of \(\hat{\mathcal{T}} \).

Proof Sketch.

“\(\Rightarrow \)”: Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

“\(\Leftarrow \)”: Let \(\mathcal{I} \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above). This means that any model \(\hat{\mathcal{T}} \) is also a model of \(\mathcal{T} \).
Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\(\mathcal{I} \) is a model of a normalized terminology \(\mathcal{T} \) iff it is a model of \(\hat{\mathcal{T}} \).

Proof Sketch.

“⇒”: Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

“⇐”: Let \(\mathcal{I} \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above). This means that any model \(\hat{\mathcal{T}} \) is also a model of \(\mathcal{T} \).
Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\[\mathcal{I} \text{ is a model of a normalized terminology } \mathcal{T} \text{ iff it is a model of } \hat{\mathcal{T}}. \]

Proof Sketch.

“⇒”: Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

“⇐”: Let \(\mathcal{I} \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above). This means that any model \(\hat{\mathcal{T}} \) is also a model of \(\mathcal{T} \).
Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\[\mathcal{I} \text{ is a model of a normalized terminology } \mathcal{T} \text{ iff it is a model of } \hat{\mathcal{T}}. \]

Proof Sketch.

“⇒”: Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

“⇐”: Let \(\mathcal{I} \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above). This means that any model \(\hat{\mathcal{T}} \) is also a model of \(\mathcal{T} \).
Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\(\mathcal{I} \) is a model of a normalized terminology \(\mathcal{T} \) iff it is a model of \(\hat{\mathcal{T}} \).

Proof Sketch.

“⇒”: Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

“⇐”: Let \(\mathcal{I} \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above). This means that any model \(\hat{\mathcal{T}} \) is also a model of \(\mathcal{T} \).
Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

I is a model of a normalized terminology \mathcal{T} iff it is a model of $\hat{\mathcal{T}}$.

Proof Sketch.

\Rightarrow: Let I be a model of \mathcal{T}. Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of $\hat{\mathcal{T}}$.

\Leftarrow: Let I be a model for $U(\mathcal{T})$. Clearly, this is also a model of \mathcal{T} (with the same argument as above). This means that any model $\hat{\mathcal{T}}$ is also a model of \mathcal{T}.
Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\(\mathcal{I} \) is a model of a normalized terminology \(\mathcal{T} \) iff it is a model of \(\hat{\mathcal{T}} \).

Proof Sketch.

“⇒”: Let \(\mathcal{I} \) be a model of \(\mathcal{T} \). Then it is also a model of \(U(\mathcal{T}) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\hat{\mathcal{T}} \).

“⇐”: Let \(\mathcal{I} \) be a model for \(U(\mathcal{T}) \). Clearly, this is also a model of \(\mathcal{T} \) (with the same argument as above). This means that any model \(\hat{\mathcal{T}} \) is also a model of \(\mathcal{T} \).
Generating Models

- All concept and role names *not appearing on the left hand side* in a terminology \mathcal{T} are called **primitive components**.
- Interpretations restricted to primitive components are called **initial interpretations**.

Theorem (Model extension)

For each initial interpretation \mathcal{J} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T}.

Proof idea.

Use $\hat{\mathcal{T}}$ and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Each TBox has at least one model.
Generating Models

- All concept and role names not appearing on the left hand side in a terminology T are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

For each initial interpretation J of a normalized TBox, there exists a unique interpretation I extending J and satisfying T.

Proof idea.

Use \hat{T} and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Each TBox has at least one model.
Generating Models

- All concept and role names \textit{not appearing on the left hand side} in a terminology \mathcal{T} are called \textbf{primitive components}.
- Interpretations restricted to primitive components are called \textbf{initial interpretations}.

\textbf{Theorem (Model extension)}

\textit{For each initial interpretation \mathcal{J} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T}.}

\textbf{Proof idea.}

Use $\hat{\mathcal{T}}$ and compute an interpretation for all defined symbols.

\textbf{Corollary (Model existence for TBoxes)}

\textit{Each TBox has at least one model.}
Generating Models

- All concept and role names not appearing on the left hand side in a terminology \mathcal{T} are called primitive components.
- Interpretations restricted to primitive components are called initial interpretations.

Theorem (Model extension)

For each initial interpretation \mathcal{J} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T}.

Proof idea.

Use $\hat{\mathcal{T}}$ and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Each TBox has at least one model.
Generating Models

- All concept and role names not appearing on the left hand side in a terminology \(\mathcal{T} \) are called \textbf{primitive components}.
- Interpretations restricted to primitive components are called \textbf{initial interpretations}.

Theorem (Model extension)

For each initial interpretation \(\mathcal{J} \) of a normalized TBox, there exists a unique interpretation \(\mathcal{I} \) extending \(\mathcal{J} \) and satisfying \(\mathcal{T} \).

Proof idea.

Use \(\hat{\mathcal{T}} \) and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Each TBox has at least one model.
Unfolding of Concept Descriptions

- Similar to the unfolding of TBoxes, we can define **unfolding of concept descriptions**.
 - We write \hat{C} for the **unfolded version** of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T iff \hat{C} is satisfiable in an empty terminology.

Proof.

"\Rightarrow": trivial.

"\Leftarrow": Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T. Then extend it to a full model \mathcal{I} of T. This satisfies T as well as \hat{C}. Since $\hat{C}^\mathcal{I} = C^\mathcal{I}$, it satisfies also C. \qed
Similar to the unfolding of TBoxes, we can define unfolding of concept descriptions. We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T iff \hat{C} satisfiable in an empty terminology.

Proof.

\Rightarrow: trivial.

\Leftarrow: Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T. Then extend it to a full model I of T. This satisfies T as well as \hat{C}. Since $\hat{C}^I = C^I$, it satisfies also C. \qed
Similar to the unfolding of TBoxes, we can define \textit{unfolding of concept descriptions}.

We write \widehat{C} for the \textit{unfolded version} of C.

\textbf{Theorem (Satisfiability of unfolded concepts)}

An concept description C is satisfiable in a terminology \mathcal{T} iff \widehat{C} satisfiable in an empty terminology.

\textbf{Proof.}

“\Rightarrow”: trivial.

“\Leftarrow”: Use the interpretation for all the symbols in \widehat{C} to generate an initial interpretation of \mathcal{T}. Then extend it to a full model \mathcal{I} of \mathcal{T}. This satisfies \mathcal{T} as well as \widehat{C}. Since $\widehat{C}^\mathcal{I} = C^\mathcal{I}$, it satisfies also C. \qed
Unfolding of Concept Descriptions

- Similar to the unfolding of TBoxes, we can define **unfolding of concept descriptions**.
- We write \hat{C} for the **unfolded version** of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T iff \hat{C} satisfiable in an empty terminology.

Proof.

“⇒” : trivial.

“⇐” : Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T. Then extend it to a full model I of T. This satisfies T as well as \hat{C}. Since $\hat{C}^I = C^I$, it satisfies also C. □
Unfolding of Concept Descriptions

Similar to the unfolding of TBoxes, we can define **unfolding of concept descriptions**. We write \(\hat{C} \) for the **unfolded version** of \(C \).

Theorem (Satisfiability of unfolded concepts)

An concept description \(C \) is satisfiable in a terminology \(T \) iff \(\hat{C} \) satisfiable in an empty terminology.

Proof.

“\(\Rightarrow \)” : trivial.

“\(\Leftarrow \)” : Use the interpretation for all the symbols in \(\hat{C} \) to generate an initial interpretation of \(T \). Then extend it to a full model \(I \) of \(T \). This satisfies \(T \) as well as \(\hat{C} \). Since \(\hat{C}^I = C^I \), it satisfies also \(C \). [\(\square \)]
Unfolding of Concept Descriptions

- Similar to the unfolding of TBoxes, we can define **unfolding of concept descriptions**.
- We write $\hat{\mathcal{C}}$ for the **unfolded version** of \mathcal{C}.

Theorem (Satisfiability of unfolded concepts)

An concept description \mathcal{C} is satisfiable in a terminology \mathcal{T} iff $\hat{\mathcal{C}}$ satisfiable in an empty terminology.

Proof.

“\Rightarrow” : trivial.

“\Leftarrow” : Use the interpretation for all the symbols in $\hat{\mathcal{C}}$ to generate an initial interpretation of \mathcal{T}. Then extend it to a full model \mathcal{I} of \mathcal{T}.

This satisfies \mathcal{T} as well as $\hat{\mathcal{C}}$. Since $\hat{\mathcal{C}}^\mathcal{I} = \mathcal{C}^\mathcal{I}$, it satisfies also \mathcal{C}.

Unfolding of Concept Descriptions

- Similar to the unfolding of TBoxes, we can define *unfolding of concept descriptions*.
- We write \(\hat{C} \) for the *unfolded version* of \(C \).

Theorem (Satisfiability of unfolded concepts)

An concept description \(C \) *is satisfiable in a terminology* \(T \) *iff* \(\hat{C} \)
satisfiable in an empty terminology.

Proof.

“\(\Rightarrow \)”: trivial.

“\(\Leftarrow \)”: Use the interpretation for all the symbols in \(\hat{C} \) to generate an initial interpretation of \(T \). Then extend it to a full model \(I \) of \(T \). This satisfies \(T \) as well as \(\hat{C} \). Since \(\hat{C}^I = C^I \), it satisfies also \(C \).
Subsumption in a TBox

- **Motivation**: Given a terminology \mathcal{T} and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in \mathcal{T} ($C \sqsubseteq_\mathcal{T} D$)?

- **Test**:
 - Is C interpreted as a subset of D for all models \mathcal{I} of \mathcal{T} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} to predicate logic?

- **Example**: Grandmother $\sqsubseteq_\mathcal{T}$ Mother
Subsumption in a TBox

- **Motivation**: Given a terminology \mathcal{T} and two concept descriptions C and D, is C *subsumed by* (or a *sub-concept of*) D in \mathcal{T} ($C \sqsubseteq_{\mathcal{T}} D$)?

- **Test**:
 - Is C interpreted as a subset of D for all models \mathcal{I} of \mathcal{T} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} to predicate logic?

- **Example**: Grandmother $\sqsubseteq_{\mathcal{T}}$ Mother
Motivation: Given a terminology \mathcal{T} and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in \mathcal{T} ($C \sqsubseteq_\mathcal{T} D$)?

Test:
- Is C interpreted as a subset of D for all models \mathcal{I} of \mathcal{T} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
- Is the formula $\forall x : (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} to predicate logic?

Example: Grandmother $\sqsubseteq_\mathcal{T}$ Mother
Subsumption in a TBox

- **Motivation**: Given a terminology \mathcal{T} and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in \mathcal{T} ($C \sqsubseteq_\mathcal{T} D$)?

- **Test**:
 - Is C interpreted as a subset of D for all models \mathcal{I} of \mathcal{T} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} to predicate logic?

- **Example**: Grandmother $\sqsubseteq_\mathcal{T}$ Mother
Motivation: Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox), written $C \sqsubseteq D$?

Test:
- Is C interpreted as a subset of D for all interpretations \mathcal{I} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
- Is the formula $\forall x : (C(x) \rightarrow D(x))$ logically valid?

Example: Human \sqcap Female \sqsubseteq Human
Motivation: Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox), written $C \sqsubseteq D$?

Test:

- Is C interpreted as a subset of D for all interpretations I ($C^I \subseteq D^I$)?
- Is the formula $\forall x : (C(x) \rightarrow D(x))$ logically valid?

Example: Human \sqcap Female \sqsubseteq Human
Subsumption (Without a TBox)

Motivation: Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox), written $C \sqsubseteq D$?

Test:
- Is C interpreted as a subset of D for all interpretations I ($C^I \subseteq D^I$)?
- Is the formula $\forall x : (C(x) \rightarrow D(x))$ logically valid?

Example: Human \cap Female \sqsubseteq Human
Motivation: Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox), written $C \subseteq D$?

Test:
- Is C interpreted as a subset of D for all interpretations \mathcal{I} ($C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$)?
- Is the formula $\forall x : (C(x) \rightarrow D(x))$ logically valid?

Example: Human \cap Female \subseteq Human
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox
 - Normalize and unfold TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability
 - $C \sqsubseteq D$ iff $C \cap \neg D$ is unsatisfiable
- Unsatisfiability can be reduced to subsumption
 - C is unsatisfiable iff $C \sqsubseteq (C \cap \neg C)$
Subsumption in a TBox can be reduced to subsumption in the empty TBox

- Normalize and unfold TBox and concept descriptions.

- Subsumption in the empty TBox can be reduced to unsatisfiability

- $C \subseteq D$ iff $C \cap \neg D$ is unsatisfiable

- Unsatisfiability can be reduced to subsumption

- C is unsatisfiable iff $C \subseteq (C \cap \neg C)$
Subsumption in a TBox can be reduced to subsumption in the empty TBox

Normalize and unfold TBox and concept descriptions.

Subsumption in the empty TBox can be reduced to unsatisfiability

\[C \sqsubseteq D \text{ iff } C \cap \neg D \text{ is unsatisfiable} \]

Unsatisfiability can be reduced to subsumption

\[C \text{ is unsatisfiable iff } C \sqsubseteq (C \cap \neg C) \]
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox

 - *Normalize* and *unfold* TBox and concept descriptions.

- Subsumption in the empty TBox can be reduced to unsatisfiability

 - $C \sqsubseteq D$ iff $C \cap \neg D$ is unsatisfiable

- Unsatisfiability can be reduced to subsumption

 - C is unsatisfiable iff $C \sqsubseteq (C \cap \neg C)$
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox
- *Normalize* and *unfold* TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability
 \[C \sqsubseteq D \text{ iff } C \sqcap \neg D \text{ is unsatisfiable} \]
- Unsatisfiability can be reduced to subsumption
 \[C \text{ is unsatisfiable iff } C \sqsubseteq (C \sqcap \neg C) \]
Subsumption in a TBox can be reduced to subsumption in the empty TBox

Normalize and unfold TBox and concept descriptions.

Subsumption in the empty TBox can be reduced to unsatisfiability

$C \subseteq D$ iff $C \cap \neg D$ is unsatisfiable

Unsatisfiability can be reduced to subsumption

C is unsatisfiable iff $C \sqsubseteq (C \cap \neg C')$
Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to

- check the modeling – does the terminology make sense?
- use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a *generalized sorting* problem!
Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to

- check the modeling – does the terminology make sense?
- use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a *generalized sorting* problem!
Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to
- check the modeling – does the terminology make sense?
- use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a *generalized sorting* problem!
Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to

- check the modeling – does the terminology make sense?
- use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a *generalized sorting* problem!
Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to

- check the modeling – does the terminology make sense?
- use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a *generalized sorting* problem!
Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to

- check the modeling – does the terminology make sense?
- use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a *generalized sorting* problem!
ABox Satisfiability

Motivation: An ABox should *model* the real world, i.e., it should have a *model*.

Test: Check for a model

Example:

\[
\begin{align*}
X & : (\forall r. \neg C) \\
Y & : C \\
(X, Y) & : r
\end{align*}
\]

is not satisfiable.
Motivation: An ABox should *model* the real world, i.e., it should have a *model*.

Test: Check for a model

Example:

\[
\begin{align*}
X & : (\forall r. \neg C) \\
Y & : C \\
(X, Y) & : r
\end{align*}
\]

is not satisfiable.
Motivation: An ABox should *model* the real world, i.e., it should have a *model*.

Test: Check for a model

Example:

\[
\begin{align*}
X & : (\forall r. \neg C) \\
Y & : C \\
(X, Y) & : r
\end{align*}
\]

is not satisfiable.
Motivation: Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?

Test: Is $\mathcal{T} \cup \mathcal{A}$ satisfiable?

Example: If we extend our example with

MARGRET: Woman

(DIANA,MARGRET): has-child,

then the ABox becomes unsatisfiable in the given TBox.

Reduction:
- to satisfiability of an ABox
- *Normalize* terminology, then *unfold* all concept and role descriptions in the ABox
Motivation: Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?

Test: Is $\mathcal{T} \cup \mathcal{A}$ satisfiable?

Example: If we extend our example with

MARGRET: Woman

(DIANA,MARGRET): has-child,

then the ABox becomes unsatisfiable in the given TBox.

Reduction:

- to satisfiability of an ABox
- *Normalize* terminology, then *unfold* all concept and role descriptions in the ABox
ABox Satisfiability in a TBox

Motivation: Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?

Test: Is $\mathcal{T} \cup \mathcal{A}$ satisfiable?

Example: If we extend our example with

MARGRET: Woman

(DIANA, MARGRET): has-child,

then the ABox becomes unsatisfiable in the given TBox.

Reduction:

- to satisfiability of an ABox
- *Normalize* terminology, then *unfold* all concept and role descriptions in the ABox
ABox Satisfiability in a TBox

- **Motivation**: Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?
- **Test**: Is $\mathcal{T} \cup \mathcal{A}$ satisfiable?
- **Example**: If we extend our example with
 - MARGRET: Woman
 - (DIANA,MARGRET): has-child,
 then the ABox becomes unsatisfiable in the given TBox.
- **Reduction**:
 - to satisfiability of an ABox
 - Normalize terminology, then unfold all concept and role descriptions in the ABox
ABox Satisfiability in a TBox

- **Motivation**: Is a given ABox \mathcal{A} compatible with the terminology introduced in \mathcal{T}?
- **Test**: Is $\mathcal{T} \cup \mathcal{A}$ satisfiable?
- **Example**: If we extend our example with MARGRET: Woman (DIANA,MARGRET): has-child,

then the ABox becomes unsatisfiable in the given TBox.

- **Reduction**:
 - to satisfiability of an ABox
 - *Normalize* terminology, then *unfold* all concept and role descriptions in the ABox
Motivation: Which additional ABox formulas of the form \(a : C \) follow logically from a given ABox and TBox?

Test:
- Is \(a^I \in C^I \) true in all models of \(I \) of \(\mathcal{T} \cup \mathcal{A} \)?
- Does the formula \(C(a) \) logically follow from the translation of \(\mathcal{A} \) and \(\mathcal{T} \) to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
- Use *normalization* and *unfolding*
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

\[
\text{if} \quad a : C \text{ holds in } \mathcal{A} \quad \text{iff} \quad \mathcal{A} \cup \{a : \neg C\} \text{ is unsatisfiable}
\]
Motivation: Which additional ABox formulas of the form $a: C$ follow logically from a given ABox and TBox?

Test:
- Is $a^\mathcal{I} \in C^\mathcal{I}$ true in all models of \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
- Use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

$$a : C \text{ holds in } \mathcal{A} \text{ iff } \mathcal{A} \cup \{a : \neg C\} \text{ is unsatisfiable}$$
Instance Relations

- **Motivation**: Which additional ABox formulas of the form \(a : C \) follow logically from a given ABox and TBox?

- **Test**:
 - Is \(a^I \in C^I \) true in all models of \(I \) of \(T \cup A \)?
 - Does the formula \(C(a) \) logically follow from the translation of \(A \) and \(T \) to predicate logic?

- **Reductions**:
 - Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
 - Use *normalization* and *unfolding*
 - Instance relations in an ABox can be reduced to ABox unsatisfiability:

\[
a : C \text{ holds in } A \iff A \cup \{ a : \neg C \} \text{ is unsatisfiable}
\]
Instance Relations

Motivation: Which additional ABox formulas of the form $a : C$ follow logically from a given ABox and TBox?

Test:
- Is $a^I \in C^I$ true in all models of I of $T \cup A$?
- Does the formula $C(a)$ logically follow from the translation of A and T to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
 - Use normalization and unfolding
- Instance relations in an ABox can be reduced to ABox unsatisfiability:
 $$a : C \text{ holds in } A \iff A \cup \{a : \neg C\} \text{ is unsatisfiable}$$
Instance Relations

- **Motivation**: Which additional ABox formulas of the form $a : C$ follow logically from a given ABox and TBox?

- **Test**:
 - Is $a^\mathcal{I} \in C^\mathcal{I}$ true in all models of \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
 - Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

- **Reductions**:
 - Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
 - Use *normalization* and *unfolding*
 - Instance relations in an ABox can be reduced to ABox unsatisfiability:

 $$a : C \text{ holds in } \mathcal{A} \text{ iff } \mathcal{A} \cup \{a : \neg C\} \text{ is unsatisfiable}$$

Motivation: Which additional ABox formulas of the form $a : C$ follow logically from a given ABox and TBox?

Test:
- Is $a^\mathcal{I} \in C^\mathcal{I}$ true in all models of \mathcal{I} of $\mathcal{T} \cup \mathcal{A}$?
- Does the formula $C(a)$ logically follow from the translation of \mathcal{A} and \mathcal{T} to predicate logic?

Reductions:
- Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
- Use *normalization* and *unfolding*
- Instance relations in an ABox can be reduced to ABox unsatisfiability:

$$a : C \text{ holds in } \mathcal{A} \iff \mathcal{A} \cup \{a : \neg C\} \text{ is unsatisfiable}$$
Examples

- ELIZABETH: Mother-with-many-children?

- WILLIAM: → Female?

- ELIZABETH: Mother-without-daughter?

- ELIZABETH: Grandmother?
Examples

- ELIZABETH: Mother-with-many-children?
 - yes
- WILLIAM: ¬ Female?
- ELIZABETH: Mother-without-daughter?
- ELIZABETH: Grandmother?
Examples

- ELIZABETH: Mother-with-many-children?
 - yes

- WILLIAM: ¬ Female?

- ELIZABETH: Mother-without-daughter?

- ELIZABETH: Grandmother?
Examples

- ELIZABETH: Mother-with-many-children?
 - yes

- WILLIAM: ¬ Female?
 - yes

- ELIZABETH: Mother-without-daughter?

- ELIZABETH: Grandmother?
Examples

- **ELIZABETH**: Mother-with-many-children?
 - yes

- **WILLIAM**: \(\neg\) Female?
 - yes

- **ELIZABETH**: Mother-without-daughter?

- **ELIZABETH**: Grandmother?
Examples

ELIZABETH: Mother-with-many-children?
- yes

WILLIAM: ¬ Female?
- yes

ELIZABETH: Mother-without-daughter?
- no (no CWA!)

ELIZABETH: Grandmother?
Examples

- ELIZABETH: Mother-with-many-children?
 - yes
- WILLIAM: ¬ Female?
 - yes
- ELIZABETH: Mother-without-daughter?
 - no (no CWA!)
- ELIZABETH: Grandmother?
Examples

- ELIZABETH: Mother-with-many-children?
 - yes

- WILLIAM: ¬ Female?
 - yes

- ELIZABETH: Mother-without-daughter?
 - no (no CWA!)

- ELIZABETH: Grandmother?
 - no (only male, but not necessarily human!)
Realization

- **Idea**: For a given object a, determine the **most specialized concept symbols** such that a is an instance of these concepts.

- **Motivation**:
 - Similar to *classification*
 - Is the minimal representation of the instance relations (in the set of concept symbols)
 - Will give us faster answers for instance queries!

- **Reduction**: Can be reduced to (a sequence of) instance relation tests.
Idea: For a given object \(a \), determine the **most specialized concept symbols** such that \(a \) is an instance of these concepts.

Motivation:
- Similar to *classification*
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.
Realization

Idea: For a given object \(a \), determine the **most specialized concept symbols** such that \(a \) is an instance of these concepts.

Motivation:
- Similar to *classification*
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.
Realization

Idea: For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts.

Motivation:
- Similar to *classification*
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.
Realization

- **Idea:** For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts.

- **Motivation:**
 - Similar to *classification*
 - Is the minimal representation of the instance relations (in the set of concept symbols)
 - Will give us faster answers for instance queries!

- **Reduction:** Can be reduced to (a sequence of) instance relation tests.
Realization

Idea: For a given object \(a \), determine the most specialized concept symbols such that \(a \) is an instance of these concepts.

Motivation:
- Similar to *classification*
- Is the minimal representation of the instance relations (in the set of concept symbols)
- Will give us faster answers for instance queries!

Reduction: Can be reduced to (a sequence of) instance relation tests.
Motivation: Sometimes, we want to get the set of instances of a concept (as in database queries).

Example: Asking for all instances of the concept Male, we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

Reduction: Compute the set of instances by testing the instance relation for each object.

Implementation: Realization can be used to speed this up.
Motivation: Sometimes, we want to get the set of instances of a concept (as in database queries)

Example: Asking for all instances of the concept *Male*, we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

Reduction: Compute the set of instances by testing the instance relation for each object

Implementation: Realization can be used to speed this up
Retrieval

- **Motivation**: Sometimes, we want to get the set of instances of a concept (as in database queries).

- **Example**: Asking for all instances of the concept `Male`, we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

- **Reduction**: Compute the set of instances by testing the instance relation for each object.

- **Implementation**: Realization can be used to speed this up.
Motivation: Sometimes, we want to get the set of instances of a concept (as in database queries).

Example: Asking for all instances of the concept `Male`, we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

Reduction: Compute the set of instances by testing the instance relation for each object.

Implementation: Realization can be used to speed this up.
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
 - Satisfiability of an ABox
 - in a given TBox or in an empty TBox
 - Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
 - Retrieval
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Outlook

- How to determine *subsumption* between two concept description (in the empty TBox)?
- How to determine *instance relations/ABox satisfiability*?
- How to implement the mentioned reductions *efficiently*?
- Does normalization and unfolding introduce another source of *computational complexity*?
How to determine subsumption between two concept description (in the empty TBox)?

How to determine instance relations/ABox satisfiability?

How to implement the mentioned reductions efficiently?

Does normalization and unfolding introduce another source of computational complexity?
Outlook

- How to determine *subsumption* between two concept description (in the empty TBox)?
- How to determine *instance relations/ABox satisfiability*?
- How to implement the mentioned reductions *efficiently*?
- Does normalization and unfolding introduce another source of *computational complexity*?
Outlook

- How to determine *subsumption* between two concept description (in the empty TBox)?
- How to determine *instance relations/ABox satisfiability*?
- How to implement the mentioned reductions *efficiently*?
- Does normalization and unfolding introduce another source of *computational complexity*?