Principles of Knowledge Representation and Reasoning
Description Logics – Reasoning Services and Reductions

Bernhard Nebel, Malte Helmert and Stefan Wölfl
Albert-Ludwigs-Universität Freiburg
July 15, 2008

Motivation

Example TBox & ABox

- Male = ¬Female
- Human ⊑ Living_entity
- Woman ⊑ Human ⊓ Female
- Man ⊑ Human ⊓ Male
- Mother ⊑ Woman ⊓ ∃has-child.Human
- Father ⊑ Man ⊓ ∃has-child.Human
- Parent ⊑ Father ⊓ Mother
- Grandmother ⊑ Woman ⊓ ∃has-child.Parent
- Mother-without-daughter ⊑ Mother ⊓ ∀has-child.Male
- Mother-with-many-children ⊑ Mother ⊓ (≥ 3 has-child)

DIANA: Woman
ELIZABETH: Woman
CHARLES: Man
EDWARD: Man
ANDREW: Man
DIANA: Mother-without-daughter
(ELIZABETH, CHARLES): has-child
(ELIZABETH, EDWARD): has-child
(DIANA, ANDREW): has-child
(DIANA, WILLIAM): has-child

DIANA: Woman
ELIZABETH: Woman
CHARLES: Man
EDWARD: Man
ANDREW: Man
DIANA: Mother-without-daughter
(ELIZABETH, CHARLES): has-child
(ELIZABETH, EDWARD): has-child
(DIANA, ANDREW): has-child
(DIANA, WILLIAM): has-child

Semantic Networks and Description Logics III:
Description Logics – Reasoning Services and Reductions

Motivation

Example TBox & ABox

- Male = ¬Female
- Human ⊑ Living_entity
- Woman ⊑ Human ⊓ Female
- Man ⊑ Human ⊓ Male
- Mother ⊑ Woman ⊓ ∃has-child.Human
- Father ⊑ Man ⊓ ∃has-child.Human
- Parent ⊑ Father ⊓ Mother
- Grandmother ⊑ Woman ⊓ ∃has-child.Parent
- Mother-without-daughter ⊑ Mother ⊓ ∀has-child.Male
- Mother-with-many-children ⊑ Mother ⊓ (≥ 3 has-child)

DIANA: Woman
ELIZABETH: Woman
CHARLES: Man
EDWARD: Man
ANDREW: Man
DIANA: Mother-without-daughter
(ELIZABETH, CHARLES): has-child
(ELIZABETH, EDWARD): has-child
(DIANA, ANDREW): has-child
(DIANA, WILLIAM): has-child

DIANA: Woman
ELIZABETH: Woman
CHARLES: Man
EDWARD: Man
ANDREW: Man
DIANA: Mother-without-daughter
(ELIZABETH, CHARLES): has-child
(ELIZABETH, EDWARD): has-child
(DIANA, ANDREW): has-child
(DIANA, WILLIAM): has-child

Motivation: Reasoning Services

- What do we want to know?
- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?
- These problems can be reduced to logical satisfiability or implication – using the logical semantics.
- We take a different route: We will try to simplify these problems and then we specify direct inference methods.
Satisfiability of Concept Descriptions in a TBox

▶ **Motivation:** Given a TBox T and a concept description C, does C make sense, i.e., is C satisfiable?

▶ **Test:**
 - Does there exist a model I of T such that $C^I \neq \emptyset$?
 - Is the formula $\exists x: C(x)$ together with the formulas resulting from the translation of T satisfiable?

▶ **Example:** Mother-without-daughter $\cap \forall$has-child.Female is unsatisfiable.

Satisfiability of Concept Descriptions (without a TBox)

▶ **Motivation:** Given a concept description C in “isolation”, i.e., in an empty TBox, does C make sense, i.e., is C satisfiable?

▶ **Test:**
 - Does there exist an interpretation I such that $C^I \neq \emptyset$?
 - Is the formula $\exists x: C(x)$ satisfiable?

▶ **Example:** Woman \cap (≤ 0 has-child) \cap (≥ 1 has-child) is unsatisfiable.

Eliminating the TBox

Reduction: Getting Rid of the TBox

▶ We can **reduce** satisfiability in a TBox to simple satisfiability.

▶ **Idea:**
 - Since TBoxes are cycle-free, one can understand a concept definition as a kind of “macro”
 - For a given TBox T and a given concept description C, all defined concept symbols appearing in C can be expanded until C contains only undefined concept symbols
 - An expanded concept description is then satisfiable iff C is satisfiable in T
 - **Problem:** What do we do with partial definitions (using \sqsubseteq)?

Normalized Terminologies

▶ A terminology is called **normalized** when it does not contain definitions using \sqsubseteq.

▶ In order to **normalize** a terminology, replace $A \sqsubseteq C$

by $A \sqsubseteq A^* \sqcap C$,

where A^* is a fresh concept symbol (not appearing elsewhere in T).

▶ If T is a terminology, the normalized terminology is denoted by \tilde{T}.
Normalizing is Reasonable

Theorem (Normalization Invariance)

If \(I \) is a model of the terminology \(T \), then there exists a model \(I' \) of \(\tilde{T} \) (and vice versa) such that for all concept symbols \(A \) appearing in \(T \) we have:

\[
A^I = A^{I'}.
\]

Proof.

\(\Rightarrow \): Let \(I \) be a model of \(T \). This model should be extended to \(I' \) so that the freshly introduced concept symbols also get interpretations. Assume \((A \sqsubseteq C) \in T \), i.e., we have \((A \sqsubseteq A^* \sqcap C) \in \tilde{T} \). Then set \(A^{I'} = A^I \). \(I' \) obviously satisfies \(\tilde{T} \) and has the same interpretation for all symbols in \(T \).

\(\Leftarrow \): Given a model \(I' \) of \(\tilde{T} \), its restriction to symbols of \(T \) is the interpretation we looked for.

TBox Unfolding

- We say that a normalized TBox is unfolded by one step when all defined concept symbols on the right sides are replaced by their defining terms.
- Example: Mother \(\sqsubseteq \) Woman \(\sqcap \ldots \) is unfolded to Mother \(\sqsubseteq (\text{Human} \sqcap \text{Female}) \sqcap \ldots \)
- We write \(U(T) \) to denote a one-step unfolding and \(U^n(T) \) to denote an \(n \)-step unfolding.
- We say \(T \) is unfolded if \(U(T) = T \).
- We say that \(U^n(T) \) is the unfolding of \(T \) if \(U^n(T) = U^{n+1}(T) \). If such an unfolding exists, it is denoted by \(\tilde{T} \)

Properties of Unfoldings (1): Existence

Theorem (Existence of unfolded terminology)

For each normalized terminology \(T \), there exists its unfolding \(\tilde{T} \).

Proof idea.

The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.

Properties of Unfoldings (2): Equivalence

Theorem (Model equivalence for unfolded terminologies)

\(I \) is a model of a normalized terminology \(T \) iff it is a model of \(\tilde{T} \).

Proof Sketch.

\(\Rightarrow \): Let \(I \) be a model of \(T \). Then it is also a model of \(U(T) \), since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of \(\tilde{T} \).

\(\Leftarrow \): Let \(I \) be a model for \(U(T) \). Clearly, this is also a model of \(T \) (with the same argument as above). This means that any model \(\tilde{T} \) is also a model of \(T \).
Generating Models

- All concept and role names not appearing on the left hand side in a terminology T are called **primitive components**.
- Interpretations restricted to primitive components are called **initial interpretations**.

Theorem (Model extension)
For each initial interpretation J of a normalized TBox, there exists a unique interpretation I extending J and satisfying T.

Proof idea.
Use \hat{T} and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)
Each TBox has at least one model.

Unfolding of Concept Descriptions

- Similar to the unfolding of TBoxes, we can define **unfolding of concept descriptions**.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)
An concept description C is satisfiable in a terminology T iff \hat{C} satisfiable in an empty terminology.

Proof.
"\Rightarrow": trivial.
"\Leftarrow": Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T. Then extend it to a full model I of T. This satisfies T as well as \hat{C}. Since $\hat{C}^I = C^I$, it satisfies also C.

Subsumption in a TBox

- **Motivation:** Given a terminology T and two concept descriptions C and D, is C subsumed by (or a sub-concept of) D in T ($C \sqsubseteq_T D$)?
- **Test:**
 - Is C interpreted as a subset of D for all models I of T ($C^I \subseteq D^I$)?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ a logical consequence of the translation of T to predicate logic?
- **Example:** Grandmother \sqsubseteq_T Mother

Subsumption (Without a TBox)

- **Motivation:** Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox), written $C \sqsubseteq D$?
- **Test:**
 - Is C interpreted as a subset of D for all interpretations I ($C^I \subseteq D^I$)?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ logically valid?
- **Example:** Human \cap Female \sqsubseteq Human
General TBox Reasoning Services

Subsumption vs. Satisfiability

Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox
- **Normalize** and **unfold** TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability
- $C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable
- Unsatisfiability can be reduced to subsumption
- C is unsatisfiable iff $C \sqsubseteq (C \sqcap \neg C)$

Classification

Motivation: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to
- check the modeling – does the terminology make sense?
- use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a **generalized sorting** problem!

Example

```
Female Human Male
Woman Man
Parent
Father Mother
Mother-wo-d Grandmother
Living_Entity
Mother-w-m-c
```

General ABox Reasoning Services

ABox Satisfiability

Motivation: An ABox should **model** the real world, i.e., it should have a **model**.

Test: Check for a model

Example:

\[
\begin{align*}
X : & (\forall r. \neg C) \\
Y : & C \\
(X, Y) : & r
\end{align*}
\]

is not satisfiable.

ABox Satisfiability in a TBox

Motivation: Is a given ABox A compatible with the terminology introduced in T?

Test: Is $T \cup A$ satisfiable?

Example: If we extend our example with
- MARGRET: Woman
- (DIANA, MARGRET): has-child,

then the ABox becomes unsatisfiable in the given TBox.

Reduction:
- to satisfiability of an ABox
 - **Normalize** terminology, then **unfold** all concept and role descriptions in the ABox
Instance Relations

- **Motivation**: Which additional ABox formulas of the form $a: C$ follow logically from a given ABox and TBox?

- **Test**:
 - Is $a^I \in C^I$ true in all models I of $T \cup A$?
 - Does the formula $C(a)$ logically follow from the translation of A and T to predicate logic?

- **Reductions**:
 - Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
 - Use normalization and unfolding
 - Instance relations in an ABox can be reduced to ABox unsatisfiability:
 $$a: C \text{ holds in } A \text{ iff } A \cup \{a: \neg C\} \text{ is unsatisfiable}$$

Examples

- **ELIZABETH**: Mother-with-many-children?
 - yes
- **WILLIAM**: ~Female?
 - yes
- **ELIZABETH**: Mother-without-daughter?
 - no (no CWA!)
- **ELIZABETH**: Grandmother?
 - no (only male, but not necessarily human!)

Realization

- **Idea**: For a given object a, determine the most specialized concept symbols such that a is an instance of these concepts

- **Motivation**:
 - Similar to classification
 - Is the minimal representation of the instance relations (in the set of concept symbols)
 - Will give us faster answers for instance queries!

- **Reduction**: Can be reduced to (a sequence of) instance relation tests.

Retrieval

- **Motivation**: Sometimes, we want to get the set of instances of a concept (as in database queries)

- **Example**: Asking for all instances of the concept Male, we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.

- **Reduction**: Compute the set of instances by testing the instance relation for each object

- **Implementation**: Realization can be used to speed this up
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval

Outlook

- How to determine subsumption between two concept description (in the empty TBox)?
- How to determine instance relations/ABox satisfiability?
- How to implement the mentioned reductions efficiently?
- Does normalization and unfolding introduce another source of computational complexity?