Principles of Knowledge Representation and Reasoning
Description Logics – Reasoning Services and Reductions

Bernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

July 15, 2008
Semantic Networks and Description Logics III: Description Logics – Reasoning Services and Reductions

Motivation

Basic Reasoning Services

Eliminating the TBox

General TBox Reasoning Services

General ABox Reasoning Services

Summary and Outlook
Example TBox & ABox

\[\text{Male} \equiv \neg \text{Female} \]
\[\text{Human} \sqsubseteq \text{Living_entity} \]
\[\text{Woman} \equiv \text{Human} \sqcap \text{Female} \]
\[\text{Man} \equiv \text{Human} \sqcap \text{Male} \]
\[\text{Mother} \equiv \text{Woman} \sqcap \exists \text{has-child.Human} \]
\[\text{Father} \equiv \text{Man} \sqcap \exists \text{has-child.Human} \]
\[\text{Parent} \equiv \text{Father} \sqcup \text{Mother} \]
\[\text{Grandmother} \equiv \text{Woman} \sqcap \exists \text{has-child.Parent} \]
\[\text{Mother-without-daughter} \equiv \text{Mother} \sqcap \forall \text{has-child.Male} \]
\[\text{Mother-with-many-children} \equiv \text{Mother} \sqcap (\geq 3 \text{has-child}) \]

\[\text{DIANA: Woman} \]
\[\text{ELIZABETH: Woman} \]
\[\text{CHARLES: Man} \]
\[\text{EDWARD: Man} \]
\[\text{ANDREW: Man} \]
\[\text{DIANA: Mother-without-daughter} \]
\[\text{(ELIZABETH, CHARLES): has-child} \]
\[\text{(ELIZABETH, EDWARD): has-child} \]
\[\text{(ELIZABETH, ANDREW): has-child} \]
\[\text{(DIANA, WILLIAM): has-child} \]
\[\text{(CHARLES, WILLIAM): has-child} \]
Motivation: Reasoning Services

- What do we want to know?
- We want to check whether the knowledge base is reasonable:
 - Is each defined concept in a TBox satisfiable?
 - Is a given TBox satisfiable?
 - Is a given ABox satisfiable?
- What can we conclude from the represented knowledge?
 - Is concept X subsumed by concept Y?
 - Is an object a instance of a concept X?
- These problems can be reduced to logical satisfiability or implication – using the logical semantics.
- We take a different route: We will try to simplify these problems and then we specify direct inference methods.
Satisfiability of Concept Descriptions in a TBox

▶ **Motivation**: Given a TBox \mathcal{T} and a concept description C, does C make sense, i.e., is C satisfiable?

▶ **Test**:
 - Does there exist a *model* \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$?
 - Is the formula $\exists x : C(x)$ together with the formulas resulting from the translation of \mathcal{T} satisfiable?

▶ **Example**: Mother-without-daughter $\sqcap \forall$has-child.Female is unsatisfiable.
Motivation: Given a concept description C in “isolation”, i.e., in an empty TBox, does C make sense, i.e., is C satisfiable?

Test:
- Does there exist an interpretation I such that $C^I \neq \emptyset$?
- Is the formula $\exists x: C(x)$ satisfiable?

Example: Woman \(\sqcap (\leq 0 \text{ has-child}) \sqcap (\geq 1 \text{ has-child}) \) is unsatisfiable.
We can reduce satisfiability in a TBox to simple satisfiability.

Idea:

- Since TBoxes are *cycle-free*, one can understand a concept definition as a kind of “macro”
- For a given TBox \mathcal{T} and a given concept description C, all defined concept symbols appearing in C can be expanded until C contains only undefined concept symbols
- An expanded concept description is then satisfiable iff C is satisfiable in \mathcal{T}
- **Problem**: What do we do with partial definitions (using \sqsubseteq)?
Normalized Terminologies

- A terminology is called **normalized** when it does not contain definitions using \sqsubseteq.
- In order to **normalize** a terminology, replace

 $$A \sqsubseteq C$$

 by

 $$A \equiv A^* \sqcap C,$$

 where A^* is a **fresh** concept symbol (not appearing elsewhere in T).
- If T is a terminology, the normalized terminology is denoted by \tilde{T}.
Normalizing is Reasonable

Theorem (Normalization Invariance)

If I is a model of the terminology T, then there exists a model I' of \tilde{T} (and vice versa) such that for all concept symbols A appearing in T we have:

$$A^I = A^{I'}.$$

Proof.

"⇒": Let I be a model of T. This model should be extended to I' so that the freshly introduced concept symbols also get interpretations. Assume $(A \sqsubseteq C) \in T$, i.e., we have $(A \models A^* \sqcap C) \in \tilde{T}$. Then set $A^{*I'} = A^I$. I' obviously satisfies \tilde{T} and has the same interpretation for all symbols in T.

"⇐": Given a model I' of \tilde{T}, its restriction to symbols of T is the interpretation we looked for. \qed
TBox Unfolding

- We say that a normalized TBox is **unfolded by one step** when all defined concept symbols on the right sides are replaced by their defining terms.

- **Example**: Mother ⊑ Woman □... is unfolded to Mother ⊑ (Human □ Female) □...

- We write $U(T)$ to denote a one-step unfolding and $U^n(T)$ to denote an *n-step unfolding*.

- We say T is **unfolded** if $U(T) = T$.

- We say that $U^n(T)$ is the **unfolding** of T if $U^n(T) = U^{n+1}(T)$. If such an unfolding exists, it is denoted by \hat{T}.
Properties of Unfoldings (1): Existence

Theorem (Existence of unfolded terminology)
For each normalized terminology \mathcal{T}, there exists its unfolding $\hat{\mathcal{T}}$.

Proof idea.
The main reason is that terminologies have to be cycle-free. The proof can be done by induction of the definition depth of concepts.
Theorem (Model equivalence for unfolded terminologies)

I is a model of a normalized terminology \mathcal{T} iff it is a model of $\hat{\mathcal{T}}$.

Proof Sketch.

"\Rightarrow": Let I be a model of \mathcal{T}. Then it is also a model of $U(\mathcal{T})$, since on the right side of the definitions only terms with identical interpretations are substituted. However, then it must also be a model of $\hat{\mathcal{T}}$.

"\Leftarrow": Let I be a model for $U(\mathcal{T})$. Clearly, this is also a model of \mathcal{T} (with the same argument as above). This means that any model $\hat{\mathcal{T}}$ is also a model of \mathcal{T}.

\[\Box\]
Generating Models

- All concept and role names *not appearing on the left hand side* in a terminology \mathcal{T} are called **primitive components**.
- Interpretations restricted to primitive components are called **initial interpretations**.

Theorem (Model extension)

For each initial interpretation \mathcal{J} of a normalized TBox, there exists a unique interpretation \mathcal{I} extending \mathcal{J} and satisfying \mathcal{T}.

Proof idea.

Use $\hat{\mathcal{T}}$ and compute an interpretation for all defined symbols.

Corollary (Model existence for TBoxes)

Each TBox has at least one model.
Unfolding of Concept Descriptions

- Similar to the unfolding of TBoxes, we can define unfolding of concept descriptions.
- We write \hat{C} for the unfolded version of C.

Theorem (Satisfiability of unfolded concepts)

An concept description C is satisfiable in a terminology T iff \hat{C} satisfiable in an empty terminology.

Proof.

"\Rightarrow": trivial.

"\Leftarrow": Use the interpretation for all the symbols in \hat{C} to generate an initial interpretation of T. Then extend it to a full model I of \mathcal{T}. This satisfies \mathcal{T} as well as \hat{C}. Since $\hat{C}^\mathcal{T} = C^\mathcal{T}$, it satisfies also C.

\square
Subsumption in a TBox

▶ **Motivation**: Given a terminology \mathcal{T} and two concept descriptions C and D, is C **subsumed by** (or a **sub-concept** of) D in \mathcal{T} ($C \sqsubseteq_T D$)?

▶ **Test**:
 - Is C interpreted as a subset of D for all models \mathcal{I} of \mathcal{T} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ a logical consequence of the translation of \mathcal{T} to predicate logic?

▶ **Example**: Grandmother \sqsubseteq_T Mother
Subsumption
(Without a TBox)

▶ **Motivation**: Given two concept descriptions C and D, is C subsumed by D regardless of a TBox (or in an empty TBox), written $C \sqsubseteq D$?

▶ **Test**:
 - Is C interpreted as a subset of D for all interpretations \mathcal{I} ($C^\mathcal{I} \subseteq D^\mathcal{I}$)?
 - Is the formula $\forall x : (C(x) \rightarrow D(x))$ logically valid?

▶ **Example**: Human \sqcap Female \sqsubseteq Human
Reductions

- Subsumption in a TBox can be reduced to subsumption in the empty TBox
- *Normalize* and *unfold* TBox and concept descriptions.
- Subsumption in the empty TBox can be reduced to unsatisfiability
- $C \sqsubseteq D$ iff $C \sqcap \neg D$ is unsatisfiable
- Unsatisfiability can be reduced to subsumption
- C is unsatisfiable iff $C \sqsubseteq (C \sqcap \neg C)$
Classification

- **Motivation**: Compute all subsumption relationships (and represent them using only a minimal number of relationships) in order to
 - check the modeling – does the terminology make sense?
 - use the precomputed relations later when subsumption queries have to be answered
- reduce to subsumption
- it is a *generalized sorting* problem!
ABox Satisfiability

- **Motivation**: An ABox should *model* the real world, i.e., it should have a *model*.

- **Test**: Check for a model

- **Example**:

 \[
 X : (\forall r. \neg C) \\
 Y : C \\
 (X, Y) : r
 \]

 is not satisfiable.
ABox Satisfiability in a TBox

- **Motivation**: Is a given ABox A compatible with the terminology introduced in T?
- **Test**: Is $T \cup A$ satisfiable?
- **Example**: If we extend our example with
 MARGRET: Woman
 (DIANA,MARGRET): has-child,

 then the ABox becomes unsatisfiable in the given TBox.

- **Reduction**:
 - to satisfiability of an ABox
 - **Normalize** terminology, then **unfold** all concept and role descriptions in the ABox
Instance Relations

- **Motivation**: Which additional ABox formulas of the form $a: C$ follow logically from a given ABox and TBox?

- **Test**:
 - Is $a^I \in C^I$ true in all models of I of $T \cup A$?
 - Does the formula $C(a)$ logically follow from the translation of A and T to predicate logic?

- **Reductions**:
 - Instance relations wrt. an ABox and a TBox can be reduced to instance relations wrt. ABox.
 - Use *normalization* and *unfolding*
 - Instance relations in an ABox can be reduced to ABox unsatisfiability:

\[
a: C \text{ holds in } A \iff A \cup \{a: \neg C\} \text{ is unsatisfiable}
\]
Examples

▶ ELIZABETH: Mother-with-many-children?
▶ yes

▶ WILLIAM: ¬ Female?
▶ yes

▶ ELIZABETH: Mother-without-daughter?
▶ no (no CWA!)

▶ ELIZABETH: Grandmother?
▶ no (only male, but not necessarily human!)
Realization

- **Idea**: For a given object \(a \), determine the most specialized concept symbols such that \(a \) is an instance of these concepts.

- **Motivation**:
 - Similar to *classification*
 - Is the minimal representation of the instance relations (in the set of concept symbols)
 - Will give us faster answers for instance queries!

- **Reduction**: Can be reduced to (a sequence of) instance relation tests.
Retrieval

- **Motivation**: Sometimes, we want to get the set of instances of a concept (as in database queries).
- **Example**: Asking for all instances of the concept Male, we will get the answer CHARLES, ANDREW, EDWARD, WILLIAM.
- **Reduction**: Compute the set of instances by testing the instance relation for each object.
- **Implementation**: Realization can be used to speed this up.
Reasoning Services – Summary

- Satisfiability of concept descriptions
 - in a given TBox or in an empty TBox
- Subsumption between concept descriptions
 - in a given TBox or in an empty TBox
- Classification
- Satisfiability of an ABox
 - in a given TBox or in an empty TBox
- Instance relations in an ABox
 - in a given TBox or in an empty TBox
- Realization
- Retrieval
Outlook

- How to determine *subsumption* between two concept description (in the empty TBox)?
- How to determine *instance relations/ABox satisfiability*?
- How to implement the mentioned reductions *efficiently*?
- Does normalization and unfolding introduce another source of *computational complexity*?