Motivation

- Main problem with semantic networks and frames
- The lack of formal semantics!
- Disadvantage of simple inheritance networks
- Concepts are atomic and do not have any structure

⇒ Brachman’s structural inheritance networks (1977)
Systems and Applications

▶ Systems:
 ◦ KL-ONE: First implementation of the ideas (1978)
 ◦ ... then NIKL, KL-TWO, KRYPTON, KANDOR, CLASSIC, BACK, KRIS, YAK, CRACK ...
 ◦ ... currently FaCT, DLP, RACER 1998

▶ Applications:
 ◦ First, natural language understanding systems
 ◦ ... then configuration systems,
 ◦ ... information systems,
 ◦ ... currently, it is one tool for the semantic web
 ◦ DAML+OIL, now OWL

Description Logics

▶ Previously also KL-ONE-alike languages, frame-based languages, terminological logics, concept languages

▶ Description Logics (DL) allow us
 ◦ to describe concepts using complex descriptions,
 ◦ to introduce the terminology of an application and to structure it (TBox),
 ◦ to introduce objects (ABox) and relate them to the introduced terminology,
 ◦ and to reason about the terminology and the objects.

Informal Example

Male is: the opposite of female
A human is a kind of: living entity
A woman is: a human and a female
A man is: a human and a male
A mother is: a woman with at least one child that is a human
A father is: a man with at least one child that is a human
A parent is: a mother or a father
A grandmother is: a woman, with at least one child that is a parent
A mother-wod is: a mother with only male children

Possible Questions:
Elizabeth is a woman
Elizabeth has the child Charles
Charles is a man
Diana is a mother-wod
Diana has the child William

Atomic Concepts and Roles

▶ Concept names:
 ◦ E.g., Grandmother, Male, ...(in the following usually capitalized)
 ◦ We will use symbols such as A, A₁, ...
 ◦ Semantics: Monadic predicates A(·) or set-theoretically a subset of the universe $A \subseteq D$.

▶ Role names:
 ◦ In our example, e.g., child. Often we will use names such as has-child or something similar (in the following usually lowercase).
 ◦ Role names are disjoint from concept names
 ◦ Symbolically: $t, t_1, ...
 ◦ Semantics: Dyadic predicates $t(·, ·)$ or set-theoretically $t \subseteq D \times D$.
Concept and Role Description

- Out of concept and role names, complex descriptions can be created.
- In our example, e.g. “a Human and Female.”
- Symbolically: C for concept descriptions and r for role descriptions.
- Which particular constructs are available depends on the chosen description logic.
- Predicate logic semantics: A concept description C corresponds to a formula C(x) with the free variable x. Similarly with r: It corresponds to formula r(x, y) with free variables x, y.
- Set semantics:
 \[C^I = \{ d \mid C(d) \text{ “is true in” } I \} \]
 \[r^I = \{ (d, e) \mid r(d, e) \text{ “is true in” } I \} \]

Role Restrictions

- **Motivation:**
 - Often we want to describe something by restricting the possible “fillers” of a role, e.g. Mother-vod.
 - Sometimes we want to say that there is at least a filler of a particular type, e.g. Grandmother.
- **Idea:** Use quantifiers that range over the role-fillers.
 - Mother \(\cap\) \(\exists\) has-child Man
 - Woman \(\cap\) \(\exists\) has-child Parent
- **Predicate logic semantics:**
 \[(\exists r. C)(x) = \exists y : (r(x, y) \land C(y))\]
 \[(\forall r. C)(x) = \forall y : (r(x, y) \rightarrow C(y))\]

Set semantics:
\[(\exists r. C)^I = \{ d \mid \exists e : (d, e) \in r^I \land e \in C^I \}\]
\[(\forall r. C)^I = \{ d \mid \forall e : (d, e) \in r^I \rightarrow e \in C^I \}\]

Boolean Operators

- **Syntax:** Let C and D be concept descriptions, then the following are also concept descriptions:
 - \(C \land D\) (Concept conjunction)
 - \(C \lor D\) (Concept disjunction)
 - \(\neg C\) (Concept negation)
- **Examples:**
 - Human \(\cap\) Female
 - Father \(\sqcup\) Mother
 - \(\neg\) Female
- **Predicate logic semantics:**
 \(C(x) \land D(x), C(x) \lor D(x), \neg C(x)\)
- **Set semantics:**
 \([C \land D]^I, [C \lor D]^I, [\neg C]^I\]

Cardinality Restriction

- **Motivation:**
 - Often we want to describe something by restricting the number of possible ‘fillers’ of a role, e.g., a Mother with at least 3 children or at most 2 children.
- **Idea:** We restrict the cardinality of the role filler sets:
 - Mother \(\cap\) \(\geq 3\) has-child
 - Mother \(\sqcup\) \(\leq 2\) has-child
- **Predicate logic semantics:**
 \((\geq n r)(x) = \exists y_1 \ldots y_n : (r(x, y_1) \land \ldots \land r(x, y_n))\]
 \(y_1 \neq y_2 \land \ldots \land y_{n-1} \neq y_n\)
 \((\leq n r)(x) = \neg(\geq n + 1 r)(x)\)

Set semantics:
\([\geq n r]^I = \{ d \mid |\{e|r^I(d, e)\}| \geq n \}\]
\([\leq n r]^I = D - (\geq n + 1 r)^I\]
Inverse Roles

- **Motivation:**
 - How can we describe the concept “children of rich parents”?
- **Idea:** Define the “inverse” role for a given role (the converse relation)
 - has-child^{-1}
- **Application:** ∃ has-child^{-1}.Rich
- **Predicate logic semantics:**
 \[r^{-1}(x, y) = r(y, x) \]
- **Set semantics:**
 \[(r^{-1})^T = \{(d, e) | (e, d) \in r^T\} \]

Role Composition

- **Motivation:**
 - How can we define the role has-grandchild given the role has-child?
- **Idea:** Compose roles (as one can compose binary relations)
 - has-child ◦ has-child
- **Predicate logic semantics:**
 \[(r \circ s)(x, y) = \exists z : (r(x, z) \land s(z, y)) \]
- **Set semantics:**
 \[(r \circ s)^T = \{(d, e) | \exists f : (d, f) \in r^T \land (f, e) \in s^T\} \]

Role Value Maps

- **Motivation:**
 - How do we express the concept “women who know all the friends of their children”
- **Idea:** Relate role filler sets to each other
 - Woman △ (has-child ◦ has-friend ▦ knows)
- **Predicate logic semantics:**
 \[(r \sqsubseteq s)(x) = \forall y : (r(x, y) \rightarrow s(x, y)) \]
- **Set semantics:** Let \(r^T(d) = \{e | r^T(d, e)\} \).
 \[(r \sqsubseteq s)^T = \{d | r^T(d) \subseteq s^T(d)\} \]
- **Note:** Role value maps lead to undecidability of satisfiability of concept descriptions!

Terminology Box

- In order to introduce new terms, we use two kinds of terminological axioms:
 - \(A = C \)
 - \(A \sqsubseteq C \)
 - where \(A \) is a concept name and \(C \) is a concept description.
- A terminology or TBox is a finite set of such axioms with the following additional restrictions:
 - no multiple definitions of the same symbol such as \(A = C, A \sqsubseteq D \)
 - no cyclic definitions (even not indirectly), such as \(A \sqsubseteq \forall r.B, B \sqsubseteq \exists s.A \)
TBoxes: Semantics

- TBoxes restrict the set of possible interpretations.
- **Predicate logic semantics:**
 - $A \equiv C$ corresponds to $\forall x : (A(x) \iff C(x))$
 - $A \subseteq C$ corresponds to $\forall x : (A(x) \implies C(x))$
- **Set semantics:**
 - $A \equiv C$ corresponds to $A^I = C^I$
 - $A \subseteq C$ corresponds to $A^I \subseteq C^I$
- Non-empty interpretations which satisfy all terminological axioms are called **models** of the TBox.

ABoxes: Semantics

- **Individual names** are interpreted as elements of the universe under the **unique-name-assumption**, i.e., different names refer to different objects.
- **Assertions** express that an object is an instance of a concept or that two objects are related by a role.
- **Predicate logic semantics:**
 - $a : C$ corresponds to $C(a)$
 - $(a, b) : r$ corresponds to $r(a, b)$
- **Set semantics:**
 - $a^I \in D$
 - $a : C$ corresponds to $a^I \in C^I$
 - $(a, b) : r$ corresponds to $(a^I, b^I) \in r^I$
- **Models** of an ABox and of ABox+TBox can be defined analogously to models of a TBox.

Assertional Box

- In order to state something about objects in the world, we use two forms of **assertions**:
 - $a : C$
 - $(a, b) : r$
 - where a and b are **individual names** (e.g., ELIZABETH, PHILIP), C is a **concept description**, and r is a **role description**.
- An **ABox** is a finite set of assertions.

Example TBox

- Male $\equiv \neg$Female
- Human \sqsubseteq Living_entity
- Woman \equiv Human \sqcap Female
- Man \equiv Human \sqcap Male
- Mother \equiv Woman \sqcap has-child.Human
- Father \equiv Man \sqcap has-child.Human
- Parent \equiv Father \sqcup Mother
- Grandmother \equiv Woman \sqcap has-child.Parent
- Mother-without-daughter \equiv Mother \sqcap has-child.Male
- Mother-with-many-children \equiv Mother \sqcap (≥3 has-child)
Example ABox

CHARLES: Man DIANA: Woman
EDWARD: Man ELIZABETH: Woman
ANDREW: Man
DIANA: Mother-without-daughter
(ELIZABETH, CHARLES): has-child
(ELIZABETH, EDWARD): has-child
(ELIZABETH, ANDREW): has-child
(DIANA, WILLIAM): has-child
(CHARLES, WILLIAM): has-child

Some Reasoning Services

▶ Does a description C make sense at all, i.e., is it satisfiable?
▶ A concept description C is satisfiable iff there exists an interpretation I such that $C^I \neq \emptyset$.
▶ Is one concept a specialization of another one, is it subsumed?
▶ C is subsumed by D, in symbols $C \subseteq D$ iff we have for all interpretations $C^I \subseteq D^I$.
▶ Is a an instance of a concept C?
▶ a is an instance of C iff for all interpretations, we have $a^I \in C^I$.
▶ Note: These questions can be posed with or without a TBox that restricts the possible interpretations.

Outlook

▶ Can we reduce the reasoning services to perhaps just one problem?
▶ What could be reasoning algorithms?
▶ What about complexity and decidability?
▶ What has all that to do with modal logics?
▶ How can one build efficient systems?

Literature

Summary: Concept Descriptions

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Concrete</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A[superscript]2</td>
</tr>
<tr>
<td>C ∩ D</td>
<td>(and C D)</td>
<td>C[superscript]2 ∩ D[superscript]2</td>
</tr>
<tr>
<td>C ∪ D</td>
<td>(or C D)</td>
<td>C[superscript]2 ∪ D[superscript]2</td>
</tr>
<tr>
<td>¬C</td>
<td>(not C)</td>
<td>D – C[superscript]2</td>
</tr>
<tr>
<td>∀r C</td>
<td>(all r C)</td>
<td>{d ∈ D : r[superscript]2(d) ⊆ C[superscript]2}</td>
</tr>
<tr>
<td>∃r C</td>
<td>(some r C)</td>
<td>{d ∈ D : r[superscript]2(d) ≠ ∅}</td>
</tr>
<tr>
<td>≥ n r</td>
<td>(atleast n r)</td>
<td>{d ∈ D :</td>
</tr>
<tr>
<td>≤ n r</td>
<td>(atmost n r)</td>
<td>{d ∈ D :</td>
</tr>
<tr>
<td>∀r C</td>
<td>(all r C)</td>
<td>{d ∈ D : r[superscript]2(d) ∩ C[superscript]2 ≠ ∅}</td>
</tr>
<tr>
<td>∃r C</td>
<td>(some r C)</td>
<td>{d ∈ D : r[superscript]2(d) ∩ C[superscript]2 ≤ n}</td>
</tr>
<tr>
<td>r = s</td>
<td>(eq r s)</td>
<td>{d ∈ D : r[superscript]2(d) = s[superscript]2(d)}</td>
</tr>
<tr>
<td>r ≠ s</td>
<td>(neq r s)</td>
<td>{d ∈ D : r[superscript]2(d) ≠ s[superscript]2(d)}</td>
</tr>
<tr>
<td>r ⊆ s</td>
<td>(subset r s)</td>
<td>{d ∈ D : r[superscript]2(d) ⊆ s[superscript]2(d)}</td>
</tr>
<tr>
<td>r</td>
<td>(eq g h)</td>
<td>{d ∈ D : g[superscript]2(d) = h[superscript]2(d) ≠ ∅}</td>
</tr>
<tr>
<td>r ≠ h</td>
<td>(neq g h)</td>
<td>{d ∈ D : g[superscript]2(d) ≠ h[superscript]2(d) ≠ ∅}</td>
</tr>
<tr>
<td>{a1, a2, ..., an}</td>
<td>(oneof a1, a2, ..., an[subscript]2}</td>
<td></td>
</tr>
</tbody>
</table>

Summary: Role Descriptions

<table>
<thead>
<tr>
<th>Abstract</th>
<th>Concrete</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>f[superscript]2, (functional role)</td>
</tr>
<tr>
<td>r ∩ s</td>
<td>(and r s)</td>
<td>r[superscript]2 ∩ s[superscript]2</td>
</tr>
<tr>
<td>r ∪ s</td>
<td>(or r s)</td>
<td>r[superscript]2 ∪ s[superscript]2</td>
</tr>
<tr>
<td>¬r</td>
<td>(not r)</td>
<td>D × D – r[superscript]2</td>
</tr>
<tr>
<td>r[superscript]-1</td>
<td>(inverse r)</td>
<td>{ (d, d') : (d', d) ∈ r[superscript]2 }</td>
</tr>
<tr>
<td>r[superscript]</td>
<td>(trans r)</td>
<td>{ (d, d') ∈ r[superscript]2 : d' ∈ c[superscript]2 }</td>
</tr>
<tr>
<td>r[superscript]</td>
<td>(compose r s)</td>
<td>r[superscript]2 o s[superscript]2</td>
</tr>
<tr>
<td>1</td>
<td>self</td>
<td>{ (d, d) : d ∈ D }</td>
</tr>
</tbody>
</table>