Allen's Interval Calculus

Allen's Interval Calculus – Outline

Allen's Interval Calculus
- Motivation
- Intervals and Relations Between Them
- Processing an Example
- Composition Table
- Outlook

Reasoning in Allen's Interval Calculus

A Maximal Tractable Sub-Algebra

Literature

Qualitative Temporal Representation and Reasoning

Often we do not want to talk about precise times:
- NLP – we do not have precise time points
- Planning – we do not want to commit to time points too early
- Scenario descriptions – we do not have the exact times or do not want to state them

What are the primitives in our representation system?
- Time points: actions and events are instantaneous, or we consider their beginning and ending
- Time intervals: actions and events have duration
- Reducibility? Expressiveness? Computational costs for reasoning?
Motivation: Example
Consider a planning scenario for multimedia generation:

P1: Display Picture1
P2: Say “Put the plug in.”
P3: Say “The device should be shut off.”
P4: Point to Plug-in-Picture1.

Temporal relations between events:

P2 should happen during P1
P3 should happen during P1
P2 should happen before or directly precede P3
P4 should happen during or end together with P2

⇝ P4 happens before or directly precedes P3
⇝ We could add the statement “P4 does not overlap with P3” without creating an inconsistency.

Allen’s Interval Calculus

Allen’s interval calculus: time intervals and binary relations over them

Time intervals: \(X = (X^-, X^+) \), where \(X^- \) and \(X^+ \) are interpreted over the reals and \(X^- < X^+ \) (naïve approach)

Relations between concrete intervals, e.g.:

- \((1.0, 2.0)\) strictly before \((3.0, 5.5)\)
- \((1.0, 3.0)\) meets \((3.0, 5.5)\)
- \((1.0, 4.0)\) overlaps \((3.0, 5.5)\)

⇝ Which relations are conceivable?

The Base Relations

How many ways are there to order the four points of two intervals?

<table>
<thead>
<tr>
<th>Relation</th>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>({X, Y) : (X^- < X^+ < Y^- < Y^+)}</td>
<td>(<)</td>
<td>before</td>
</tr>
<tr>
<td>({X, Y) : (X^- < X^+ = Y^- < Y^+)}</td>
<td>(m)</td>
<td>meets</td>
</tr>
<tr>
<td>({X, Y) : (X^- < Y^- < X^+ < Y^+)}</td>
<td>(o)</td>
<td>overlaps</td>
</tr>
<tr>
<td>({X, Y) : (X^- = Y^- < X^+ < Y^+)}</td>
<td>(s)</td>
<td>starts</td>
</tr>
<tr>
<td>({X, Y) : (Y^- < X^- < X^+ = Y^+)}</td>
<td>(f)</td>
<td>finishes</td>
</tr>
<tr>
<td>({X, Y) : (Y^- < X^- < X^+ < Y^+)}</td>
<td>(d)</td>
<td>during</td>
</tr>
<tr>
<td>({X, Y) : (Y^- = X^- < X^+ = Y^+)}</td>
<td>(\equiv)</td>
<td>equal</td>
</tr>
</tbody>
</table>

and the converse relations (obtained by exchanging \(X\) and \(Y\))

⇝ These relations are JEPD.
Disjunctive Descriptions

- Assumption: We don’t have precise information about the relation between \(X \) and \(Y \), e.g.:

\[
X \circ Y \text{ or } X \mathbin{m} Y
\]

- \ldots modelled by sets of base relations (meaning the union of the relations):

\[
X \{o, m\} Y
\]

\(\sim 2^{13} \) imprecise relations (incl. \(\emptyset \) and \(B \))

Example of an indefinite qualitative description:

\[
\left\{ X \{o, m\} Y, Y \{m\} Z, X \{o, m\} Z \right\}
\]
Reasoning in Allen’s Interval Calculus

Allen’s Interval Calculus

Reasoning in Allen’s Interval Calculus

Constraint propagation algorithms (enforcing path consistency)

NP-Hardness Example

The Continuous Endpoint Class

Completeness for the CEP Class

A Maximal Tractable Sub-Algebra

Literature

Constraint Propagation – The Naive Algorithm

Enforcing path-consistency using the straight-forward method:

Let $Table[i, j]$ be an array of size $|n| \times |n|$ (n: number of intervals), in which we have recorded the constraints between the intervals.

EnforcePathConsistency1 (C):

Input: a (binary) CSP $C = \langle V, D, C \rangle$

Output: an equivalent, but path consistent CSP C'

repeat

for each pair (i, j), $1 \leq i, j \leq n$

for each k with $1 \leq k \leq n$

$Table[i, j] := Table[i, j] \cap (Table[i, k] \circ Table[k, j])$

endfor

endfor

until no entry in $Table$ is changed

⇝ terminates;

⇝ needs $O(n^5)$ intersections and compositions.

An $O(n^3)$ Algorithm

EnforcePathConsistency2 (C):

Input: a (binary) CSP $C = \langle V, D, C \rangle$

Output: an equivalent, but path consistent CSP C'

$Paths(i, j) = \{(i, j, k) : 1 \leq k \leq n\} \cup \{(k, i, j) : 1 \leq k \leq n\}$

$Queue := \bigcup_{i, j} Paths(i, j)$

While $Q \neq \emptyset$

select and *delete* (i, k, j) from Q

$T := Table[i, j] \cap (Table[i, k] \circ Table[k, j])$

if $T \neq Table[i, j]$

$Table[i, j] := T$

$Table[j, i] := T^{-1}$

$Queue := Queue \cup Paths(i, j)$

endif

endwhile

Example for Incompleteness

A directed graph showing incompleteness in Allen’s Interval Calculus.
NP-Hardness

Theorem (Kautz & Vilain)

CSAT is NP-hard for Allen’s interval calculus.

Proof.

Reduction from 3-colorability (original proof using 3Sat).

Let $G = (V, E)$, $V = \{v_1, \ldots, v_n\}$ be an instance of 3-colorability.

Then we use the intervals $\{v_1, \ldots, v_n, 1, 2, 3\}$ with the following constraints:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_i</td>
<td>m, m^{-1}</td>
<td>2</td>
<td>$\forall v_i \in V$</td>
</tr>
</tbody>
</table>

$\forall (v_i, v_j) \in E$

This constraint system is satisfiable iff G can be colored with 3 colors.

Looking for Special Cases

- **Idea**: Let us look for polynomial special cases. In particular, let us look for sets of relations (subsets of the entire set of relations) that have an easy CSAT problem.

- **Note**: Interval formulae $X R Y$ can be expressed as clauses over atoms of the form $a op b$, where:
 - a and b are endpoints X^-, X^+, Y^- and Y^+ and
 - $op \in \{<, >, =, \leq, \geq\}$.

- **Example**: All base relations can be expressed as unit clauses.

Lemma

Let $\pi(\Theta)$ be the translation of Θ to clause form. Θ is satisfiable over intervals iff $\pi(\Theta)$ is satisfiable over the rational numbers.

Why Do We Have Completeness?

The set \mathcal{C} is closed under intersection, composition, and converse (it is a sub-algebra wrt. these three operations on relations). This can be shown by using a computer program.

Lemma

Each 3-consistent interval CSP over \mathcal{C} is globally consistent.

Theorem (van Beek)

Path consistency solves $\text{CMIN}(\mathcal{C})$ and decides $\text{CSAT}(\mathcal{C})$.

Proof.

Follows from the above lemma and the fact that a strongly n-consistent CSP is minimal.

Corollary

A path consistent interval CSP consisting of base relations only is satisfiable.
Helly’s Theorem

Definition
A set $M \subseteq \mathbb{R}^n$ is convex iff for all pairs of points $a, b \in M$, all points on the line connecting a and b belong to M.

Theorem (Helly)
Let F be a family of at least $n + 1$ convex sets in \mathbb{R}^n. If all sub-families of F with $n + 1$ sets have a non-empty intersection, then $\bigcap F \neq \emptyset$.

Strong n-Consistency (1)

Proof.
We prove the claim by induction over k with $k \leq n$.

Base case: $k = 1, 2, 3 \quad \checkmark$

Induction assumption: Assume strong $k - 1$-consistency (and non-emptiness of all relations)

Induction step: From the assumption, it follows that there is an instantiation of $k - 1$ variables X_i to pairs (s_i, e_i) satisfying the constraints R_{ij} between the $k - 1$ variables.

We have to show that we can extend the instantiation to any kth variable.

Strong n-Consistency (2): Instantiating the kth Variable

Proof (Part 2).
The instantiation of the $k - 1$ variables X_i to (s_i, e_i) restricts the instantiation of X_k.

Note: Since $R_{ij} \in C$ by assumption, these restrictions can be expressed by inequalities of the form:

$$s_i < X_k^+ \land e_j \geq X_k^- \land \ldots$$

Such inequalities define convex subsets in \mathbb{R}^2.

\Rightarrow Consider sets of 3 inequalities (= 3 convex sets).

Strong n-Consistency (3): Using Helly’s Theorem

Proof (Part 3).

Case 1: All 3 inequalities mention only X_k^- (or mention only X_k^+). Then it suffices to consider only 2 of these inequalities (the strongest). Because of 3-consistency, there exists at least 1 common point satisfying these 3 inequalities.

Case 2: The inequalities mention X_k^- and X_k^+, but it does not contain the inequality $X_k^- < X_k^+$. Then there are at most 2 inequalities with the same variable and we have the same situation as in Case 1.

Case 3: The set contains the inequality $X_k^- < X_k^+$. In this case, only three intervals (incl. X_k) can be involved and by the same argument as above there exists a common point.

\Rightarrow With Helly’s Theorem, it follows that there exists a consistent instantiation for all subsets of variables.

\Rightarrow Strong k-consistency for all $k \leq n$.
Outlook

- CMIN(\mathcal{C}) can be computed in \(O(n^3)\) time (for \(n\) being the number of intervals) using the path consistency algorithm.
- \(\mathcal{C}\) is a set of relations occurring “naturally” when observations are uncertain.
- \(\mathcal{C}\) contains 83 relations (incl. the impossible and the universal relations).
- Are there larger sets such that path consistency computes minimal CSPs? Probably not.
- Are there larger sets of relations that permit polynomial satisfiability testing? Yes.

A Maximal Tractable Sub-Algebra

The EP-Subclass

End-Point Subclass: \(\mathcal{P} \subseteq \mathcal{A}\) is the subclass that permits a clause form containing only unit clauses (\(a \neq b\) is allowed).

Example: all basic relations and \(\{d, o\}\) since

\[
\pi(X \{d, o\} Y) = \{X^- < X^+, Y^- < Y^+, X^- < Y^+, X^+ > Y^-, X^- \neq Y^-, X^+ < Y^+\}
\]

\[X \ldots X \ldots Y\]

Theorem (Vilain & Kautz 86, Ladkin & Maddux 88)

The path-consistency method decides CSAT(\(\mathcal{P}\)).

A Maximal Tractable Sub-Algebra

The ORD-Horn Subclass

ORD-Horn Subclass: \(\mathcal{H} \subseteq \mathcal{A}\) is the subclass that permits a clause form containing only Horn clauses, where only the following literals are allowed:

\[
a \leq b, a = b, a \neq b
\]

\(\neg a \leq b\) is not allowed!

Example: all \(R \in \mathcal{P}\) and \(\{o, s, f^{-1}\}\):

\[
\pi(X\{o, s, f^{-1}\}Y) = \{X^- \leq X^+, X^- \neq X^+, Y^- \leq Y^+, Y^- \neq Y^+, X^- \leq Y^-, X^- \leq Y^+, X^- \neq Y^+, X^+ \leq Y^+, Y^- \leq X^+, X^- \neq Y^-, X^+ \leq Y^+, X^- \neq Y^- \lor X^+ \neq Y^+\}
\]
Partial Orders: The ORD Theory

Let ORD be the following theory:

- $\forall x, y, z: x \leq y \land y \leq z \rightarrow x \leq z$ (transitivity)
- $\forall x: x \leq x$ (reflexivity)
- $\forall x, y: x \leq y \land y \leq x \rightarrow x = y$ (anti-symmetry)
- $\forall x, y: x = y \rightarrow x \leq y$ (weakening of $=$)
- $\forall x, y: x = y \rightarrow y \leq x$ (weakening of $=$).

- ORD describes partially ordered sets, \leq being the ordering relation.
- ORD is a Horn theory
- What is missing wrt to dense and linear orders?

Satisfiability over Partial Orders

Proposition

Let Θ be a CSP over \mathcal{H}. Θ is satisfiable over interval interpretations iff $\pi(\Theta) \cup ORD$ is satisfiable over arbitrary interpretations.

Proof.

\Rightarrow: Since the reals form a partially ordered set (i.e., satisfy ORD), this direction is trivial.

\Leftarrow: Each extension of a partial order to a linear order satisfies all formulae of the form $a \leq b$, $a = b$, and $a \neq b$ which have been satisfied over the original partial order.

Complexity of CSAT(\mathcal{H})

Let $ORD_{\pi(\Theta)}$ be the propositional theory resulting from instantiating all axioms with the endpoints occurring in $\pi(\Theta)$.

Proposition

$ORD \cup \pi(\Theta)$ is satisfiable iff $ORD_{\pi(\Theta)} \cup \pi(\Theta)$ is so.

Proof idea: Herbrand expansion!

Path-Consistency and the OH-Class

Lemma

Let Θ be a path-consistent set over \mathcal{H}. Then

$$(X\{\}Y) \notin \Theta \iff \Theta \text{ is satisfiable}$$

Proof Idea.

One can show that $ORD_{\pi(\Theta)} \cup \pi(\Theta)$ is closed wrt positive unit resolution. Since this inference rule is refutation complete for Horn theories, the claim follows.

Lemma

\mathcal{H} is closed under intersection, composition, and conversion.

Theorem

The path-consistency method decides CSAT(\mathcal{H}).

\Rightarrow Maximal of \mathcal{H}?

\Rightarrow Do we have to check all $8192 - 868$ extensions?
Complexity of Sub-Algebras

Let $\hat{\mathcal{S}}$ be the closure of $\mathcal{S} \subseteq \mathcal{A}$ under converse, intersection, and composition (i.e., the carrier of the least sub-algebra generated by \mathcal{S})

Theorem
$\text{CSAT}(\hat{\mathcal{S}})$ can be polynomially transformed to $\text{CSAT}(\mathcal{S})$.

Proof Idea.
All relations in $\hat{\mathcal{S}} - \mathcal{S}$ can be modeled by a fixed number of compositions, intersections, and conversions of relations in \mathcal{S}, introducing perhaps some fresh variables.

\implies Polynomiality of \mathcal{S} extends to $\hat{\mathcal{S}}$.
\implies NP-hardness of $\hat{\mathcal{S}}$ is inherited by all generating sets \mathcal{S}.

\implies Note: $\mathcal{H} = \hat{\mathcal{H}}$.

“Interesting” Subclasses

Interesting subclasses of \mathcal{A} should contain all basic relations. A computer-aided case analysis reveals: For $\mathcal{S} \supseteq \{\{B\} : B \in \mathcal{B}\}$ it holds that

1. $\hat{\mathcal{S}} \subseteq \mathcal{H}$, or
2. N_1 or N_2 is in $\hat{\mathcal{S}}$.

In case 2, one can show: $\text{CSAT}(\mathcal{S})$ is NP-complete.

\implies \mathcal{H} is the only maximal tractable subclass that is interesting.

Meanwhile, there is a complete classification of all sub-algebras containing at least one basic relation [IJCAI 2001] . . . but the question for sub-algebras not containing a basic relation is open.

Minimal Extensions of the \mathcal{H}-Subclass

A computer-aided case analysis leads to the following result:

Lemma
There are only two minimal sub-algebras that strictly contain \mathcal{H}: \mathcal{X}_1, \mathcal{X}_2

$N_1 = \{d, d^{-1}, o^{-1}, s^{-1}, f\} \in \mathcal{X}_1$
$N_2 = \{d^{-1}, o, o^{-1}, s^{-1}, f^{-1}\} \in \mathcal{X}_2$

The clause form of these relations contain “proper” disjunctions!

Theorem
$\text{CSAT}(\mathcal{H} \cup \{N_i\})$ is NP-complete.

Question: Are there other maximal tractable subclasses?

Relevance?

Theoretical:
We now know the boundary between polynomial and NP-hard reasoning problems along the dimension expressiveness.

Practical:
All known applications either need only \mathcal{P} or they need more than \mathcal{H}!

Backtracking methods might profit from the result because the branching factor is lower.

\implies How difficult is $\text{CSAT}(\mathcal{A})$ in practice?

\implies What are the relevant branching factors?
Solving General Allen CSPs

- Backtracking algorithm using path-consistency as a forward-checking method
- Relies on tractable fragments of Allen’s calculus: split relations into relations of a tractable fragment, and backtrack over these.
- Refinements and evaluation of different heuristics

Which tractable fragment should one use?

Branching Factors

- If the labels are split into base relations, then on average a label is split into 6.5 relations
- If the labels are split into pointizable relations (P), then on average a label is split into 2.955 relations
- If the labels are split into ORD-Horn relations (\mathcal{H}), then on average a label is split into 2.533 relations

A difference of 0.422

This makes a difference for “hard” instances.

Summary

- Allen’s interval calculus is often adequate for describing relative orders of events that have duration.
- The satisfiability problem for CSPs using the relations is NP-complete.
- For the continuous endpoint class, minimal CSPs can be computed using the path-consistency method.
- For the larger ORD-Horn class, CSAT is still decided by the path-consistency method.
- Can be used in practice for backtracking algorithms.

Literature

A complete classification of complexity in Allen’s algebra in the presence of a non-trivial basic relation.