Principles of Knowledge Representation and Reasoning
Complexity Theory

Bernhard Nebel, Malte Helmert and Stefan Wölfl

Albert-Ludwigs-Universität Freiburg

April 29, 2008
Motivation for Using Complexity Theory

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting
Motivation for Using Complexity Theory

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting
Motivation for Using Complexity Theory

- Complexity theory can answer questions on how easy or hard a problem is.
- Gives hints on what algorithms could be appropriate, e.g.:
 - Algorithms for **polynomial-time problems** are usually easy to design.
 - For **NP-complete** problems, backtracking and local search work well.
- Gives hints on what type of algorithm will (most probably) not work.
 - For problems that are believed to be harder than NP-complete ones, simple backtracking will not work.
- Gives hint on what sub-problems might be interesting.
Motivation for Using Complexity Theory

- Complexity theory can answer questions on how easy or hard a problem is.
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design.
 - for NP-complete problems, backtracking and local search work well.
- Gives hints on what type of algorithm will (most probably) not work:
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work.
- Gives hint on what sub-problems might be interesting.
Motivation for Using Complexity Theory

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting
Motivation for Using Complexity Theory

- Complexity theory can answer questions on how easy or hard a problem is
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting
Motivation for Using Complexity Theory

- Complexity theory can answer questions on how easy or hard a problem is.
- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting
We use **Turing machines** as formal models of algorithms.

This is justified, because:
- we assume that Turing machines can compute all computable functions
- the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models

The regular type of Turing machine is the **deterministic** one: **DTM** (or simply **TM**)

Often, however, we use the notion of **nondeterministic TMs**: **NDTM**
We use **Turing machines** as formal models of algorithms. This is justified, because:

- we assume that Turing machines can compute all computable functions
- the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models

The regular type of Turing machine is the deterministic one: **DTM** (or simply **TM**)

Often, however, we use the notion of **nondeterministic TMs**: **NDTM**
We use **Turing machines** as formal models of algorithms.

This is justified, because:
- we assume that Turing machines can compute all computable functions
- the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the **deterministic** one: **DTM** (or simply **TM**)
- Often, however, we use the notion of **nondeterministic TMs**: **NDTM**
We use Turing machines as formal models of algorithms. This is justified, because:

- we assume that Turing machines can compute all computable functions.
- the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models.

The regular type of Turing machine is the deterministic one: DTM (or simply TM).

Often, however, we use the notion of nondeterministic TMs: NDTM.
We use **Turing machines** as formal models of algorithms

This is justified, because:

- we assume that Turing machines can compute all computable functions
- the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models

The regular type of Turing machine is the **deterministic** one: **DTM** (or simply **TM**)

Often, however, we use the notion of **nondeterministic TMs**: **NDTM**
We use Turing machines as formal models of algorithms.

This is justified, because:

- We assume that Turing machines can compute all computable functions.
- The resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models.

The regular type of Turing machine is the deterministic one: DTM (or simply TM).

Often, however, we use the notion of nondeterministic TMs: NDTM.
A problem is a set of pairs \((I, A)\) of strings in \(\{0, 1\}\)*.
\(I\): Instance; \(A\): Answer.

If \(A \in \{0, 1\}\): decision problem

A decision problem is the same as a formal language: namely the set of strings formed by the instances with answer 1

An algorithm decides (or solves) a problem if it computes the right answer for all instances.

The complexity of an algorithm is a function

\[T: \mathbb{N} \rightarrow \mathbb{N}, \]

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance.

The complexity of a problem is the complexity of the most efficient algorithm that solves this problem.
A **problem** is a set of pairs \((I, A)\) of strings in \(\{0, 1\}^*\).

- **I**: Instance; **A**: Answer.

 If \(A \in \{0, 1\}\): decision problem

A decision problem is the same as a formal language: namely the set of strings formed by the instances with answer 1

- An algorithm decides (or solves) a problem if it computes the right answer for all instances.

- **The complexity of an algorithm** is a function

\[
T : \mathbb{N} \rightarrow \mathbb{N},
\]

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance.

- **The complexity of a problem** is the complexity of the most efficient algorithm that solves this problem.
Problems, Solutions, and Complexity

- A **problem** is a set of pairs \((I, A)\) of strings in \(\{0, 1\}^*\).
 - \(I\): Instance; \(A\): Answer.

If \(A \in \{0, 1\}\): **decision problem**

- A **decision problem** is the same as a **formal language**: namely the set of strings formed by the instances with answer 1.

- An algorithm **decides** (or **solves**) a problem if it computes the right answer for all instances.

- The **complexity of an algorithm** is a function \(T: \mathbb{N} \rightarrow \mathbb{N}\),

 measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the **size** of the instance.

- The **complexity of a problem** is the complexity of the most efficient algorithm that solves this problem.
A problem is a set of pairs (I, A) of strings in $\{0, 1\}^*$.
I: Instance; A: Answer.
If $A \in \{0, 1\}$: decision problem

A decision problem is the same as a formal language: namely the set of strings formed by the instances with answer 1

An algorithm decides (or solves) a problem if it computes the right answer for all instances.

The complexity of an algorithm is a function $T: \mathbb{N} \rightarrow \mathbb{N}$, measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance.

The complexity of a problem is the complexity of the most efficient algorithm that solves this problem.
A problem is a set of pairs \((I, A)\) of strings in \(\{0, 1\}^*\).
- \(I\): Instance; \(A\): Answer.
- If \(A \in \{0, 1\}\): decision problem

A decision problem is the same as a formal language: namely the set of strings formed by the instances with answer 1.

An algorithm decides (or solves) a problem if it computes the right answer for all instances.

The complexity of an algorithm is a function

\[T: \mathbb{N} \rightarrow \mathbb{N}, \]

measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance.

The complexity of a problem is the complexity of the most efficient algorithm that solves this problem.
Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: \(\text{P} \)
- Problems in \(\text{P} \) are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
- In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: \(\text{NP} \)
- More classes are definable using other resource bounds on time and memory
Complexity Classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
- Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
- In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: NP
- More classes are definable using other resource bounds on time and memory
Problems are categorized into **complexity classes** according to the requirements of computational resources:

- The class of problems decidable on **deterministic Turing machines in polynomial time**: P
- Problems in P are assumed to be **efficiently solvable** (although this might not be true if the exponent is very large)
- In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on **non-deterministic Turing machines in polynomial time**: NP
- More classes are definable using other resource bounds on time and memory
Complexity Classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: P
- Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
- In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: NP
- More classes are definable using other resource bounds on time and memory
Complexity Classes P and NP

Problems are categorized into complexity classes according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: **P**
- Problems in P are assumed to be efficiently solvable (although this might not be true if the exponent is very large)
- In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: **NP**
- More classes are definable using other resource bounds on time and memory
Upper and Lower Bounds

- **Upper bounds** *(membership in a class)* are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected

- **Lower bounds** *(hardness for a class)* are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand
Upper and Lower Bounds

- **Upper bounds** (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected

- **Lower bounds** (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand
Upper and Lower Bounds

- **Upper bounds** (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected

- **Lower bounds** (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand
Upper and Lower Bounds

- **Upper bounds** (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected
- **Lower bounds** (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand
Upper and Lower Bounds

- **Upper bounds** (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected
- **Lower bounds** (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand
Upper and Lower Bounds

- **Upper bounds** (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected

- **Lower bounds** (hardness for a class) are usually difficult to show:
 - the technical tool here is the polynomial reduction (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand
Polynomial Reductions

- Given two languages L_1 and L_2, L_1 can be **polynomially reduced to** L_2, written $L_1 \leq_p L_2$, iff there exists a polynomially computable function f such that

 $$x \in L_1 \text{ iff } f(x) \in L_2$$

- It cannot be harder to decide L_1 than L_2
- L is **hard** for a class C (C-hard) iff all languages of this class can be reduced to L.
- L is **complete** for C (C-complete) iff L is C-hard and $L \in C$.
Polynomial Reductions

- Given two languages L_1 and L_2, L_1 can be **polynomially reduced to** L_2, written $L_1 \leq_p L_2$, iff there exists a polynomially computable function f such that

 $$x \in L_1 \iff f(x) \in L_2$$

- It cannot be harder to decide L_1 than L_2

 - L is **hard for a class** C (C-hard) iff all languages of this class can be reduced to L.
 - L is **complete for** C (C-complete) iff L is C-hard and $L \in C$.
Polynomial Reductions

- Given two languages L_1 and L_2, L_1 can be polynomially reduced to L_2, written $L_1 \leq_p L_2$, iff there exists a polynomially computable function f such that

 $$x \in L_1 \text{ iff } f(x) \in L_2$$

- It cannot be harder to decide L_1 than L_2

- L is hard for a class C (C-hard) iff all languages of this class can be reduced to L.

- L is complete for C (C-complete) iff L is C-hard and $L \in C$.

 Given two languages L_1 and L_2, L_1 can be polynomially reduced to L_2, written $L_1 \leq_p L_2$, iff there exists a polynomially computable function f such that

 $$x \in L_1 \text{ iff } f(x) \in L_2$$

 It cannot be harder to decide L_1 than L_2

 L is hard for a class C (C-hard) iff all languages of this class can be reduced to L.

 L is complete for C (C-complete) iff L is C-hard and $L \in C$.

Polynomial Reductions

- Given two languages L_1 and L_2, L_1 can be **polynomially reduced to** L_2, written $L_1 \leq_p L_2$, iff there exists a polynomially computable function f such that

 $$x \in L_1 \text{ iff } f(x) \in L_2$$

- It cannot be harder to decide L_1 than L_2

- L is **hard** for a class C (**C-hard**) iff all languages of this class can be reduced to L.

- L is **complete** for C (**C-complete**) iff L is C-hard and $L \in C$.
A problem is **NP-complete** iff it is **NP-hard** and in **NP**.

Example: **SAT** – the satisfiability problem for propositional logic – is NP-complete (Cook/Karp)

Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae
NP-complete Problems

- A problem is **NP-complete** iff it is **NP-hard** and in **NP**.
- Example: **SAT** – the satisfiability problem for propositional logic – is NP-complete (Cook/Karp)
 - Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae
A problem is **NP-complete** iff it is **NP-hard** and in **NP**.

Example: **SAT** – the satisfiability problem for propositional logic – is NP-complete (Cook/Karp)

Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae
A problem is **NP-complete** iff it is **NP-hard** and in **NP**.

Example: **SAT** – the satisfiability problem for propositional logic – is NP-complete (Cook/Karp)

Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae.
The Complexity Class co-NP

- Note that there is some **asymmetry** in the definition of NP:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation.
 - There exists an accepting computation of polynomial length iff the formula is satisfiable.
 - What if we want to solve UNSAT, the complementary problem?
 - It seems necessary to check all possible truth-assignments!

- Define \(\text{co-}C = \{ L | \Sigma^* - L \in C \} \), provided \(\Sigma \) is our alphabet.

- \(\text{co-NP} = \{ L | \Sigma^* - L \in \text{NP} \} \)

- For example UNSAT, TAUT \(\in \) co-NP!

- **Note:** \(P \) is closed under complement, i.e.,

\[
P \subseteq \text{NP} \cap \text{co-NP}
\]
There are problems even more difficult than NP and co-NP.

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about PSPACE:

- PSPACE is closed under complements (as all other deterministic classes)
- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NP ⊆ PSPACE (because in polynomial time one can “visit” only polynomial space, i.e., NP ⊆ NPSPACE)
- It is unknown whether NP ≠ PSPACE, but it is believed that this is true.
There are problems even more difficult than NP and co-NP.

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only **polynomially many tape cells**.

Some facts about PSPACE:

- PSPACE is **closed under complements** (as all other deterministic classes)
- PSPACE is **identical** to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NP ⊆ PSPACE (because in polynomial time one can “visit” only polynomial space, i.e., NP ⊆ NPSPACE)
- It is **unknown** whether NP ≠ PSPACE, but it is believed that this is true.
PSPACE

There are problems even more difficult than NP and co-NP.

Definition ((N)PSPACE)

PSPACE (NPSPACE) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomialsly many tape cells.

Some facts about PSPACE:
- PSPACE is closed under complements (as all other deterministic classes)
- PSPACE is identical to NPSPACE (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space)
- NP ⊆ PSPACE (because in polynomial time one can “visit” only polynomial space, i.e., NP ⊆ NPSPACE)
- It is unknown whether NP ≠ PSPACE, but it is believed that this is true.
Definition (PSPACE-completeness)

A decision problem (or language) is **PSPACE-complete**, if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, PSPACE-complete problems are the “hardest” problems in PSPACE (similar to NP-completeness). They appear to be “harder” than NP-complete problems from a practical point of view.

An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A_1 and A_2.

Question: Are the languages accepted by A_1 and A_2 identical?
Definition (PSPACE-completeness)

A decision problem (or language) is **PSPACE-complete**, if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, **PSPACE-complete** problems are the “hardest” problems in PSPACE (similar to NP-completeness). They appear to be “harder” than **NP-complete** problems from a practical point of view.

An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A_1 and A_2.

Question: Are the languages accepted by A_1 and A_2 identical?
PSPACE-completeness

Definition (PSPACE-completeness)

A decision problem (or language) is **PSPACE-complete**, if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, **PSPACE-complete** problems are the “hardest” problems in PSPACE (similar to NP-completeness). They appear to be “harder” than **NP-complete** problems from a practical point of view.

An example for a PSPACE-complete problem is the NDFA equivalence problem:

Instance: Two non-deterministic finite state automata A_1 and A_2.

Question: Are the languages accepted by A_1 and A_2 identical?
PSPACE-completeness

Definition (PSPACE-completeness)
A decision problem (or language) is **PSPACE-complete**, if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, **PSPACE-complete** problems are the “hardest” problems in PSPACE (similar to NP-completeness). They appear to be “harder” than **NP-complete** problems from a **practical point of view**.

An example for a PSPACE-complete problem is the **NDFA equivalence problem**:

Instance: Two non-deterministic finite state automata A_1 and A_2.

Question: Are the languages accepted by A_1 and A_2 identical?
Other Complexity Classes . . .

- There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME . . .)
- there are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- there are (infinitely many) classes inside P (circuit classes with different depths)
- and for most of the classes we do not know whether the containment relationships are strict
Other Complexity Classes . . .

- There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME . . .)
- There are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- There are (infinitely many) classes inside P (circuit classes with different depths)
- And for most of the classes we do not know whether the containment relationships are strict
There are complexity classes above PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME . . .)

there are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)

there are (infinitely many) classes inside P (circuit classes with different depths)

and for most of the classes we do not know whether the containment relationships are strict
There are complexity classes above PSPACE (EXPSPACE, NEXPTIME, DEXPTIME . . .)

there are (infinitely many) classes between NP and PSPACE (the polynomial hierarchy defined by oracle machines)

there are (infinitely many) classes inside P (circuit classes with different depths)

and for most of the classes we do not know whether the containment relationships are strict
Oracle Turing Machines

- An **Oracle Turing machine** (N)OTM is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i.e., a different Turing machine **without resource restrictions**) whether it accepts or rejects a given string.

- Computation by the oracle does not cost anything!

- Formalization:
 - a tape onto which strings for the oracle are written,
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.

- Usage of OTMs answers **what-if questions**: What if we could solve the oracle-problem efficiently?
Oracle Turing Machines

- An **Oracle Turing machine ((N)OTM)** is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i.e., a different Turing machine **without resource restrictions**) whether it accepts or rejects a given string.
- **Computation by the oracle does not cost anything!**
- **Formalization:**
 - a tape onto which strings for the oracle are written,
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.
- Usage of OTMs answers **what-if questions**: What if we could solve the oracle-problem efficiently?
An Oracle Turing machine (\(\text{(N)OTM}\)) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i.e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.

Computation by the oracle does not cost anything!

Formalization:
- a tape onto which strings for the oracle are written,
- a yes/no answer from the oracle depending on whether it accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?
An **Oracle Turing machine** ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i.e., a different Turing machine *without resource restrictions*) whether it accepts or rejects a given string.

Computation by the oracle does not cost anything!

Formalization:
- a tape onto which strings for the oracle are written,
- a yes/no answer from the oracle depending on whether it accepts or rejects the input string.

Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?
Oracle Turing Machines

- **Oracle Turing machine** \((N)OTM\) is a Turing machine \((DTM, NDTM)\) with the possibility to query an **oracle** (i.e., a different Turing machine **without resource restrictions**) whether it accepts or rejects a given string.

- **Computation by the oracle does not cost anything!**

- **Formalization:**
 - a tape onto which strings for the oracle are written,
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.

- Usage of OTMs answers **what-if questions**: What if we could solve the oracle-problem efficiently?
Oracle Turing Machines

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i.e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
 - a tape onto which strings for the oracle are written,
 - a yes/no answer from the oracle depending on whether it accepts or rejects the input string.
- Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?
OTMs allow us to define a more general type of reduction.

Idea: The “classical” reduction can be seen as calling a subroutine once.

L_1 is Turing-reducible to L_2, symbolically $L_1 \leq_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2.

Polynomial reducibility implies Turing reducibility, but not vice versa!

NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!

Turing reducibility can also be applied to general search problems!
Turing Reductions

- **OTMs** allow us to define a more general type of reduction.

- **Idea**: The “classical” reduction can be seen as calling a subroutine once.

- L_1 is **Turing-reducible** to L_2, symbolically $L_1 \leq_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2.

- Polynomial reducibility implies Turing reducibility, but not vice versa!

- NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!

- Turing reducibility can also be applied to general search problems!
Turing Reductions

- **OTMs** allow us to define a more general type of reduction.
- **Idea**: The “classical” reduction can be seen as calling a subroutine once.
- L_1 is **Turing-reducible** to L_2, symbolically $L_1 \leq_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2.
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!
- Turing reducibility can also be applied to general search problems!
OTMs allow us to define a more general type of reduction.

Idea: The “classical” reduction can be seen as calling a subroutine once.

L_1 is Turing-reducible to L_2, symbolically $L_1 \leq_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2.

Polynomial reducibility implies Turing reducibility, but not vice versa!

NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!

Turing reducibility can also be applied to general search problems!
Turing Reductions

- **OTMs** allow us to define a more general type of reduction.
- **Idea**: The “classical” reduction can be seen as calling a subroutine once.
- L_1 is **Turing-reducible** to L_2, symbolically $L_1 \leq_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2.
- Polynomial reducibility implies Turing reducibility, but not *vice versa*!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are **equivalent**!
- Turing reducibility can also be applied to general search problems!
Turing Reductions

- **OTMs** allow us to define a more general type of reduction.
- **Idea**: The “classical” reduction can be seen as calling a subroutine once.
- L_1 is **Turing-reducible** to L_2, symbolically $L_1 \leq_T L_2$, if there exists a poly-time OTM that decides L_1 by using an oracle for L_2.
- Polynomial reducibility implies Turing reducibility, but not **vice versa**!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are **equivalent**!
- Turing reducibility can also be applied to general search problems!
Complexity Classes Based on Oracle TMs

1. $P^{NP} =$ decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.

2. $NP^{NP} =$ decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.

3. $co-NP^{NP} =$ complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.

4. $NP^{NP^{NP}} =$...

... and so on
Complexity Classes Based on Oracle TMs

1. \(\text{P}^{\text{NP}} \) = decision problems solved by poly-time DTM s with an oracle for a decision problem in NP.

2. \(\text{NP}^{\text{NP}} \) = decision problems solved by poly-time NDTM s with an oracle for a decision problem in NP.

3. \(\text{co-NP}^{\text{NP}} \) = complements of decision problems solved by poly-time NDTM s with an oracle for a decision problem in NP.

4. \(\text{NP}^{\text{NP}^{\text{NP}}} \) = ...

... and so on
Complexity Classes Based on Oracle TMs

\[\text{1. } P^{NP} = \text{decision problems solved by poly-time DTM}s \text{ with an oracle for a decision problem in NP.} \]

\[\text{2. } NP^{NP} = \text{decision problems solved by poly-time NDTM}s \text{ with an oracle for a decision problem in NP.} \]

\[\text{3. } \text{co-NP}^{NP} = \text{complements of decision problems solved by poly-time NDTM}s \text{ with an oracle for a decision problem in NP.} \]

\[\text{4. } NP^{NP^{NP}} = \ldots \]

\[\ldots \text{ and so on} \]
Complexity Classes Based on Oracle TMs

1. P^{NP} = decision problems solved by poly-time DTMs with an oracle for a decision problem in NP.

2. NP^{NP} = decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.

3. co-NP^{NP} = complements of decision problems solved by poly-time NDTMs with an oracle for a decision problem in NP.

4. $\text{NP}^{\text{NP}^{\text{NP}}}$ = ...

... and so on
Example

Consider the **Minimum Equivalent Expression (MEE)** problem:

Instance: A well-formed Boolean formula ϕ using the standard connectives (not \leftrightarrow) and a nonnegative integer K.

Question: Is there a well-formed Boolean formula ϕ' that contains K or fewer literal occurrences and that is logical equivalent to ϕ?

- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle.
- $\text{MEE} \in \text{NP}^{\text{NP}}$.
Example

- Consider the **Minimum Equivalent Expression (MEE)** problem:

 Instance: A well-formed Boolean formula ϕ using the standard connectives (not \leftrightarrow) and a nonnegative integer K.

 Question: Is there a well-formed Boolean formula ϕ' that contains K or fewer literal occurrences and that is logical equivalent to ϕ?

- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle.
- $\text{MEE} \in \text{NP}^{\text{NP}}$.
Example

Consider the **Minimum Equivalent Expression (MEE)** problem:

Instance: A well-formed Boolean formula ϕ using the standard connectives (not \leftrightarrow) and a nonnegative integer K.

Question: Is there a well-formed Boolean formula ϕ' that contains K or fewer literal occurrences and that is logical equivalent to ϕ?

- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete
- We could guess a formula and then use a SAT-oracle
- \[\text{MEE} \in \text{NP}^{\text{NP}}. \]
Example

Consider the **Minimum Equivalent Expression (MEE)** problem:

Instance: A well-formed Boolean formula ϕ using the standard connectives (not \leftrightarrow) and a nonnegative integer K.

Question: Is there a well-formed Boolean formula ϕ' that contains K or fewer literal occurrences and that is logical equivalent to ϕ?

- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle.
- $\text{MEE} \in \text{NP}^\text{NP}$.
Example

Consider the Minimum Equivalent Expression (MEE) problem:

Instance: A well-formed Boolean formula ϕ using the standard connectives (not \leftrightarrow) and a nonnegative integer K.

Question: Is there a well-formed Boolean formula ϕ' that contains K or fewer literal occurrences and that is logical equivalent to ϕ?

This problem is NP-hard (wrt. to Turing reductions).

It does not appear to be NP-complete

We could guess a formula and then use a SAT-oracle

$\text{MEE} \in \text{NP}^\text{NP}$
Example

Consider the **Minimum Equivalent Expression (MEE)** problem:

Instance: A well-formed Boolean formula ϕ using the standard connectives (not \leftrightarrow) and a nonnegative integer K.

Question: Is there a well-formed Boolean formula ϕ' that contains K or fewer literal occurrences and that is logical equivalent to ϕ?

- This problem is NP-hard (wrt. to Turing reductions).
- It does not appear to be NP-complete.
- We could guess a formula and then use a SAT-oracle.
- $\text{MEE} \in \text{NP}^{\text{NP}}$.
The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

<table>
<thead>
<tr>
<th>Class</th>
<th>Equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ^p_0</td>
<td>P</td>
</tr>
<tr>
<td>Σ^p_{i+1}</td>
<td>$\text{NP}^{\Sigma^p_i}$</td>
</tr>
<tr>
<td>Π^p_{i+1}</td>
<td>$\text{co-}\Sigma^p_{i+1}$</td>
</tr>
<tr>
<td>Δ^p_{i+1}</td>
<td>$P^{\Sigma^p_i}$</td>
</tr>
</tbody>
</table>

- $\text{PH} = \bigcup_{i \geq 0} (\Sigma^p_i \cup \Pi^p_i \cup \Delta^p_i) \subseteq \text{PSPACE}$
- $\text{NP} = \Sigma^p_1$
- $\text{co-NP} = \Pi^p_1$
The Polynomial Hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

\[
\begin{align*}
\Sigma^p_0 &= P \\
\Sigma^p_{i+1} &= NP^\Sigma^p_i \\
\Pi^p_{i+1} &= \text{co-}\Sigma^p_{i+1} \\
\Delta^p_{i+1} &= P^\Sigma^p_i
\end{align*}
\]

- \(PH = \bigcup_{i \geq 0} (\Sigma^p_i \cup \Pi^p_i \cup \Delta^p_i) \subseteq PSPACE \)
- \(NP = \Sigma^p_1 \)
- \(\text{co-NP} = \Pi^p_1 \)
The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

\[
\begin{align*}
\Sigma^p_0 &= P \\
\Pi^p_0 &= P \\
\Delta^p_0 &= P \\
\Sigma^p_{i+1} &= \text{NP}^{\Sigma^p_i} \\
\Pi^p_{i+1} &= \text{co-}\Sigma^p_{i+1} \\
\Delta^p_{i+1} &= P^{\Sigma^p_i}
\end{align*}
\]

- \(\text{PH} = \bigcup_{i \geq 0} (\Sigma^p_i \cup \Pi^p_i \cup \Delta^p_i) \subseteq \text{PSPACE} \)
- \(\text{NP} = \Sigma^p_1 \)
- \(\text{co-NP} = \Pi^p_1 \)
Quantified Boolean Formulae: Definition

- If ϕ is a propositional formula, P is the set of Boolean variables used in ϕ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \phi$ is a QBF.

- A formula $\exists x \phi$ is true if and only if $\phi[\top/x] \lor \phi[\bot/x]$ is true. (Equivalently, $\phi[\top/x]$ is true or $\phi[\bot/x]$ is true.)

- A formula $\forall x \phi$ is true if and only if $\phi[\top/x] \land \phi[\bot/x]$ is true. (Equivalently, $\phi[\top/x]$ is true and $\phi[\bot/x]$ is true.)

- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.
Quantified Boolean Formulae: Definition

- If ϕ is a propositional formula, P is the set of Boolean variables used in ϕ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \phi$ is a QBF.

- A formula $\exists x \phi$ is true if and only if $\phi[\top/x] \lor \phi[\bot/x]$ is true. (Equivalently, $\phi[\top/x]$ is true or $\phi[\bot/x]$ is true.)

- A formula $\forall x \phi$ is true if and only if $\phi[\top/x] \land \phi[\bot/x]$ is true. (Equivalently, $\phi[\top/x]$ is true and $\phi[\bot/x]$ is true.)

- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.
Quantified Boolean Formulae: Definition

- If ϕ is a propositional formula, P is the set of Boolean variables used in ϕ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma\phi$ is a QBF.
- A formula $\exists x\phi$ is true if and only if $\phi[\top/x] \lor \phi[\bot/x]$ is true. (Equivalently, $\phi[\top/x]$ is true or $\phi[\bot/x]$ is true.)
- A formula $\forall x\phi$ is true if and only if $\phi[\top/x] \land \phi[\bot/x]$ is true. (Equivalently, $\phi[\top/x]$ is true and $\phi[\bot/x]$ is true.)
- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.
Quantified Boolean Formulae: Definition

- If ϕ is a propositional formula, P is the set of Boolean variables used in ϕ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \phi$ is a QBF.

- A formula $\exists x \phi$ is true if and only if $\phi[\top/x] \lor \phi[\bot/x]$ is true. (Equivalently, $\phi[\top/x]$ is true or $\phi[\bot/x]$ is true.)

- A formula $\forall x \phi$ is true if and only if $\phi[\top/x] \land \phi[\bot/x]$ is true. (Equivalently, $\phi[\top/x]$ is true and $\phi[\bot/x]$ is true.)

- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.
The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic.

The latter are respectively NP-complete and co-NP-complete whereas the former is PSPACE-complete.

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Example

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.
The evaluation problem of QBF generalizes both the \textit{satisfiability} and \textit{validity/tautology problems} of propositional logic. The latter are respectively \textbf{NP-complete} and \textbf{co-NP-complete} whereas the former is \textbf{PSPACE-complete}.

\textbf{Example}

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

\textbf{Example}

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.
Quantified Boolean Formulae: Definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic. The latter are respectively NP-complete and co-NP-complete whereas the former is PSPACE-complete.

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Example

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.
The evaluation problem of QBF generalizes both the *satisfiability* and *validity/tautology problems* of propositional logic. The latter are respectively *NP-complete* and *co-NP-complete* whereas the former is *PSPACE-complete*.

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Example

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.
The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix $\forall\exists\forall\ldots$ is Π^p_i-complete.

Truth of QBFs with prefix $\exists\forall\exists\ldots$ is Σ^p_i-complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix $\exists x_1^1 \ldots x_n^1$ is NP = Σ^p_1-complete.
The truth of QBFs with prefix $\forall x_1^1 \ldots x_n^1$ is co-NP = Π^p_1-complete.
The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix $\forall^i \exists \forall \ldots$ is Π^p_i-complete.

Truth of QBFs with prefix $\exists \forall^i \exists \ldots$ is Σ^p_i-complete.

Special cases corresponding to SAT and TAUT:

The truth of QBFs with prefix $\exists x_1^1 \ldots x_n^1$ is $\text{NP} = \Sigma^p_1$-complete.

The truth of QBFs with prefix $\forall x_1^1 \ldots x_n^1$ is $\text{co-NP} = \Pi^p_1$-complete.
The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix $\forall \exists \forall \ldots$ is Π^p_i-complete.

Truth of QBFs with prefix $\exists \forall \exists \ldots$ is Σ^p_i-complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix $\exists x_1^1 \ldots x_n^1$ is $\text{NP}=\Sigma^p_1$-complete.
The truth of QBFs with prefix $\forall x_1^1 \ldots x_n^1$ is $\text{co-NP}=\Pi^p_1$-complete.
The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix $\forall^i\exists^i\ldots$ is Π_p^i-complete.

Truth of QBFs with prefix $\exists^i\forall^i\ldots$ is Σ_p^i-complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix $\exists x_1^1 \ldots x_n^1$ is $\text{NP}=\Sigma_1^p$-complete.
The truth of QBFs with prefix $\forall x_1^1 \ldots x_n^1$ is $\text{co-NP}=\Pi_1^p$-complete.
The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix \(\prod_{i} \ell \) is \(\Pi_{p}^{i} \)-complete.

Truth of QBFs with prefix \(\sum_{i} \ell \) is \(\Sigma_{p}^{i} \)-complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix \(\exists x_{1}^{1} \ldots x_{n}^{1} \) is \(\text{NP} = \Sigma^{p}_{1} \)-complete.
The truth of QBFs with prefix \(\forall x_{1}^{1} \ldots x_{n}^{1} \) is \(\text{co-NP} = \Pi^{p}_{1} \)-complete.
Literature
