Motivation

Complexity theory can answer questions on how easy or hard a problem is.

- Gives hints on what algorithms could be appropriate, e.g.:
 - algorithms for polynomial-time problems are usually easy to design
 - for NP-complete problems, backtracking and local search work well
- Gives hints on what type of algorithm will (most probably) not work
 - for problems that are believed to be harder than NP-complete ones, simple backtracking will not work
- Gives hint on what sub-problems might be interesting

Algorithms and Turing Machines

- We use Turing machines as formal models of algorithms
- This is justified, because:
 - we assume that Turing machines can compute all computable functions
 - the resource requirements (in term of time and memory) of a Turing machine are only polynomially worse than other models
- The regular type of Turing machine is the deterministic one: DTM (or simply TM)
- Often, however, we use the notion of nondeterministic TMs: NDTM
Problems, Solutions, and Complexity

- A **problem** is a set of pairs \((I, A)\) of strings in \(\{0, 1\}^*\).
- \(I\): Instance; \(A\): Answer.
- If \(A \in \{0, 1\}\): **decision problem**
- A **decision problem** is the same as a **formal language**: namely the set of strings formed by the instances with answer 1
- An algorithm **decides** (or **solves**) a problem if it computes the right answer for all instances.
- The **complexity of an algorithm** is a function
 \[T : \mathbb{N} \rightarrow \mathbb{N}, \]
 measuring the number of basic steps (or memory requirement) the algorithm needs to compute an answer depending on the size of the instance.
- The **complexity of a problem** is the complexity of the most efficient algorithm that solves this problem.

Complexity Classes P and NP

Problems are categorized into **complexity classes** according to the requirements of computational resources:

- The class of problems decidable on deterministic Turing machines in polynomial time: **P**
- Problems in **P** are assumed to be **efficiently solvable** (although this might not be true if the exponent is very large)
- In practice, this notion appears to be more often reasonable than not
- The class of problems decidable on non-deterministic Turing machines in polynomial time: **NP**
- More classes are definable using other resource bounds on time and memory

Upper and Lower Bounds

- **Upper bounds** (membership in a class) are usually easy to prove:
 - provide an algorithm
 - show that the resource bounds are respected
- **Lower bounds** (hardness for a class) are usually difficult to show:
 - the technical tool here is the **polynomial reduction** (or any other appropriate reduction)
 - show that some hard problem can be reduced to the problem at hand

Polynomial Reductions

- Given two languages \(L_1\) and \(L_2\), \(L_1\) can be **polynomially reduced to** \(L_2\), written \(L_1 \leq_p L_2\), iff there exists a polynomially computable function \(f\) such that
 \[x \in L_1 \text{ iff } f(x) \in L_2 \]
- It cannot be harder to decide \(L_1\) than \(L_2\)
- \(L\) is **hard** for a class \(C\) (**C-hard**) iff all languages of this class can be reduced to \(L\).
- \(L\) is **complete** for \(C\) (**C-complete**) iff \(L\) is \(C\)-hard and \(L \in C\).
NP-complete Problems

- A problem is \textbf{NP-complete} iff it is \textbf{NP-hard} and in \textbf{NP}.
- Example: \textbf{SAT} – the satisfiability problem for propositional logic – is NP-complete (Cook/Karp).
- Membership is obvious, hardness follows because computations on a NDTM correspond to satisfying truth-assignments of certain formulae.

Beyond NP The Class \textbf{co-NP}

- Note that there is some \textbf{asymmetry} in the definition of \textbf{NP}:
 - It is clear that we can decide SAT by using a NDTM with polynomially bounded computation.
 - There exists an accepting computation of polynomial length iff the formula is satisfiable.
 - What if we want to solve UNSAT, the complementary problem?
 - It seems necessary to check \textbf{all} possible truth-assignments!
- Define $\textbf{co-}\mathcal{C} = \{L|\Sigma^* - L \in \mathcal{C}\}$, provided Σ is our alphabet.
- $\textbf{co-NP} = \{L|\Sigma^* - L \in \textbf{NP}\}$.
- For example UNSAT, TAUT $\in \textbf{co-NP}!$
- \textbf{Note}: P is closed under complement, i.e., $\textbf{P} \subseteq \textbf{NP} \cap \textbf{co-NP}$.

Beyond NP The Class \textbf{PSPACE}

There are problems even more difficult than \textbf{NP} and \textbf{co-NP}.

Definition ((N)PSPACE)

\textbf{PSPACE} (\textbf{NPSPACE}) is the class of decision problems that can be decided on deterministic (non-deterministic) Turing machines using only polynomially many tape cells.

Some facts about \textbf{PSPACE}:

- \textbf{PSPACE} is \textbf{closed under complements} (as all other deterministic classes).
- \textbf{PSPACE} is \textbf{identical} to \textbf{NPSPACE} (because non-deterministic Turing machines can be simulated on deterministic TMs using only quadratic space).
- NP \subseteq PSPACE (because in polynomial time one can “visit” only polynomial space, i.e., NP \subseteq NPSPACE).
- It is \textbf{unknown} whether NP \neq PSPACE, but it is \textbf{believed} that this is true.

Definition (PSPACE-completeness)

A decision problem (or language) is \textbf{PSPACE-complete}, if it is in PSPACE and all other problems in PSPACE can be polynomially reduced to it.

Intuitively, \textbf{PSPACE-complete} problems are the “hardest” problems in PSPACE (similar to \textbf{NP-completeness}). They appear to be “harder” than \textbf{NP-complete} problems from a \textit{practical point of view}.

An example for a PSPACE-complete problem is the \textbf{NDFA equivalence problem}:

- **Instance**: Two non-deterministic finite state automata A_1 and A_2.
- **Question**: Are the languages accepted by A_1 and A_2 identical?
Beyond NP Other Classes

Other Complexity Classes ...

- There are complexity classes **above** PSPACE (EXPTIME, EXPSPACE, NEXPTIME, DEXPTIME ...)
- There are (infinitely many) classes **between** NP and PSPACE (the polynomial hierarchy defined by oracle machines)
- There are (infinitely many) classes **inside** P (circuit classes with different depths)
- And for most of the classes we do not know whether the containment relationships are strict

Oracle Turing Machines

- An Oracle Turing machine ((N)OTM) is a Turing machine (DTM, NDTM) with the possibility to query an oracle (i.e., a different Turing machine without resource restrictions) whether it accepts or rejects a given string.
- Computation by the oracle does not cost anything!
- Formalization:
 - A tape onto which strings for the oracle are written,
 - A yes/no answer from the oracle depending on whether it accepts or rejects the input string.
- Usage of OTMs answers what-if questions: What if we could solve the oracle-problem efficiently?

Turing Reductions

- OTMs allow us to define a more general type of reduction
- Idea: The "classical" reduction can be seen as calling a subroutine once.
- \(L_1 \) is Turing-reducible to \(L_2 \), symbolically \(L_1 \leq_T L_2 \), if there exists a poly-time OTM that decides \(L_1 \) by using an oracle for \(L_2 \).
- Polynomial reducibility implies Turing reducibility, but not vice versa!
- NP-hardness and co-NP-hardness with respect to Turing reducibility are equivalent!
- Turing reducibility can also be applied to general search problems!

Complexity Classes Based on Oracle TMs

1. \(P^{NP} \) = decision problems solved by poly-time DTM with an oracle for a decision problem in NP.
2. \(NP^{NP} \) = decision problems solved by poly-time NDTM with an oracle for a decision problem in NP.
3. \(co-NP^{NP} \) = complements of decision problems solved by poly-time NDTM with an oracle for a decision problem in NP.
4. \(NP^{NP,NP} \) = ...
 ... and so on
Example

- Consider the Minimum Equivalent Expression (MEE) problem:

 Instance: A well-formed Boolean formula ϕ using the standard connectives (not \leftrightarrow) and a nonnegative integer K.

 Question: Is there a well-formed Boolean formula ϕ' that contains K or fewer literal occurrences and that is logical equivalent to ϕ?

 This problem is NP-hard (wrt. to Turing reductions).

 It does not appear to be NP-complete

 We could guess a formula and then use a SAT-oracle

 $\text{MEE} \in \text{NP}^\text{NP}$.

The Polynomial Hierarchy

The complexity classes based on OTMs form an infinite hierarchy.

The polynomial hierarchy PH

$\Sigma^p_0 = \text{P}$

$\Pi^p_0 = \text{P}$

$\Delta^p_0 = \text{P}$

$\Sigma^p_{i+1} = \text{NP} \cup \Pi^p_i \cup \Delta^p_i$ (for $i > 0$)

$\Pi^p_{i+1} = \text{co-} \Sigma^p_{i+1}$

$\Delta^p_{i+1} = \text{P} \cup \Sigma^p_i$

- $\text{PH} = \bigcup_{i \geq 0} (\Sigma^p_i \cup \Pi^p_i \cup \Delta^p_i) \subseteq \text{PSPACE}$

- $\text{NP} = \Sigma^p_1$

- $\text{co-NP} = \Pi^p_1$

Quantified Boolean Formulae: Definition

- If ϕ is a propositional formula, P is the set of Boolean variables used in ϕ and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in P$, then $\sigma \phi$ is a QBF.

- A formula $\exists x \phi$ is true if and only if $\phi[\top/x] \lor \phi[\bot/x]$ is true. (Equivalently, $\phi[\top/x]$ is true or $\phi[\bot/x]$ is true.)

- A formula $\forall x \phi$ is true if and only if $\phi[\top/x] \land \phi[\bot/x]$ is true. (Equivalently, $\phi[\top/x]$ is true and $\phi[\bot/x]$ is true.)

- This definition directly leads to an AND/OR tree traversal algorithm for evaluating QBF.

Quantified Boolean Formulae: Definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of propositional logic. The latter are respectively NP-complete and co-NP-complete whereas the former is PSPACE-complete.

Example

The formulae $\forall x \exists y (x \leftrightarrow y)$ and $\exists x \exists y (x \land y)$ are true.

Example

The formulae $\exists x \forall y (x \leftrightarrow y)$ and $\forall x \forall y (x \lor y)$ are false.
The Polynomial Hierarchy: Connection to QBF

Truth of QBFs with prefix $\forall \exists \ldots$ is Π_p^i-complete.

Truth of QBFs with prefix $\exists \forall \ldots$ is Σ_p^i-complete.

Special cases corresponding to SAT and TAUT:
The truth of QBFs with prefix $\exists x_1 \ldots x_n$ is $\text{NP} = \Sigma_p^1$-complete.
The truth of QBFs with prefix $\forall x_1 \ldots x_n$ is $\text{co-NP} = \Pi_p^1$-complete.

Literature
