Motivation

- Usually:
 - **Given:** A logical theory (set of propositions)
 - **Question:** Does a proposition logically follow from this theory?
 - Reduction to unsatisfiability, which is coNP-complete (complementary to NP problems)
- Sometimes:
 - **Given:** A logical theory
 - **Wanted:** Model of the theory.
 - **Example:** Configurations that fulfill the constraints given in the theory.
 - Can be “easier” because it is enough to find one model

The Davis-Putnam Procedure

DP Function

Given a set of clauses Δ defined over a set of variables Σ, return "satisfiable" if Δ is satisfiable. Otherwise return "unsatisfiable".

1. If $\Delta = \emptyset$ return "satisfiable"
2. If $\Box \in \Delta$ return "unsatisfiable"
3. **Unit-propagation Rule:** If Δ contains a unit-clause C, assign a truth-value to the variable in C that satisfies C, simplify Δ to Δ' and return $DP(\Delta')$.
4. **Splitting Rule:** Select from Σ a variable v which has not been assigned a truth-value. Assign one truth value t to it, simplify Δ to Δ' and call $DP(\Delta')$.
 a. If the call returns "satisfiable", then return "satisfiable"
 b. Otherwise assign the other truth-value to v in Δ, simplify to Δ'' and return $DP(\Delta'')$.
Properties of DP

- DP is complete, correct, and guaranteed to terminate.
- DP constructs a model, if one exists.
- In general, DP requires exponential time (splitting rule!)
- DP is polynomial on horn clauses, i.e., clauses with at most one positive literal. \((\neg A_1 \lor \ldots \lor \neg A_n \lor B \equiv \land_i A_i \rightarrow B)\)
- **Heuristics** are needed to determine which variable should be instantiated next and which value should be used.
- In all SAT competitions so far, DP-based procedures have shown the best performance.

DP on Horn Clauses (1)

Note:

1. The simplifications in DP on Horn clauses always generate **Horn clauses**.
2. A set of Horn clauses without unit clauses is satisfiable
 - *All clauses have at least one negative literal*
 - *Assign false to all variables*
3. If the first sequence of applications of the unit propagation rule in DP does not lead to the empty clause, a set of Horn clauses without unit clauses is generated (which is satisfiable according to (2))
DP on Horn Clauses (2)

4. Although a set of Horn clauses without a unit clause is satisfiable, DP may **not immediately recognize** it.
 a. If DP assigns *false* to a variable, this cannot lead to an unsatisfiable set and after a sequence of unit propagations we are in **the same situation** as in 4.
 b. If DP assigns *true*, then we may get an empty clause - perhaps after unit propagation (and have to backtrack) - or the set is still satisfiable and we are in **the same situation** as in 4.

DP on Horn Clauses (3)

In summary:

1. DP executes a **sequence of unit propagation steps** resulting in
 - an empty clause or
 - a set of Horn clauses without a unit clause, which is satisfiable

2. In the latter case, DP proceeds by **choosing** for one variable:
 - *false*, which does not change the satisfiability
 - *true*, which either
 - leads to an immediate contradiction (after unit propagation) and backtracking or
 - does not change satisfiability

> Run time is *polynomial* in the number of variables

How Good is DP in the Average Case?

- We know that SAT is NP-complete, i.e., in the worst case, it takes exponential time.
- This is clearly also true for the DP-procedure.
 → Couldn’t we do better in the **average case**?
- For CNF-formulae in which the probability for a positive appearance, negative appearance and non-appearance in a clause is 1/3, DP needs on average **quadratic time** (Goldberg 79)!
 → The probability that these formulae are satisfiable is, however, very high.

Phase Transitions ...

Conversely, we can, of course, try to identify hard to solve problem instances.

Cheeseman et al. (IJCAI-91) came up with the following plausible conjecture:

> All NP-complete problems have at least **one order parameter** and the hard to solve problems are around a critical value of this order parameter. This critical value (a **phase transition**) separates one region from another, such as over-constrained and under-constrained regions of the problem space.

Confirmation for graph coloring and Hamilton path ... later also for other NP-complete problems.
Phase Transitions with 3-SAT

Constant clause length model (Mitchell et al., AAAI-92):
Clause length \(k \) is given. Choose variables for every clause \(k \) and use the complement with probability 0.5 for each variable.

Phase transition for 3-SAT with a clause/variable ratio of approx. 4.3:

Notes on the Phase Transition

- When the probability of a solution is close to 1 (under-constrained), there are many solutions, and the first search path of a backtracking search is usually successful.
- If the probability of a solution is close to 0 (over-constrained), this fact can usually be determined early in the search.
- In the phase transition stage, there are many near successes (“close, but no cigar”).
 → (limited) possibility of predicting the difficulty of finding a solution based on the parameters.
 → (search intensive) benchmark problems are located in the phase region (but they have a special structure)

Empirical Difficulty

The Davis-Putnam (DP) Procedure shows extreme runtime peaks at the phase transition:

Local Search Methods for Solving Logical Problems

In many cases, we are interested in finding a satisfying assignment of variables (example CSP), and we can sacrifice completeness if we can "solve" much large instances this way.

Standard process for optimization problems: Local Search

- Based on a (random) configuration
- Through local modifications, we hope to produce better configurations
 → Main problem: local maxima
Dealing with Local Maxima

As a measure of the value of a configuration in a logical problem, we could use the number of satisfied constraints/clauses.

But local search seems inappropriate, considering we want to find a global maximum (all constraints/clauses satisfied).

By restarting and/or injecting noise, we can often escape local maxima.

Actually: Local search performs very well for finding satisfying assignments of CNF formulae (even without injecting noise).

GSAT

Procedure GSAT
INPUT: a set of clauses α, MAX-FLIPS, and MAX-TRIES
OUTPUT: a satisfying truth assignment of α, if found
begin
 for i := 1 to MAX-TRIES
 T := a randomly-generated truth assignment
 for j := 1 to MAX-FLIPS
 if T satisfies α then return T
 v := a propositional variable such that a change in its truth assignment gives the largest increase in the number of clauses of α that are satisfied by T.
 T := T with the truth assignment of v reversed
 end for
 end for
 return "no satisfying assignment found"
end

The Search Behavior of GSAT

- In contrast to normal local search methods, we must also allow sideways movements!
- Most time is spent searching on plateaus.

State of the Art

- SAT competitions since beginning of the ´90
- Current SAT competitions (http://www.satlive.org/):
 In 2003:
 - Largest solved instances: 100,000 variables / 1,000,000 clauses
 - Smallest unsolved instances: 200 variables / 1,000 clauses
- Complete solvers are as good as randomized ones!
Concluding Remarks

- DP-based SAT solver prevail:
 - Very efficient implementation techniques
 - Good branching heuristics
 - Clause learning
- Incomplete randomized SAT-solvers
 - are good (in particular on random instances)
 - but there is no dramatic increase in size of what they can solve
 - parameters are difficult to adjust