Foundations of AI
13. Knowledge Representation: Modeling with Logic
Concepts, Actions, Time, & all the rest
Wolfram Burgard, Bernhard Nebel, and Luc De Raedt

Knowledge Representation and Reasoning

- Often, our agents need knowledge before they can start to act intelligently
- They then also need some reasoning component to exploit the knowledge they have
- Examples:
 - Knowledge about the important concepts in a domain
 - Knowledge about actions one can perform in a domain
 - Knowledge about temporal relationships between events
 - Knowledge about the world and how properties are related to actions

Categories and Objects

- We need to describe the objects in our world using categories
- Necessary to establish a common category system for different applications (in particular on the web)
- There are a number of quite general categories everybody and every application uses
The Upper Ontology: A General Category Hierarchy

Description Logics

- How to describe more specialized things?
- Use definitions and/or necessary conditions referring to other already defined concepts:
 - a parent is a human with at least one child
- More complex description:
 - a proud-grandmother is a human, which is female with at least two children that are in turn parents whose children are all doctors

Reasoning Services in Description Logics

- Subsumption: Determine whether one description is more general than (subsumes) the other
- Classification: Create a subsumption hierarchy
- Satisfiability: Is a description satisfiable?
- Instance relationship: Is a given object instance of a concept description?
- Instance retrieval: Retrieve all objects for a given concept description

Special Properties of Description Logics

- Semantics of description logics (DLs) can be given using ordinary PL1
- Alternatively, DLs can be considered as modal logics
- Reasoning for most DLs is much more efficient than for PL1
- Nowadays, W3C standards such as OWL (formerly DAML+OIL) are based on description logics
Logic-Based Agents That Act

Query (Make-Action-Query): \(\exists x \text{Action}(x, t)\)
A variable assignment for \(x\) in the WUMPUS world example should give the following answers: turn(right), turn(left), forward, shoot, grab, release, climb

Reflex Agents

... only react to percepts.

Example of a percept statement (at time 5):

\[\text{Percept(stench, breeze, glitter, none, none, 5)} \]

1. \(\forall b, g, u, c, t[\text{Percept(stench, b, g, u, c, t) } \Rightarrow \text{Stench}(t)]\)
2. \(\forall s, g, u, c, t[\text{Percept(s, breeze, g, u, c, t) } \Rightarrow \text{Breeze}(t)]\)
3. \(\forall s, b, g, u, c, t[\text{Percept(s, b, glitter, u, c, t) } \Rightarrow \text{AtGold}(t)]\)

... Step: Choice of action

\(\forall t[\text{AtGold}(t) \Rightarrow \text{Action(grab, t)}]\)

Note: Our reflex agent does not know when it should climb out of the cave and cannot avoid an infinite loop.

Model-Based Agents

... have an internal model
- of all basic aspects of their environment,
- of the executability and effects of their actions,
- of further basic laws of the world, and
- of their own goals.

Important aspect: How does the world change?

→ Situation calculus: (McCarthy, 63).

Situation Calculus

- A way to describe dynamic worlds with PL1.
- States are represented by terms.
- The world is in state \(s\) and can only be altered through the execution of an action: \(\text{do}(a, s)\) is the resulting situation, if \(a\) is executed.
- Actions have preconditions and are described by their effects.
- Relations whose truth value changes over time are called fluents. Represented through a predicate with two arguments: the fluent and a state term. For example, \(\text{At}(x, s)\) means, that in situation \(s\), the agent is at position \(x\). \(\text{Holding}(y, s)\) means that in situation \(s\), the agent holds object \(y\).
- Atemporal or eternal predicates, e.g., \(\text{Portable}(gold)\).
Example: WUMPUS-World

Let s_0 be the initial situation and

$s_1 = \text{do}(\text{forward}, s_0)$
$s_2 = \text{do}(\text{turn(right)}, s_1)$
$s_3 = \text{do}(\text{forward}, s_2)$

Description of Actions

Preconditions: In order to pick something up, it must be both present and portable:

$$\forall x, s[\text{Poss}(\text{grab}(x), s) \iff \text{Present}(x, s)\land\text{Portable}(x)]$$

In the WUMPUS-World:

$$\text{Portable}(\text{gold}), \forall s[\exists \text{Gold}(s) \Rightarrow \text{Present}(\text{gold}, s)]$$

Positive effect axiom:

$$\forall x, s[\text{Poss}(\text{grab}(x), s) \Rightarrow \text{Holding}(x, \text{do(grab}(x), s))]$$

Negative effect axiom:

$$\forall x, s \neg \text{Holding}(x, \text{do(release}(x), s))$$

The Frame Problem

We had: $\text{Holding}(\text{gold}, s_0)$.

Following situation: $\neg \text{Holding}(\text{gold}, \text{do(release}(\text{gold}), s_0))$?

We had: $\neg \text{Holding}(\text{gold}, s_0)$.

Following situation: $\neg \text{Holding}(\text{gold}, \text{do(turn(right)), s_0})$?

- We must also specify which fluents remain unchanged!
- The frame problem: Specification of the properties that do not change as a result of an action.

\Rightarrow Frame axioms must also be specified.

Number of Frame Axioms

$$\forall a, x, s[\text{Holding}(x, s)\land(a \neq \text{release}(x)) \Rightarrow \text{Holding}(x, \text{do}(a, s))]$$

$$\forall a, x, s[\neg \text{Holding}(x, s)\land\{(a \neq \text{grab}(x))\lor \neg \text{Poss}(\text{grab}(x), s)\}$$

$$\Rightarrow \neg \text{Holding}(x, \text{do}(a, s))]$$

Can be very expensive in some situations, since $O(|F| \times |A|)$ axioms must be specified, F being the set of fluents and A being the set of actions.
Successor-State Axioms

A more elegant way to solve the frame problem is to fully describe the successor situation:

\[
true \text{ after action } \iff \left[\text{ action made it true} \lor \text{ already true and the action did not falsify it} \right]
\]

Example for \textit{grab}:

\[
\forall a, x, s \{\text{Holding}(x, do(a, s)) \iff ((a = \text{grab}(x) \land \text{Poss}(a, s)) \lor (\text{Holding}(x, s) \land a \neq \text{release}(x)))\}
\]

Can also be automatically compiled by only giving the effect axioms (and then applying \textit{explanation closure}). Here we suppose that only certain effects can appear.

Limits of this Version of Situation Calculus

- No explicit time. We cannot discuss how long an action will require, if it is executed.
- Only one agent. In principle, however, several agents can be modeled.
- No parallel execution of actions.
- Discrete situations. No continuous actions, such as moving an object from A to B.
- Closed world. Only the agent changes the situation.
- Determinism. Actions are always executed with absolute certainty.
 \(\rightarrow \) Nonetheless, sufficient for many situations.

Qualitative Descriptions of Temporal Relationships

We can describe the temporal occurrence of event/actions:
- \textit{absolute} by using a date/time system
- \textit{relative} with respect to other event occurrences
- \textit{quantitatively}, using time measurements (5 secs)
- \textit{qualitatively}, using comparisons (before/overlaps)

Allen’s Interval Calculus

- Allen proposed a calculus about \textit{relative order of time intervals}
- Allows us to describe, e.g.,
 - Interval I occurs before interval J
 - Interval J occurs before interval K
- and to conclude
 - Interval I occurs before interval K
 \(\rightarrow \) 13 jointly exhaustive and pair-wise disjoint relations between intervals
Allen’s 13 Interval Relations

- $I < J, J > I$ before/after
- $I m J, J m^{-1} I$ meets
- $I o J, J o^{-1} I$ overlaps
- $I s J, J s^{-1} I$ starts
- $I d J, J d^{-1} I$ during
- $I f J, J f^{-1} I$ finishes
- $I = J$

Examples

- Using Allen’s relation system one can describe temporal configurations as follows:
 - $X < Y, Y o Z, Z > X$
- One can also use disjunctions (unions) of temporal relations:
 - $X(<, m)Y, Y(o, s)Z, Z > X$

Reasoning in Allen’s Relations System

- How do we reason in Allen’s system
 - Checking whether a set of formulae is satisfiable
 - Checking whether a temporal formula follows logically

- Use a constraint propagation technique for CSPs with infinite domains (3-consistency), based on composing relations

Constraint Propagation

- $X < Y s Z = X Z$
- $X < Y o Z = X Z$
- $X m Y s Z = X Z$
- $X m Y o Z = X Z$

Do that for every triple until nothing changes anymore, then CSP is 3-consistent
Concluding Remarks: Use of Logical Formalisms

- In many (but not all) cases, full inference in PL1 is simply too slow (and therefore too unreliable).
- Often, special (logic-based) representational formalisms are designed for specific applications, for which specific inference procedures can be used. Examples:
 - Description logics for representing conceptual knowledge.
 - James Allen’s time interval calculus for representing qualitative temporal knowledge.
 - Planning: Instead of situation calculus, this is a specialized calculus (STRIPS) that allows us to address the frame problem.
→ Generality vs. efficiency
→ In every case, logical semantics is important!