5. Constraint Satisfaction Problems

CSPs as Search Problems, Solving
CSPs, Problem Structure

Bernhard Nebel, Wolfram Burgard & Luc De Raedt

Contents

- What are CSPs?
- Backtracking Search for CSPs
- CSP Heuristics
- Constraint Propagation
- Problem Structure

Constraint Satisfaction Problems

- In search problems, the state does not have a structure (everything is in the data structure) – in CSPs states are explicitly represented as variable assignments.
- A CSP consists of
 - a set of variables \(\{x_1, x_2, \ldots, x_n\} \) to which
 - values \(\{d_1, d_2, \ldots, d_k\} \) can be assigned
 - respecting a set of constraints over the variables
- A CSP is solved by a variable assignment that satisfies all given constraints
- Formal representation language with associated general inference algorithms

Example: Map-Coloring

- Variables: \(\text{WA, NT, SA, Q, NSW, V, T} \)
- Values: \(\{\text{red, green, blue}\} \)
- Constraints: adjacent regions must have different colors, e.g. \(\text{NSW} \neq \text{V} \)
Australian Capital Territory (ACT) and Canberra (inside NSW)

View of the Australian National University and Telstra Tower

One Solution

Solution assignment:
- \{ WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green} \}
- Perhaps in addition ACT = \text{blue}

Constraint Graph

- Works for binary CSPs (otherwise hypergraph)
- Nodes = variables, arcs = constraints
- Graph structure can be important (e.g., connected components)

Note: Our problem is 3-colorability for a planar graph

Variations

- Binary, ternary, or even higher arity
- Finite domains (d values) \(\Rightarrow d^n\) possible variable assignments
- Infinite domains (reals, integers)
 - linear constraints solvable (in P if real)
 - nonlinear constraints unsolvable
Applications

- Timetabling (classes, rooms, times)
- Configuration (hardware, cars, …)
- Spreadsheets
- Scheduling
- Floor planning
- Frequency assignments
- ...

Backtracking Search over Assignments

- Assign values to variables step by step (order does not matter)
- Consider only one variable per search node!
- DFS with single-variable assignments is called backtracking search
- Can solve n-queens for $n \approx 25$

Algorithm

```
function BACKTRACKING-SEARCH(esp) returns solution/failure
    return RECURSIVE-BACKTRACKING([], esp)

function RECURSIVE-BACKTRACKING(assigned, esp) returns solution/failure
    if assigned is complete then return assigned
    var ← Select-Unassigned-Variable(VARIABLES[esp], assigned, esp)
    for each value in ORDER-DOMAIN-VALUES(var, assigned, esp) do
        if value is consistent with assigned according to CONSTRAINTS[esp] then
            result ← RECURSIVE-BACKTRACKING([var = value]assigned, esp)
            if result ≠ failure then return result
    end
    return failure
```

Example (1)
Improving Efficiency: CSP Heuristics & Pruning Techniques

- **Variable ordering**: Which one to assign first?
- **Value ordering**: Which value to try first?
- Try to detect failures early on
- Try to exploit problem structure

- Note: all this is not problem-specific!
Variable Ordering: Most constrained first

- Most constrained variable:
 - choose the variable with the fewest remaining legal values
 - reduces branching factor!

Variable Ordering: Most Constraining Variable First

- Break ties among variables with the same number of remaining legal values:
 - choose variable with the most constraints on remaining unassigned variables
 - reduces branching factor in the next steps

Value Ordering: Least Constraining Value First

- Given a variable,
 - choose first a value that rules out the fewest values in the remaining unassigned variables
 - We want to find an assignment that satisfies the constraints (of course, does not help if unsat.)

Rule Out Failures Early On: Forward Checking

- Whenever a value is assigned to a variable, values that are now illegal for other variables are removed
- Implements what the ordering heuristics implicitly compute
- $WA = red$, then NT cannot become red
- If all values are removed for one variable, we can stop!
Forward Checking (1)

- Keep track of remaining values
- Stop if all have been removed

Forward Checking (2)

- Keep track of remaining values
- Stop if all have been removed

Forward Checking (3)

- Keep track of remaining values
- Stop if all have been removed

Forward Checking (4)

- Keep track of remaining values
- Stop if all have been removed
Forward Checking: Sometimes it Misses Something

- Forward Checking propagates information from assigned to unassigned variables
- However, there is no propagation between unassigned variables

Arc Consistency

- A directed arc $X \rightarrow Y$ is “consistent” iff
 - for every value x of X, there exists a value y of Y, such that (x, y) satisfies the constraint between X and Y
- Remove values from the domain of X to enforce arc-consistency
- Arc consistency detects failures earlier
- Can be used as preprocessing technique or as a propagation step during backtracking

Arc Consistency Example

AC3 Algorithm

```
function AC3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables $\{X_1, X_2, \ldots, X_n\}$
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do
    $(X_i, X_j) \leftarrow$ REMOVE-FIRST(queue)
    if REMOVE-INCONSISTENT-VALUES$(X_i, X_j)$ then
        for each $X_k$ in NEIGHBORS[$X_i$] do
            add $(X_k, X_j)$ to queue

function REMOVE-INCONSISTENT-VALUES$(X_i, X_j)$ returns true iff we remove a value
    removed $\leftarrow$ false
    for each $x$ in DOMAIN[$X_i$] do
        if no value $y$ in DOMAIN[$X_j$] allows $(x, y)$ to satisfy the constraint between $X_i$ and $X_j$
            then delete $x$ from DOMAIN[$X_i$]; removed $\leftarrow$ true
    return removed
```
Properties of AC3

- AC3 runs in $O(d^3n^2)$ time, with n being the number of nodes and d being the maximal number of elements in a domain.
- Of course, AC3 does not detect all inconsistencies (which is an NP-hard problem).

Problem Structure (1)

- CSP has two independent components.
- Identifiable as connected components of constraint graph.
- Can reduce the search space dramatically.

Problem Structure (2): Tree-structured CSPs

- If the CSP graph is a tree, then it can be solved in $O(nd^2)$.
 - General CSPs need in the worst case $O(d^n)$.
- **Idea**: Pick root, order nodes, apply arc consistency from leaves to root, and assign values starting at root.

Problem Structure (2): Tree-structured CSPs

- Apply arc-consistency to (X_i, X_k), when X_i is the parent of X_k for all $k = n$ downto 2.
- Now one can start at X_1, assigning values from the remaining domains without creating any conflict in one sweep through the tree!
- Algorithm linear in n.
Problem Structure (3): Almost Tree-structured

- **Conditioning**: Instantiate a variable and prune values in neighboring variables

 ![Diagram](image1)

- **Cutset conditioning**: Instantiate (in all ways) a set of variables in order to reduce the graph to a tree (note: finding minimal cutset is NP-hard)

 ![Diagram](image2)

Another Method: Tree Decomposition (1)

- Decompose problem into a set of connected sub-problems, where two sub-problems are connected when they share a constraint
- Solve sub-problems independently and combine solutions

 ![Diagram](image3)

Another Method: Tree Decomposition (2)

- A tree decomposition must satisfy the following conditions:
 - Every variable of the original problem appears in at least one sub-problem
 - Every constraint appears in at least one sub-problem
 - If a variable appears in two sub-problems, it must appear in all sub-problems on the path between the two sub-problems
 - The connections form a tree

 ![Diagram](image4)

Another Method: Tree Decomposition (3)

- Consider sub-problems as new mega-nodes, which have values defined by the solutions to the sub-problems
- Use technique for tree-structured CSP to find an overall solution (constraint is to have identical values for the same variable).

 ![Diagram](image5)
Tree Width

- **Tree width of a tree decomposition** = size of largest sub-problem minus 1
- **Tree width of a graph** is minimal tree width over all possible tree decompositions
- If a graph has tree width w and we know a tree decomposition with that width, we can solve the problem in $O(n d^{w+1})$
- **Finding a tree decomposition** with minimal tree width is NP-hard

Summary & Outlook

- **CSPs** are a special kind of search problem:
 - states are value assignments
 - goal test is defined by constraints
- **Backtracking** = DFS with one variable assigned per node. Other intelligent backtracking techniques possible
- **Variable/value ordering** heuristics can help dramatically
- **Constraint propagation** prunes the search space
- **Path-consistency** is a constraint propagation technique for triples of variables
- **Tree structure** of CSP graph simplifies problem significantly
- **Cutset conditioning** and **tree decomposition** are two ways to transform part of the problem into a tree
- **CSPs** can also be solved using **local search**