Constraint Satisfaction Problems
Mathematical Background: Sets, Relations, and Graphs

Malte Helmert and Stefan Wölfli

Albert-Ludwigs-Universität Freiburg

April 17, 19, and 24, 2007
Constraint Satisfaction Problems
April 17, 19, and 24, 2007 — Mathematical Background: Sets, Relations, and Graphs

Sets
 - Set-Theoretical Principles
 - Sets and Boolean Algebras

Relations
 - Relations
 - Binary Relations and Relation Algebras
 - Relations over Variables
 - Normalized Constraint Networks

Graphs
 - Undirected Graphs
 - Directed Graphs
 - Graphs and Constraints
 - Hypergraphs
Sets

Principles (ZF):

- **Extensionality**: Two sets are equal if and only if they contain the same elements.
- **Empty set**: There is a set, \emptyset, with no elements.
- **Pairs**: For any pair of sets x, y, $\{x, y\}$ is a set.
- **Union**: For any set x, there exists a set, $\bigcup x$, whose elements are precisely the elements of at least one of the elements of x.
- **Separation**: For any set x and any property $F(y)$, there is a subset of x, $\{y \in x : F(y)\}$, containing precisely the elements y of x for which $F(y)$ holds.
- **Foundation**: Each non-empty set x contains some element y such that x and y are disjoint sets.
- **Power set**: For any set x there exists a set 2^x such that the elements of 2^x are precisely the subsets of x.
- ... (axiom of replacement, infinite set axiom, axiom of choice)
Definitions

Definition

Binary set operations:

\[A \cup B := \{ x : x \in A \text{ or } x \in B \} \]
\[A \cap B := \{ x \in A : x \in B \} \]
\[A \setminus B := \{ x \in A : x \notin B \} \]

\(A \subseteq B, A \subsetneq B, \text{ etc.}, \) are defined as usual.

(Ordered) pairs:

\[(x, y) := \{\{x\}, \{x, y\}\} \]
\[(x_1, \ldots, x_n) := ((x_1, \ldots, x_{n-1}), x_n) \]
\[A \times B := \{(a, b) : a \in A \text{ and } b \in B\} \]
Boolean Algebra

Definition

A Boolean algebra (with complements) is a set A with

- two binary operations \cap, \cup,
- a unary operation $-$, and
- two distinct elements 0 and 1

such that for all elements a, b and c of A:

\[
\begin{align*}
 a \cup (b \cup c) &= (a \cup b) \cup c \\
 a \cap (b \cap c) &= (a \cap b) \cap c & \text{Ass} \\
 a \cup b &= b \cup a & \text{Com} \\
 a \cap b &= b \cap a \\
 a \cup (a \cap b) &= a & \text{Abs} \\
 a \cap (a \cup b) &= a \\
 a \cup (b \cap c) &= (a \cup b) \cap (a \cup c) & \text{Dis} \\
 a \cap (b \cup c) &= (a \cap b) \cup (a \cap c) \\
 a \cup -a &= 1 & \text{Compl} \\
a \cap -a &= 0
\end{align*}
\]
Sets and Boolean Algebras

Definition
A set algebra on a set A is a non-empty subset $B \subseteq 2^A$ that is closed under unions, intersections, and complements.

Note: a set algebra on A contains A and \emptyset as elements.

Lemma
Each set algebra defines a Boolean algebra. Each finite Boolean algebra “can be written as” (is isomorphic to) the full set algebra on some finite set.

Theorem (Tarski)
Each Boolean algebra can be represented as a set algebra.
Relations

Definition
A relation over sets X_1, \ldots, X_n is a subset

$$R \subseteq X_1 \times \cdots \times X_n.$$

The number n is referred to as arity of R.
An n-ary relation on a set X is a subset

$$R \subseteq X^n := X \times \cdots \times X \ (n \text{ times}).$$

Since relations are sets, set-theoretical operations (union, intersection, complement) can be applied to relations as well.
Binary Relations

For binary relations on a set X we have some special operations:

Definition

Let R, S be binary relations on X.
The **converse** of relation R is defined by:

$$R^{-1} := \{(x, y) \in X^2 : (y, x) \in R\}.$$

The **composition** of relations R and S is defined by:

$$R \circ S := \{(x, z) \in X^2 : \exists y \in X \text{ s.t. } (x, y) \in R \text{ and } (y, z) \in S\}.$$

The **identity relation** is:

$$\Delta_X := \{(x, y) \in X^2 : x = y\}.$$
Relation Algebra

Definition (Tarski)

A relation algebra is a set A with

- binary operations \cap, \cup, and \circ
- unary operations $-$ and $^{-1}$, and
- distinct elements 0, 1, and δ such that

(a) $(A, \cap, \cup, -, 0, 1)$ is a Boolean algebra.

(b) For all elements a, b and c of A:

\[
\begin{align*}
 a \circ (b \circ c) &= (a \circ b) \circ c \\
 a \circ (b \cup c) &= (a \circ b) \cup (a \circ c) \\
 \delta \circ a &= a \circ \delta = a \\
 (a^{-1})^{-1} &= a \text{ and } (-a)^{-1} = -(a^{-1}) \\
 (a \cup b)^{-1} &= a^{-1} \cup b^{-1} \\
 (a \circ b)^{-1} &= b^{-1} \circ a^{-1} \\
 (a \circ b) \cap c^{-1} &= 0 \text{ if and only if } (b \circ c) \cap a^{-1} = 0
\end{align*}
\]
Relations and Relation Algebras

Definition
An algebra of relations (or: concrete relation algebra) on a set A is a non-empty subset $B \subseteq 2^{A \times A}$ that is closed under unions, intersections, compositions, complements, and converses, and contains Δ_A as an element.

Lemma
Each concrete relation algebra defines a relation algebra.

The converse of the lemma is not true, even if we restrict to finite relation algebras.
Example: Point Algebra

Consider a Boolean algebra A with (exactly) three atoms δ, a, b, i.e., $x \cap y = 0$ for $x, y \in \{\delta, a, b\}$ and $x \neq y$, and $1 = \delta \cup a \cup b$.

Define converses of atoms by:

$$-1 : \text{Atom}(A) \rightarrow \text{Atom}(A), \quad \delta \mapsto \delta, \quad a \mapsto b, \quad b \mapsto a$$

Furthermore, define composition of atoms

$$\circ : \text{Atom}(A) \times \text{Atom}(A) \rightarrow A$$

by a composition table:

<table>
<thead>
<tr>
<th></th>
<th>δ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>δ</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>1</td>
<td>b</td>
</tr>
</tbody>
</table>

Obtain a relation algebra (check it!) by extending these functions to functions

$-1 : A \rightarrow A$ and $\circ : A \times A \rightarrow A$ as follows:

$$(x \cup y)^{-1} = x^{-1} \cup y^{-1}$$

$$(x_1 \cup y_1) \circ (x_2 \cup y_2) = (x_1 \circ x_2) \cup (x_1 \circ y_2) \cup (x_2 \cup y_1) \cup (x_2 \cup y_2)$$
Example: Representing the Point Algebra

Task: Find a concrete relation algebra B (with 8 elements) on some set X and a (bijective) map $\phi : A \rightarrow B$ such that for all $x, y \in A$

\[
\phi(x * y) = \phi(x) * \phi(y), \quad \text{for } * \in \{\cap, \cup, \circ\}
\]
\[
\phi(-x) = (X \times X) \setminus \phi(x)
\]
\[
\phi(x^{-1}) = \phi(x)^{-1}
\]
\[
\phi(0) = \emptyset
\]
\[
\phi(1) = X \times X
\]
\[
\phi(\delta) = \Delta_X
\]

Solution: Consider a dense linear order $(X, <_X)$ without endpoints (e.g., the linear order on \mathbb{Q}). Define ϕ by

\[
a \mapsto <_X \quad \text{and} \quad b \mapsto >_X.
\]

The crucial point to prove is that $\phi(x \circ y) = \phi(x) \circ \phi(y)$.
Example: The Pentagraph Algebra

Consider the same Boolean algebra as in the case of the point algebra. Define converses of atoms by:

$$\delta \mapsto \delta, \ a \mapsto a, \ b \mapsto b.$$

Define composition by:

\[
\begin{array}{c|cccc}
\circ & \delta & a & b \\
\hline
\delta & \delta & a & b \\
a & a & \delta \cup b & a \cup b \\
b & b & a \cup b & \delta \cup a
\end{array}
\]

The resulting algebra can be represented by a pentagaph:
Relations over Variables

Let V be a set of variables. For each $v \in V$, let $\text{dom}(v)$ (the domain of v) be a non-empty set (of values).

Definition

A relation over (pairwise distinct) variables $v_1, \ldots, v_n \in V$ is an $n + 1$-tuple

$$R_{v_1, \ldots, v_n} := (v_1, \ldots, v_n, R)$$

where R is a relation over $\text{dom}(v_1), \ldots, \text{dom}(v_n)$.

The sequence v_1, \ldots, v_n is referred to as range of R_{v_1, \ldots, v_n}. R is referred to as graph of R_{v_1, \ldots, v_n}.

We will not always distinguish between the relation and its graph, e.g., we write

$$R_{v_1, \ldots, v_n} \subseteq \text{dom}(v_1) \times \cdots \times \text{dom}(v_n).$$
Constraint Networks

Definition
A constraint network is a triple

\[C = \langle V, \text{dom}, C \rangle \]

where:
- \(V \) is a non-empty and finite set of variables.
- \(\text{dom} \) is a function that assigns a non-empty (value) set (domain) to each variable \(v \in V \).
- \(C \) is a set of relations over variables of \(V \) (constraints), i.e., each constraint is a relation \(R_{v_1, \ldots, v_n} \) over some variables \(v_1, \ldots, v_n \) in \(V \).
Solvability of Networks

Definition
A constraint network is solvable (or: satisfiable) if there exists an assignment

\[a : V \rightarrow \bigcup_{v \in V} \text{dom}(v) \]

such that

(a) \(a(v) \in \text{dom}(v) \), for each \(v \in V \),

(b) \((a(v_1), \ldots, a(v_n)) \in R_{v_1,\ldots,v_n} \) for all constraints \(R_{v_1,\ldots,v_n} \).

A solution of a constraint network is an assignment that solves the network.
Selections, ...

Definition

Let $\bar{v} := (v_1, \ldots, v_n)$ and let $R_{\bar{v}}$ be a relation over \bar{v}. Let $a_1 \in \text{dom}(v_{i_1}), \ldots, a_k \in \text{dom}(v_{i_k})$ be fixed values. Then

$$\sigma_{v_{i_1}=a_1, \ldots, v_{i_k}=a_k}(R_{\bar{v}}) := \{(x_1, \ldots, x_n) \in R_{\bar{v}} : x_{i_j} = a_j, 1 \leq j \leq k\}$$

is a relation over \bar{v}.

The (unary) operation $\sigma_{v_{i_1}=a_1, \ldots, v_{i_k}=a_k}$ is called selection or restriction.
Relations over Variables

... Projections, ...

Let \((i_1, \ldots, i_k)\) be a \(k\)-tuple of pairwise distinct elements of \(\{1, \ldots, n\}\) \((k \leq n)\). For an \(n\)-tuple \(\bar{x} = (x_1, \ldots, x_n)\), define \(\bar{x}_{i_1, \ldots, i_k} := (x_{i_1}, \ldots, x_{i_k})\).

Definition

Let \(\vec{v} := (v_1, \ldots, v_n)\) and let \(R_{\vec{v}}\) be a relation over \(\vec{v}\). Then

\[
\pi_{v_{i_1}, \ldots, v_{i_k}}(R_{\vec{v}}) := \{ \bar{y} \in \prod_{1 \leq j \leq k} \text{dom}(v_{i_j}) : \bar{y} = \bar{x}_{i_1, \ldots, i_k}, \text{ for some } \bar{x} \in R_{\vec{v}} \}
\]

is a relation over \(\vec{v}_{i_1, \ldots, i_k}\).

The (unary) operation \(\pi_{v_{i_1}, \ldots, v_{i_k}}\) is called **projection**.
... Joins

Let $R_{\overline{v}}$ and $S_{\overline{w}}$ be relations over variables \overline{v} and \overline{w}, respectively. For tuples \overline{x} and \overline{y} define:

- $\overline{x} - \overline{y}$: the subsequence of elements in \overline{x} that do not occur in \overline{y}.
- $\overline{x} \cap \overline{y}$: the subsequence of \overline{x} with elements that occur in \overline{y}.
- $\overline{x} \cup \overline{y}$: the sequence resulting from \overline{x} by adding $\overline{y} - \overline{x}$.

Definition

$$R_{\overline{v}} \bowtie S_{\overline{w}} := \{\overline{x} \cup \overline{y} : \overline{x} \in R_{\overline{v}}, \overline{y} \in R_{\overline{w}}, \text{ and } \overline{x} \cap \overline{w} = \overline{y} \cap \overline{w}\}$$

is a relation over $\overline{v} \cup \overline{w}$, the join of $R_{\overline{v}}$ and $S_{\overline{w}}$.

Note: For binary relations R and S:

$$R_{x,y} \circ R_{y,z} = \pi_{x,z}(R_{x,y} \bowtie R_{y,z}).$$
Examples

Consider relations $R := R_{x_1, x_2, x_3}$ and $R' := R'_{x_2, x_3, x_4}$ defined by:

\[
\begin{array}{c|c|c}
 x_1 & x_2 & x_3 \\
 b & b & c \\
 c & b & c \\
 c & n & n \\
\end{array}
\quad
\begin{array}{c|c|c|c}
 x_2 & x_3 & x_4 \\
 a & a & 1 \\
 b & c & 2 \\
 b & c & 3 \\
\end{array}
\]

Then $\sigma_{x_3 = c}(R)$, $\pi_{x_2, x_3}(R)$, $\pi_{x_2, x_1}(R)$, and $R \bowtie R'$ are:

\[
\begin{array}{c|c|c|c|c}
 x_1 & x_2 & x_3 & x_4 \\
 b & b & c & 2 \\
 b & b & c & 3 \\
 c & b & c & 2 \\
 c & b & c & 3 \\
\end{array}
\quad
\begin{array}{c|c|c}
 x_2 & x_3 \\
 b & c \\
 b & c \\
 n & n \\
\end{array}
\quad
\begin{array}{c|c|c}
 x_2 & x_1 \\
 b & b \\
 b & c \\
 n & c \\
\end{array}
\]
Normalized Constraint Networks

Let $C = \langle V, \text{dom}, C \rangle$ be a constraint network. According to our definition it is possible that C contains constraints

$$R_{v_{i_1}, \ldots, v_{i_k}} \quad \text{and} \quad S_{v_{j_1}, \ldots, v_{j_k}}$$

where (j_1, \ldots, j_k) is just a permutation of (i_1, \ldots, i_k). In this case, we can simplify the network by deleting $S_{v_{j_1}, \ldots, v_{j_k}}$ from C and rewriting $R_{v_{i_1}, \ldots, v_{i_k}}$ as follows:

$$R_{v_{i_1}, \ldots, v_{i_k}} \leftarrow R_{v_{i_1}, \ldots, v_{i_k}} \cap \pi_{v_{i_1}, \ldots, v_{i_k}} (S_{v_{j_1}, \ldots, v_{j_k}}).$$

Given an arbitrary order on the set of variables V, we can systematically delete-and-refine constraints. The result is a constraint network that contains exactly one constraint for each subset of variables. This network is referred to as a normalized constraint network.
Undirected Graph

Definition
An (undirected) graph is an ordered pair

\[G := \langle V, E \rangle \]

where:

- \(V \) is a finite set (of vertices, nodes);
- \(E \) is a set of two-element subsets of (not necessarily distinct) nodes (called edges).

The order of a graph is the number of vertices \(|V|\). The size of a graph is the number of edges \(|E|\). The degree of a vertex is the number of vertices to which it is connected by an edge.
Graph: Example
Graph: Definitions

Definition
Let $G = \langle V, E \rangle$ be an undirected graph.

(a) If $e = \{u, v\} \in E$, then u and v are called adjacent (connected by e).

(b) A path in G is a sequence of edges e_1, \ldots, e_k such that $e_i \cap e_{i+1} \neq \emptyset$.
Sometimes, paths are defined via vertices:
A path in G is a sequence of vertices v_0, \ldots, v_k such that
$\{v_{i-1}, v_i\} \in E (1 \leq i \leq k)$. k is the length, v_0 is the start vertex, and
v_k is the end vertex of the path.

(c) A cycle is a path v_0, \ldots, v_k with $v_0 = v_k$.

(d) A path v_0, \ldots, v_k is simple if $v_i \neq v_j$ for all $i \neq j$.

(e) A cycle v_0, \ldots, v_k is simple if $v_i \neq v_j$ for all $i, j \geq 1, i \neq j$.
Graph: Definitions
Let $G = \langle V, E \rangle$ be an undirected graph.

Definition

(a) G is connected if, for each pair of vertices u and v, there exists a path from u to v.

(b) G is a tree if G is cycle-free.

(c) G is complete if any pair of vertices is connected.

Definition
Let $G = \langle V, E \rangle$ be an undirected graph. Let S be a subset of V. Then $G_S := \langle S, E_S \rangle$ is called the subgraph relative to S, where

$$E_S := \left\{ \{u, v\} \in E : u, v \in S \right\}.$$

Definition
A clique in a graph G is a complete subgraph of G.
Examples

Figure: Example
Directed Graph

Definition
A directed graph (or: digraph) is an ordered pair

\[G := \langle V, A \rangle \]

where:
- \(V \) is a set (of vertices or nodes),
- \(A \) is a set of (ordered) pairs of vertices (called arcs, edges, or arrows).

The number of edges with a vertex \(v \) as start vertex is called the outdegree of \(v \); the number of vertices with \(v \) as end vertex is the indegree of \(v \). Nodes that point to \(v \) are called parents, nodes to which an edge from \(v \) points are called child nodes.
Directed Graph: Definitions

Definition
Let $G = \langle V, A \rangle$ be a directed graph.

(a) A (directed) path is a sequence of arcs e_1, \ldots, e_k such that the end vertex of e_i is the start vertex of e_{i+1} (analogously, (directed) cycle).

(b) A digraph is strongly connected if each pair of nodes u, v is connected by a directed graph from u to v.

(c) A digraph is acyclic if it has no directed cycles.
Digraph: Example

Figure: A directed graph with a strongly connected subgraph
Primal Constraint Graphs

Let $\mathcal{C} = \langle V, \text{dom}, C \rangle$ be a (normalized) constraint network. For a constraint R_{x_1, \ldots, x_k}, the set $\{x_1, \ldots, x_k\}$ is called the scope R_{x_1, \ldots, x_k}.

Definition
The primal constraint graph of a network $\mathcal{C} = \langle V, \text{dom}, C \rangle$ is the undirected graph

$$G_{\mathcal{C}} := \langle V, E_{\mathcal{C}} \rangle$$

where

$$\{u, v\} \in E_{\mathcal{C}} \iff \{u, v\} \text{ is a subset of the scope of some constraint in } \mathcal{C}.$$
Primal Constraint Graph: Example

Consider a constraint network with variables v_1, \ldots, v_5 and two ternary constraints R_{v_1, v_2, v_3} and S_{v_3, v_4, v_5}.

Then the primal constraint graph of the network has the form:

Absence of an edge between two variables/nodes means that there is no direct constraint between these variables.
Hypergraph

Definition
A hypergraph is a pair

\[H := \langle V, E \rangle \]

where

- \(V \) is a set (of nodes, vertices),
- \(E \) is a set of non-empty subsets of \(V \) (called hyperedges), i.e., \(E \subseteq 2^V \setminus \{\emptyset\} \).

Note: Hyperedges can contain an arbitrarily many nodes.
Constraint Hypergraph

Definition
The constraint hypergraph of a constraint network $\mathcal{C} = \langle V, \text{dom}, C \rangle$ is the hypergraph

$$H_{\mathcal{C}} := \langle V, E_{\mathcal{C}} \rangle$$

with

$$X \in E_{\mathcal{C}} \iff X \text{ is the scope of some constraint in } \mathcal{C}.$$

In the example above (constraint network with variables v_1, \ldots, v_5 and two ternary constraints R_{v_1, v_2, v_3} and S_{v_3, v_4, v_5}) the hyperedges of the constraint hypergraph are:

$$E_{\mathcal{C}} = \left\{ \{v_1, v_2, v_3\}, \{v_3, v_4, v_5\} \right\}.$$
Dual Constraint Graphs

Definition

The *dual constraint graph* of a constraint network \(C = \langle V, \text{dom}, C \rangle \) is the labeled graph

\[
D_C := \langle V', E_C, l \rangle
\]

with

\[
X \in V' \iff X \text{ is the scope of some constraint in } C
\]

\[
\{X, Y\} \in E_C \iff X \cap Y \neq \emptyset
\]

\[
l : E_C \to 2^V, \quad \{X, Y\} \mapsto X \cap Y
\]

In the example above, the dual constraint graph is

![Diagram of dual constraint graph](image)
Literature

Rina Dechter.
Constraint Processing,
Chapter 1 and 2, Morgan Kaufmann, 2003

Roger D. Maddux.
Introductory course on relation algebras, finite-dimensional cylindric algebras, and their interconnections,

Wikipedia contributors,
Graph theory, Graph (mathematics), Boolean Algebra, Relational Algebra, (2007, April),