
Chapter 5

Probabilistic planning

Probabilistic planning is an extension of nondeterministic planning with information on the prob-
abilities of nondeterministic events.

Probabilites are important in quantifying the costs and success probabilities of plans when the
actions are nondeterministic. In many applications it is not sufficient just to have a plan. It is
important to have a plan that is efficient in the sense that the cost of the actions does not outweigh
the benefits of reaching the goals. On some other problems there are no plans that are guaranteed
to reach the goals. In these cases it is important to maximize the probability of reaching the goals,
and hence it is vitally important to use information on the probabilities of different effects of
operators.

Probabilities complicate planning, both conceptually and computationally. Whereas in the
non-probabilistic of conditional planning with partial observability it is sufficient to work in a
finite discrete belief space, probabilities make the belief space continuous and thereby infinite.

In this section a number of algorithms for probabilistic planning are presented. In Sections 5.1
and 5.2 we present the transition system model with probabilities that extend the definitions given
in Sections 2.1 and 2.3 for non-succinct and succinct transition systems, respectively. Like in
Chapter 4 we start from planning with full observability in Section 5.3. Many probabilistic plan-
ning problems with full observability are closely related to Markov decision processes[Puterman,
1994].

5.1 Probabilistic transition systems

In many types of probabilistic planning problems considered in the literature the objective is not to
reach one of a set of designated goal states. Instead, the objective is to act in a way that maximizes
therewardsor minimizes thecosts. Planning problems with a designated set of goal states can be
expressed in terms of rewards, but not vice versa.

Definition 5.1 A probabilistic transition systemis a 5-tupleΠ = 〈S, I,O,G, P 〉 where

1. S is a finite set of states,

2. I is a probability distribution overS,

3. O is a finite set of actionso that are partial functions that map each state to a probability
distribution overS,

118



CHAPTER 5. PROBABILISTIC PLANNING 119

4. G ⊆ S is the set of goal states, and

5. P = (C1, . . . , Cn) is a partition ofS to classes of observationally indistinguishable states
satisfying

⋃
{C1, . . . , Cn} = S andCi ∩ Cj = ∅ for all i, j such that1 ≤ i < j ≤ n.

An action o is applicable in states for whicho(s) is defined. These states we denote by
prec(o) = {s ∈ S|o(s) is defined}. Below, we will denote the set of actions applicable in a
states ∈ S by O(S). We also require thatO(s) is non-empty for everys ∈ S.

A major difference to the definition of Markov decision processes[Puterman, 1994] is that
o ∈ O are partial functions. This means that an action does not associate every state with a
probability distribution because an action is not necessarily applicable in all states.

Instead of using a designated set of goal states and have reaching a goal state or staying in
the goal states as an objective, in many types of planning problems the objective is to maximize
rewards or minimize costs. To formalize this we use instead of a set of goal states a cost function
that associates every action and state a numerical cost.

Definition 5.2 A probabilistic transition system with rewardsis a 5-tupleΠ = 〈S, I,O,C, P 〉
where the componentsS, I,O andP are as in Definition 5.1 andC : O × S → R is a function
from actions and states to real numbers, indicating thecostassociated with an action in a given
state.

5.2 Succinct probabilistic transition systems

Probabilistic transition system can be represented exponentially more succinctly in terms of state
variables and operators.

Definition 5.3 LetA be a set of state variables. Anoperatoris a pair 〈c, e〉 wherec is a proposi-
tional formula overA (theprecondition), ande is aneffectoverA. Effects overA are recursively
defined as follows.

1. a and¬a for state variablesa ∈ A are effects overA.

2. e1 ∧ · · · ∧ en is an effect overA if e1, . . . , en are effects overA (the special case withn = 0
is the empty effect>.)

3. c B e is an effect overA if c is a formula overA ande is an effect overA.

4. p1e1| · · · |pnen is an effect overA if n ≥ 2 and e1, . . . , en for n ≥ 2 are effects overA
and p1, . . . , pn are real numbers such thatp1 + · · · + pn = 1 and 0 ≤ pi ≤ 1 for all
i ∈ {1, . . . , n}.

Operators map states to probability distributions over their successor states.

Definition 5.4 (Operator application) Let 〈c, e〉 be an operator overA. Let s be a state (a
valuation ofA). The operator isapplicable ins if s |= c and for every setE ∈ [e]s the set⋃
{M |〈p, M〉 ∈ E, p > 0} is consistent.
Recursively assign each effecte a set[e]s of pairs〈p, M〉 wherep is a probability0 ≤ p ≤ 1

andM is a set of literalsa and¬a wherea ∈ A.



CHAPTER 5. PROBABILISTIC PLANNING 120

1. [a]s = {〈1, {a}〉} and[¬a]s = {〈1, {¬a}〉} for a ∈ A.

2. [e1 ∧ · · · ∧ en]s = {〈Πn
i=1pi,

⋃n
i=1 Mi〉|〈p1,M1〉 ∈ [e1]s, . . . , 〈pn,Mn〉 ∈ [en]s}.

3. [c′ B e]s = [e]s if s |= c′ and[c′ B e]s = {〈1, ∅〉} otherwise.

4. [p1e1| · · · |pnen]s = {〈p1 · p, e〉|〈p, e〉 ∈ [e1]s} ∪ · · · ∪ {〈pn · p, e〉|〈p, e〉 ∈ [en]s}

For handling effects like(0.2a|0.8b)∧ (0.2a|0.8b), which produces sets{a}, {a, b}, {a, b}, {b}
respectively with probabilities0.04, 0.16, 0.16 and0.64, the sets in this definition are understood
as multisets so that the probability 0.16 of{a, b} is counted twice. Alternatively, in (4) the union
of sets is defined so that for example{〈0.2, {a}〉} ∪ {〈0.2, {a}〉} = {〈0.4, {a}〉}: same sets of
changes are combined by summing their probabilities.

The successor states ofs under the operator are ones that are obtained froms by making the
literals in M for 〈p, M〉 ∈ [e]s true and retaining the truth-values of state variables not occurring
in M . The probability of a successor state is the sum of the probabilitiesp for 〈p, M〉 ∈ [e]s that
lead to it.

Definition 5.5 A succinct probabilistic transition systemis a 5-tupleΠ = 〈A, I, O, G, V 〉 where

1. A is a finite set of state variables,

2. I which describes a probability distribution over the possible initial states is a set of pairs
〈p, φ〉 wherep is a number such that0 ≤ p ≤ 1 and φ is a formula overA such that
(
∑

s∈S,s|=φ1
p1) + · · ·+ (

∑
s∈S,s|=φn

pn) = 1 whereI = {〈p1, φ1〉, . . . , 〈pn, φn〉},

3. O is a finite set of operators overA,

4. G is a formula overA describing the goal states, and

5. V ⊆ A is the set of observable state variables.

Definition 5.6 Asuccinct probabilistic transition system with rewardsis a 5-tupleΠ = 〈A, I, O, C, V 〉
where the componentsA, I, O andV are as in Definition 5.5 andR is a function from operators
to pairs〈φ, r〉 whereφ is a formula overA andr is a real number indicating thecostassociated
with an action in a given state: cost of operatoro ∈ O in states is r if there is〈φ, r〉 ∈ C(o)
such thats |= φ. For this to be well defined there may be no{〈φ1, r1〉, 〈φ2, r2〉} ⊆ C(o) such that
φ1 ∧ φ2 is satisfiable.

We can associate a probabilistic transition system with every succinct probabilistic transition
system.

5.3 Problem definition

A given plan produces infinite sequences of rewardsr1, r2, . . .. Clearly, if the planning problem
has several initial states or if the actions are nondeterministic this sequence of rewards is not
unique. In either case, possible plans are assessed in terms of these rewards, and there are several
possibilities how good plans are defined. Because the sequences are infinite, we in general cannot
simply take their sum and compare them. Instead, several other possibilities have been considered.



CHAPTER 5. PROBABILISTIC PLANNING 121

1. Expected total rewards over a finite horizon.

This is a natural alternative that allows using the normal arithmetic sum of the rewards.
However, there is typically no natural bound on the horizon length.

2. Expected average rewards over an infinite horizon.

This is for many applications that involve very long actions sequences the most natural way
of assessing plans. However, there are several technical complications that make average
rewards difficult to use.

3. Expected discounted rewards over an infinite horizon.

This is the most often used criterion in connection with Markov decision processes. Dis-
counting means multiplying theith reward byλi−1 and it means that early rewards are
much more important than rewards obtained much later. The discount constantλ has a
value strictly between 0.0 and 1.0. The sum of the geometrically discounted rewards is
finite. Like with choosing the horizon length when evaluating plans with respect to their
behavior within a finite horizon, it is often difficult to say why a certain discount constantλ
is used.

For the latter two infinite horizon problems there always is an optimal plan that is a mapping
from states to actions. For finite horizon problems the optimal actions in a given state at different
time points may be different. The optimal plans are therefore time-dependent.

5.4 Algorithms for finding finite horizon plans

Conceptually the simplest probabilistic planning is when plan executions are restricted to have a
finite horizon of lengthN . We briefly describe this problem to illustrate the techniques that are
used in connection with the infinite horizon planning problems.

The optimum valuesvi(s) that can be obtained in states ∈ S at time pointi ∈ {1, . . . , N}
fulfill the following equations.

vN (s) = max
a∈O(s)

R(s, a)

vi(s) = max
a∈O(s)

(
R(s, a) +

∑
s′∈S

p(s′|s, a)vi+1(s′)

)
, for i ∈ {1, . . . , N − 1}

The value at the last stageN is simply the best immediate reward that can be obtained, and
values of states for the other stages are obtained in terms of the values of states for the later stages.

These equations also directly yield an algorithm for computing the optimal values and optimal
plans: first computevN , thenvN−1, vN−2 and so on, untilv1 is obtained. The action to be taken
in states ∈ S at time pointi is π(s, i) defined by

π(s,N) = arg max
a∈O(s)

R(s, a)

π(s, i) = arg max
a∈O(s)

(
R(s, a) +

∑
s′∈S

p(s′|s, a)vi+1(s′)

)
, for i ∈ {1, . . . , N − 1}



CHAPTER 5. PROBABILISTIC PLANNING 122

5.5 Algorithms for finding plans under discounted rewards

The valuev(s) of a states ∈ S is the discounted sum of the expected rewards that can be obtained
by choosing the best possible action ins and assuming that the best possible actions are also
chosen in all the possible successor states. The following equations, one for each states ∈ S,
characterize the relations between the values of states of a stochastic transition system under an
optimal plan and geometrically discounted rewards with discount constantλ.

v(s) = max
a∈O(s)

(
R(s, a) +

∑
s′∈S

λp(s′|s, a)v(s′)

)
(5.1)

These equations are called the optimality equations or the Bellman equations, and they are
the basis of the most important algorithms for finding optimal plans for probabilistic planning
problems with full observability.

5.5.1 Evaluating the value of a given plan

Given a planπ its value under discounted rewards with discount constantλ satisfies the following
equation for everys ∈ S.

v(s) = R(s, π(s)) +
∑
s′∈S

λp(s′|s, π(s))v(s′) (5.2)

This yields a system of linear equation with|S| equations and unknowns. The solution of these
equations yields the value of the plan in each state.

5.5.2 Value iteration

The value iteration algorithm finds an approximation of the value of the optimalλ-discounted plan
within a constantε, and a plan with at least this value.

1. n := 0

2. Assign (arbitrary) initial values tov0(s) for all s ∈ S.

3. For eachs ∈ S, assign

vn+1(s) := max
a∈O(s)

(
R(s, a) +

∑
s′∈S

λp(s′|s, a)vn(s′)

)

If |vn+1(s)− vn(s)| < ε(1−λ)
2λ for all s ∈ S then go to step 4.

Otherwise, setn := n + 1 and go to step 3.

4. Assign

π(s) := arg max
a∈O(s)

(
R(s, a) +

∑
s′∈S

λp(s′|s, a)vn+1(s′)

)



CHAPTER 5. PROBABILISTIC PLANNING 123

R=5

R=1

p=0.1

p=0.9

A

B D

E
C

Figure 5.1: A stochastic transition system

Theorem 5.7 Let vπ be the value function of the plan produced by the value iteration algorithm,
and letv∗ be the value function of an optimal plan. Then|v∗(s)− vπ(s)| ≤ ε for all s ∈ S.

Notice that unlike in partially observable planning problems, under full observability there is
never a trade-off between the values of two states: if the optimal value for states1 is r1 and the
optimal value for states2 is r2, then there is one plan that achieves these both.

Example 5.8 Consider the stochastic transition system in Figure 5.1. Only one of the actions is
nondeterministic and only in state B, and all the other actions and states have zero reward except
one of the actions in states A and D, with rewards 1 and 5, respectively. �

5.5.3 Policy iteration

The second, also rather widely used algorithm for finding plans, is policy iteration1. It is slightly
more complicated to implement than value iteration, but it typically converges after a smaller
number of iterations, and it is guaranteed to produce an optimal plan.

The idea is to start with an arbitrary plan (assignment of actions to states), compute its value,
and repeatedly choose for every state an action that is better than its old action.

1. Assignn := 0.

2. Let π0 be any mapping from states to actions.

3. Compute the valuesvn(s) of all s ∈ S underπn.

4. Let πn+1(s) = arg maxa∈O(s)

(
R(s, a) +

∑
s′∈S λp(s′|s, a)vn(s′)

)
.

5. Assignn := n + 1.

6. If n = 1 or vn 6= vn−1 then go to 3.

Theorem 5.9 The policy iteration algorithm terminates after a finite number of steps and returns
an optimal plan.

Proof: Outline: There is only a finite number of different plans, and at each step the new plan
assigns at least as high a value to each state as the old plan. �

1In connection with Markov decision processes the wordpolicy is typically used instead of the wordplan.



CHAPTER 5. PROBABILISTIC PLANNING 124

It can be shown that the convergence rate of policy iteration is always at least as fast as that of
value iteration[Puterman, 1994], that is, the number of iterations needed for finding anε-optimal
plan for policy iteration is never higher than the number of iterations needed by value iteration.

In practise policy iteration often finds an optimal plan after just a few iterations. However,
the amount of computation in one round of policy iteration is substantially higher than in value
iteration, and value iteration is often considered more practical.

5.5.4 Implementation of the algorithms with ADDs

Similarly to the techniques in Section 4.2 that allow representing state sets and transition relations
as formulae or binary decision diagrams, also probabilistic planning algorithms can be imple-
mented with data structures that allow the compact representation of probability distributions.

A main difference to the non-probabilistic case (Sections 4.4.1 and 4.4.2) is that for probabilis-
tic planning propositional formulae and binary decision diagrams are not suitable for representing
the probabilities of nondeterministic operators nor the probabilities of the value functions needed
in the value and policy iteration algorithms.Algebraic decision diagramsADDs are a generaliza-
tion of BDDs can represent probability distributions. (Section 2.2.3).

In Section 4.1.2 we gave a translation from nondeterministic operators to propositional formu-
lae. The definition of nondeterministic operators and the translation does not use probabilities.

Next we define a similar translation from nondeterministic operators to ADDs that represents
the probabilities. The translation is based on a functionτprob

B (e) that translates an effecte with that
possibly affects state variables inB to an ADD.

τprob
B (e) = τB(e) whene is deterministic

τprob
B (p1e1| · · · |pnen) = p1 · τprob

B (e1) + · · ·+ pn · τprob
B (en)

τprob
B (e1 ∧ · · · ∧ en) = τprob

B\(B2∪···∪Bn)(e1) · τprob
B2

(e2) · . . . · τprob
Bn

(en)
whereBi = changes(ei) for all i ∈ {1, . . . , n}

The first part of the translationτprob
B (e) for deterministice is the translation of deterministic effects

we presented in Section 3.6.2, but restricted to state variables inB. The result of this translation
is a normal propositional formula, which can be further transformed to a BDD and an ADD with
only two terminal nodes 0 and 1. The other two cases cover all nondeterministic effects in normal
form.

The translation of an effecte in normal form into an ADD isτprob
A (e) whereA is the set of all

state variables. Translating an operatoro = 〈c, e〉 to an ADD representing its incidence matrix is
asTo = c · τprob

A (e), wherec is the ADD representing the precondition.

Example 5.10 Consider effect(0.2¬A|0.8A)∧ (0.5(b B ¬b)|0.5>). The two conjunct translated
to functions

aa′ fa

00 0.2
01 0.8
10 0.2
11 0.8

bb′ fb

00 1.0
01 0.0
10 0.5
11 0.5

Notice that the sum of the probabilities of the successor states is 1.0. These functions are below
depicted in the same table. Notice that the third column, with the two functions componentwise



CHAPTER 5. PROBABILISTIC PLANNING 125

multiplied, has the property that the sum of successor states of each state is 1.0.

aba′b′ fa fb fa · fb

0000 0.2 1.0 0.2
0001 0.2 0.0 0.0
0010 0.8 1.0 0.8
0011 0.8 0.0 0.0
0100 0.2 0.5 0.1
0101 0.2 0.5 0.1
0110 0.8 0.5 0.4
0111 0.8 0.5 0.4
1000 0.2 1.0 0.2
1001 0.2 0.0 0.0
1010 0.8 1.0 0.8
1011 0.8 0.0 0.0
1100 0.2 0.5 0.1
1101 0.2 0.5 0.1
1110 0.8 0.5 0.4
1111 0.8 0.5 0.4

�

We represent the rewards produced by operatoro = 〈c, e〉 ∈ O in different states compactly
as a listR(o) = {〈φ1, r1〉, . . . , 〈φn, rn〉} of pairs〈φ, r〉, meaning that wheno is applied in a state
satisfyingφ the rewardr is obtained. In any state only one of the formulaeφi may be true, that
is φi |= ¬φj for all {i, j} ⊆ {1, . . . , n} such thati 6= j. If none of the formula is true in a given
state, then the reward is zero. HenceRo is simply a mapping from states to a real numbers.

The reward functionsR(o) can be easily translated to ADDs. First construct the BDDs for
φ1, . . . , φn and then multiply them with the respective rewards as

Ro = r1 · φ1 + · · ·+ rn · φn −∞ · ¬c.

The summand∞ · ¬c handles the case in which the precondition of the operator is not satisfied:
application yields immediate reward minus infinity. This prevent using the operator in any state.

Similarly, the probability distribution on possible initial states can be represented asI =
{〈φ1, p1〉, . . . , 〈φn, pn〉} and translated to an ADD.

Now the value iteration algorithm can be rephrased in terms of ADD operations as follows.

1. Assignn := 0 and letvn be an ADD that is constant 0.

2.

vn+1 := max
〈c,e〉=o∈O

(
Ro + λ · ∃A′.(To · (vn[A′/A])

)
for everys ∈ S

If all terminal nodes of ADD|vn+1 − vn| are< ε(1−λ)
2λ then stop.

Otherwise, setn := n + 1 and repeat step 2.



CHAPTER 5. PROBABILISTIC PLANNING 126

5.6 Literature

A comprehensive book on (fully observable) Markov decision processes has been written by Put-
erman[1994], and our presentation of the algorithms in Section 5.5 (5.5.2 and 5.5.3) follows that
of Puterman. The book represents the traditional research on MDPs and uses exclusively enu-
merative representations of state spaces and transition probabilities. The book discusses all the
main optimality criteria as well as algorithms for solving MDPs by iterative techniques and linear
programming. There are also many other books on solving MDPs.

A planning system that implements the value iteration algorithm with ADDs is described by
Hoey et al. [1999] and is shown to be capable of solving problems that could not be efficiently
solved by conventional implementations of value iteration.

The best known algorithms for solving partially observable Markov decision processes were
presented by Sondik and Smallwood in the early 1970’s[Sondik, 1978; Smallwood and Sondik,
1973] and even today most of the work on POMDPs is based on those algorithms[Kaelbling
et al., 1998]. In this section we have presented the standard value iteration algorithm with the
simplification that there is no sensing uncertainty, that is, for every state the same observation,
dependent on the state, is always made.

The most general infinite-horizon planning problems and POMDP solution construction are
undecidable[Madaniet al., 2003]. The complexity of probabilistic planning has been investigated
for example by Mundhenk et al.[2000] and Littman[1997].

Bonet and Geffner[2000] and Hansen and Zilberstein[2001] have presented algorithms for
probabilistic planning with Markov decision processes that use heuristic search.

5.7 Exercises

5.1Prove that on each step of policy iteration the policy improves.


