
Chapter 4

Nondeterministic planning

4.1 Nondeterministic operators

In this section we will present a basic translation of nondeterministic operators into the proposi-
tional logic and a regression operation for nondeterministic operators. In the next sections we will
discuss a general framework for computing with nondeterministic operators and their transition
relations which are represented as propositional formulae. This framework provides techniques
for computing both regression and progression for sets of states that are represented as formulae.

4.1.1 Regression for nondeterministic operators

Regression for deterministic operators is given in Definition 3.5. It can be easily generalized to a
subclass of nondeterministic operators.

Definition 4.1 (Regression for nondeterministic operators)Let φ be a propositional formula
ando = 〈c, e1| · · · |en〉 an operator wheree1, . . . , en are deterministic. Define

regrnd
o (φ) = regr〈c,e1〉(φ) ∧ · · · ∧ regr〈c,en〉(φ).

Theorem 4.2 Letφ be a formula overA, o an operator overA, andS the set of all states overA.
Then{s ∈ S|s |= regrnd

o (φ)} = spreimgo({s ∈ S|s |= φ}).

Proof: Let o = 〈c, (e1| · · · |en)〉.
{s ∈ S|s |= regrnd

o (φ)}
= {s ∈ S|s |= regr〈c,e1〉(φ) ∧ · · · ∧ regr〈c,en〉(φ)}
= {s ∈ S|s |= regr〈c,e1〉(φ), . . . , s |= regr〈c,en〉(φ)}
= {s ∈ S|app〈c,e1〉(s) |= φ, . . . , app〈c,en〉(s) |= φ} T3.7
= {s ∈ S|s′ |= φ for all s′ ∈ imgo(s) and there iss′ |= φ with sos′}
= spreimgo({s ∈ S|s |= φ})

The second last equality is becauseimgo(s) = {app〈c,e1〉(s), . . . , app〈c,en〉(s)}. �

Example 4.3 Let o = 〈d, (b|¬c)〉. Then

regrnd
o (b ↔ c) = regr〈d,b〉(b ↔ c) ∧ regr〈d,¬c〉(b ↔ c)

= (d ∧ (> ↔ c)) ∧ (d ∧ (b ↔ ⊥))
≡ d ∧ c ∧ ¬b.

66



CHAPTER 4. NONDETERMINISTIC PLANNING 67

�

4.1.2 Translation of nondeterministic operators into propositional logic

In Section 3.6.2 we gave a translation of deterministic operators into the propositional logic. In
this section we extend this translation to nondeterministic operators.

We define for effectse the setschanges(e) of state variables that are possibly changed bye, or
in other words, the set of state variables occurring in an atomic effect ine.

changes(a) = {a}
changes(¬a) = {a}

changes(c B e) = changes(e)
changes(e1 ∧ · · · ∧ en) = changes(e1) ∪ · · · ∪ changes(en)

changes(e1| · · · |en) = changes(e1) ∪ · · · ∪ changes(en)

We make the following assumption to simplify the translation.

Assumption 4.4 Leta ∈ A be a state variable. Lete1∧· · ·∧en occur in the effect of an operator.
If e1, . . . , en are not all deterministic, thena or ¬a may occur as an atomic effect in at most one
of e1, . . . , en.

This assumption rules out effects like(a|b) ∧ (¬a|c) that may makea simultaneously true
and false. It also rules out effects like((d B a)|b) ∧ ((¬d B ¬a)|c) that are well-defined and
could be translated into the propositional logic. However, the additional complexity outweighs
the benefit of allowing them. Effects can often easily be transformed by the equivalences in Table
2.3 to satisfy Assumption 4.4:((d B a)|b) ∧ ((¬d B ¬a)|c) is equivalent to((d B a) ∧ (¬d B
¬a))|((d B a) ∧ c)|(b ∧ (¬d B ¬a))|(b ∧ c).

The problem in the translation that does not show up with deterministic operators is that for
nondeterministic choicese1| · · · |en the formula for eachei has to express the changes for exactly
the same set of state variables. This setB is given as a parameter to the translation function. The
setB has to include all state variables possibly changed by the effect.

τnd
B (e) = τB(e) whene is deterministic

τnd
B (e1| · · · |en) = τnd

B (e1) ∨ · · · ∨ τnd
B (en)

τnd
B (e1 ∧ · · · ∧ en) = τnd

B\(B2∪···∪Bn)(e1) ∧ τnd
B2

(e2) ∧ · · · ∧ τnd
Bn

(en)
whereBi = changes(ei) for all i ∈ {2, . . . , n}

The first part of the translationτnd
B (e) for deterministice is the translation of deterministic effects

we presented in Section 3.6.2 restricted to state variables inB. The other two parts cover all
nondeterministic effects in normal form. In the translation ofe1 ∧ · · · ∧ en all state variables that
are not changed are handled in the translation ofe1. Assumption 4.4 guarantees that for each
τnd
B (e) all state variables changed bye are inB.

Example 4.5 We translate the effect

e = (a|(d B a)) ∧ (c|d)



CHAPTER 4. NONDETERMINISTIC PLANNING 68

into a propositional formula. The set of state variables isA = {a, b, c, d}.

τnd
{a,b,c,d}(e) = τnd

{a,b}(a|(d B a)) ∧ τnd
{c,d}(c|d)

= (τnd
{a,b}(a) ∨ τnd

{a,b}(d B a)) ∧ (τnd
{c,d}(c) ∨ τnd

{c,d}(d))
= ((a′ ∧ (b ↔ b′)) ∨ (((a ∨ d) ↔ a′) ∧ (b ↔ b′)))∧

((c′ ∧ (d ↔ d′)) ∨ ((c ↔ c′) ∧ d′))

�

For expressing a state in terms ofA′ instead ofA, or vice versa, we need to map a valuation
of A to a corresponding valuation ofA′, or vice versa. for this purpose we defines[A′/A] =
{〈a′, s(a)〉|a ∈ A}.

Definition 4.6 Let A be a set of state variables. Leto = 〈c, e〉 be an operator overA in normal
form. Defineτnd

A (o) = c ∧ τnd
A (e).

Lemma 4.7 Leto be an operator over a setA of state variables. Then

{v|v is a valuation ofA ∪A′, v |= τnd
A (o)} = {s ∪ s′[A′/A]|s, s′ ∈ S, s′ ∈ imgo(s)}.

Proof: We show that there is a one-to-one match between valuations satisfyingτnd
A (o) and pairs of

states and their successor states.
For the proof from right to left assume thats ands′ are states such thats′ ∈ imgo(s). Hence

there isE ∈ [e]s such thats′ is obtained froms by making literals inE true. Letv = s∪s′[A′/A].
We show thatv |= τnd

A (o). Let o = 〈c, e〉. Sinceimgo(s) is non-empty,s |= c. It remains to show
thatv |= τnd

A (e).
Induction hypothesis: Lete be any effect over a setB of state variables, ands ands′ states

such for someE ∈ [e]s s′ |= E ands(a) = s′(a) for everya ∈ B such that{a,¬a} ∩ E = ∅.
Thens ∪ s′[A′/A] |= τnd

B (e).
Base case:e is a deterministic effect. There is only oneE ∈ [e]s. A proof similar to that of

Lemma 3.42 shows thats ∪ s′[A′/A] |= τnd
B (e).

Inductive case 1,e = e1 ∧ · · · ∧ en: By definitionτnd
B (e1 ∧ · · · ∧ en) = τnd

B\(B2∪···∪Bn)(e1) ∧
τnd
B2

(e2) ∧ · · · ∧ τnd
Bn

(en) for Bi = changes(ei), i ∈ {2, . . . , n}. Let E be any member of[e]s and
s′ a state such thats′ |= E ands(a) = s′(a) for everya ∈ B such that{a,¬a} ∩ E = ∅. By
definition of [e]s we haveE = E1 ∪ · · · ∪ En for someEi ∈ [ei]s for everyi ∈ {1, . . . , n}. The
assumptions of the induction hypothesis hold for everyei andBi, i ∈ {2, . . . , n}:

1. s′ |= Ei becauseEi ⊆ E.

2. By Assumption 4.4s(a) = s′(a) for everya ∈ Bi such that{a,¬a} ∩ Ei = ∅.

Similarly for e1 andB\(B2 ∪ · · · ∪Bn). Hences∪ s′[A′/A] |= τnd
Bi

(ei) for all i ∈ {2, . . . , n} and
s ∪ s′[A′/A] |= τnd

B\(B2∪···∪Bn)(ei), and therefores ∪ s′[A′/A] |= τnd
B (e).

Inductive case 2,e = e1| · · · |en: By definitionτnd
B (e1| · · · |en) = τnd

B (e1) ∨ · · · ∨ τnd
B (en). By

definition [e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s. HenceE ∈ [ei]s for somei ∈ {1, . . . , n}. Hence
the assumptions of the induction hypothesis hold for at least oneei, i ∈ {1, . . . , n} and we get
s∪ s′[A′/A] |= τnd

B (ei). As τnd
B (ei) is one of the disjuncts ofτnd

B (e) finally s∪ s′[A′/A] |= τnd
B (e).

For the proof from left to right assume thatv |= τnd
B (e) for v = s ∪ s′[A′/A]. We prove by

structural induction that the changes froms to s′ correspond to[e]s.



CHAPTER 4. NONDETERMINISTIC PLANNING 69

Induction hypothesis: Lete be any effect,B a set of state variables that includes those occurring
in e, ands ands′ states such thatv |= τnd

B (e) wherev = s∪ s′[A′/A]. Then there isE ∈ [e]s such
thats |= E ands(a) = s′(a) for all a ∈ B such that{a,¬a} ∩ E = ∅.

Base case:e is a deterministic effect. There is only oneE ∈ [e]s. A proof similar to that of
Lemma 3.42 shows that the changes betweens ands′ for a ∈ B correspond toE.

Inductive case 1,e = e1 ∧ · · · ∧ en: By definition[e]s = {E1 ∪ · · · ∪En|E1 ∈ [e1]s, . . . , En ∈
[en]s}, and by Assumption 4.4 sets of the state variables occurring ine1, . . . , en are disjoint.
By definition τnd

B (e1 ∧ · · · ∧ en) = τnd
B\(B2∪···∪Bn)(e1) ∧ τnd

B2
(e2) ∧ · · · ∧ τnd

Bn
(en) for Bi =

changes(ei), i ∈ {2, . . . , n}. The induction hypothesis fore and all a ∈ B is directly by
the induction hypothesis for alla ∈ B = (B\(B2 ∪ · · · ∪ Bn)) ∪ B2 ∪ · · · ∪ Bn because
v |= τnd

B\(B2∪···∪Bn)(e1) ∧ τnd
B2

(e2) ∧ · · · ∧ τnd
Bn

(en).
Inductive case 2,e = e1| · · · |en: By definition[e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s. By definition

τnd
B (e1| · · · |en) = τnd

B (e1) ∨ · · · ∨ τnd
B (en). Becausev |= τnd

B (e1| · · · |en), v |= τnd
B (ei) for some

i ∈ {1, . . . , n}. By the induction hypothesis there isE ∈ [ei]s with the given property. We get the
induction hypothesis fore because[ei]s ⊆ [e]s and hence alsoE ∈ [e]s.

Therefores′ is obtained froms by making some literals inE ∈ [e]s true and retaining the
values of state variables not mentioned inE, ands′ ∈ imgo(s). �

4.2 Computing with transition relations as formulae

As discussed in Section 2.3, formulae are a representation of sets of states. In this section we show
how operations on transition relations have a counterpart as operations on formulae that represent
transition relations.

Most implementations of the techniques in this section are based on binary decision diagrams
(BDDs) [Bryant, 1992], a representation (essentially a normal form) of propositional formulae
with useful computational properties, but the techniques are applicable to other representations of
propositional formulae as well.

4.2.1 Existential and universal abstraction

The most important operations performed on transition relations represented as propositional for-
mulae are based onexistential abstractionanduniversal abstraction.

Definition 4.8 Existential abstractionof a formulaφ with respect to an atomic propositiona is
the formula

∃a.φ = φ[>/a] ∨ φ[⊥/a].

Universal abstraction is defined analogously by using conjunction instead of disjunction.

Definition 4.9 Universal abstractionof a formulaφ with respect to an atomic propositiona is the
formula

∀a.φ = φ[>/a] ∧ φ[⊥/a].

Existential and universal abstraction ofφ with respect to aset of atomic propositionsis defined
in the obvious way: forB = {b1, . . . , bn} such thatB is a subset of the propositional variables



CHAPTER 4. NONDETERMINISTIC PLANNING 70

occurring inφ define
∃B.φ = ∃b1.(∃b2.(. . .∃bn.φ . . .))
∀B.φ = ∀b1.(∀b2.(. . .∀bn.φ . . .)).

In the resulting formulae there are no occurrences of variables inB.
Let φ be a formula overA. Then∃A.φ is a formula that consists of the constants> and⊥ and

the logical connectives only. The truth-value of this formula is independent of the valuation ofA,
that is, its value is the same for all valuations.

The following lemma expresses the important properties of existential and universal abstrac-
tion. When we writev ∪ v′ for a pair of valuations we view valuationsv as binary relations, that
is, sets of pairs such that{(a, b), (a, c)} 6∈ v for anya, b andc such thatb 6= c.

Lemma 4.10 Letφ be a formula overA ∪A′ andv′ a valuation ofA′. Then

1. v′ |= ∃A.φ if and only if(v ∪ v′) |= φ for at least one valuationv of A, and

2. v′ |= ∀A.φ if and only if(v ∪ v′) |= φ for all valuationsv of A.

Proof: We prove the statements by induction on the cardinality ofA. We only give the proof for
∃. The proof for∀ is analogous to that for∃.

Base case|A| = 0: There is only one valuationv = ∅ of the empty setA = ∅. When there is
nothing to abstract we have∃∅.φ = φ. Hence triviallyv′ |= ∃∅.φ if and only if (v ∪ ∅) |= φ.

Inductive case|A| ≥ 1: Take anya ∈ A. v′ |= ∃A.φ if and only if v′ |= ∃A\{a}.(φ[>/a] ∨
φ[⊥/a]) by the definition of∃a.φ. By the induction hypothesisv′ |= ∃A\{a}.(φ[>/a]∨ φ[⊥/a])
if and only if (v0∪v′) |= φ[>/a]∨φ[⊥/a] for at least one valuationv0 of A\{a}. Since the formula
φ[>/a] ∨ φ[⊥/a] represents both possible valuations ofa in φ, the last statement is equivalent to
(v ∪ v′) |= φ for at least one valuationv of A. �

4.2.2 Images and preimages as formula manipulation

Let A = {a1, . . . , an}, A′ = {a′1, . . . , a′n} andA′′ = {a′′1, . . . , a′′n}. Let φ1 be a formula over
A ∪ A′ andφ2 be a formula overA′ ∪ A′′. The formulae can be viewed as representations of
2n × 2n matrices or as transition relations over a state space of size2n.

The product matrix ofφ1 andφ2 is represented by a the following formula overA ∪A′′.

∃A′.φ1 ∧ φ2

Example 4.11 Let φ1 = a ↔ ¬a′ andφ2 = a′ ↔ a′′ represent two actions, reversing the truth-
value ofa and doing nothing. The sequential composition of these actions is

∃a′.φ1 ∧ φ2 = ((a ↔ ¬>) ∧ (> ↔ a′′)) ∨ ((a ↔ ¬⊥) ∧ (⊥ ↔ a′′))
≡ ((a ↔ ⊥) ∧ (> ↔ a′′)) ∨ ((a ↔ >) ∧ (⊥ ↔ a′′))
≡ a ↔ ¬a′′.

�

This idea can be used for computing the images, preimages and strong preimages of operators
and sets of states in terms of formula manipulation by existential and universal abstraction. Table



CHAPTER 4. NONDETERMINISTIC PLANNING 71

matrices formulas sets of states
vectorV1×n formula overA set of states
matrixMn×n formula overA ∪A′ transition relation
V1×n + V ′

1×n φ1 ∨ φ2 set union
φ1 ∧ φ2 set intersection

Mn×n ×Nn×n ∃A′.(τnd
A (o) ∧ τnd

A (o′)[A′′/A′, A′/A])[A′/A′′] sequential compositiono ◦ o′

V1×n ×Mn×n (∃A.(φ ∧ τnd
A (o)))[A/A′] imgo(T )

Mn×n × Vn×1 ∃A′.(τnd
A (o) ∧ φ[A′/A]) preimgo(T )

∀A′.(τnd
A (o)→φ[A′/A]) ∧ ∃A′.τnd

A (o) spreimgo(T )

Table 4.1: Correspondence between matrix operations, Boolean operations and set-
theoretic/relational operations. AboveT = {s ∈ S|s |= φ}, M is the matrix corresponding
to τnd

A (o) andN is the matrix corresponding too′.

4.1 outlines a number of connections between operations on vectors and matrices, on propositional
formulae, and on sets and relations. For transition relations we use valuations ofA ∪ A′ for
representing pairs for states and for states we use valuations ofA.

Lemma 4.12 Let φ be a formula overA and v a valuation ofA. Thenv |= φ if and only if
v[A′/A] |= φ[A′/A], and(φ[A′/A])[A/A′] = φ.

Definition 4.13 Leto be an operator andφ a formula. Define

imgo(φ) = (∃A.(φ ∧ τnd
A (o)))[A/A′]

preimgo(φ) = ∃A′.(τnd
A (o) ∧ φ[A′/A])

spreimgo(φ) = ∀A′.(τnd
A (o)→φ[A′/A]) ∧ ∃A′.τnd

A (o).

Theorem 4.14 Let T = {s ∈ S|s |= φ}. Then{s ∈ S|s |= imgo(φ)} = {s ∈ S|s |=
(∃A.(φ ∧ τnd

A (o)))[A/A′]} = imgo(T ).

Proof: s′ |= (∃A.(φ ∧ τnd
A (o)))[A/A′]

iff s′[A′/A] |= ∃A.(φ ∧ τnd
A (o)) L4.12

iff there is valuations of A such that(s ∪ s′[A′/A]) |= φ ∧ τnd
A (o) L4.10

iff there is valuations of A such thats |= φ and(s ∪ s′[A′/A]) |= τnd
A (o)

iff there iss ∈ T such that(s ∪ s′[A′/A]) |= τnd
A (o)

iff there iss ∈ T such thats′ ∈ imgo(s) L4.7
iff s′ ∈ imgo(T ).

�

Theorem 4.15 Let T = {s ∈ S|s |= φ}. Then{s ∈ S|s |= preimgo(φ)} = {s ∈ S|s |=
∃A′.(τnd

A (o) ∧ φ[A′/A])} = preimgo(T ).



CHAPTER 4. NONDETERMINISTIC PLANNING 72

Proof: s |= ∃A′.(τnd
A (o) ∧ φ[A′/A])

iff there iss′0 : A′ → {0, 1} such that(s ∪ s′0) |= τnd
A (o) ∧ φ[A′/A]

iff there iss′0 : A′ → {0, 1} such thats′0 |= φ[A′/A] and(s ∪ s′0) |= τnd
A (o) L4.10

iff there iss′ : A → {0, 1} such thats′ |= φ and(s ∪ s′0) |= τnd
A (o) L4.12

iff there iss′ ∈ T such that(s ∪ s′[A′/A]) |= τnd
A (o)

iff there iss′ ∈ T such thats′ ∈ imgo(s) L4.7
iff there iss′ ∈ T such thats ∈ preimgo(s′) (5) of L2.2
iff s ∈ preimgo(T ).

Above we defines′ = s′0[A/A′] (and hences′0 = s′[A′/A].) �

Theorem 4.16 Let T = {s ∈ S|s |= φ}. Then{s ∈ S|s |= spreimgo(φ)} = {s ∈ S|s |=
∀A′.(τnd

A (o)→φ[A′/A]) ∧ ∃A′.τnd
A (o)} = spreimgo(T ).

Proof:
s |= ∀A′.(τnd

A (o)→φ[A′/A]) ∧ ∃A′.τnd
A (o)

iff s |= ∀A′.(τnd
A (o)→φ[A′/A]) ands |= ∃A′.τnd

A (o)
iff (s ∪ s′0) |= τnd

A (o)→φ[A′/A] for all s′0 : A′ → {0, 1} ands |= ∃A′.τnd
A (o) L4.10

iff (s ∪ s′0) 6|= τnd
A (o) or s′0 |= φ[A′/A] for all s′0 : A′ → {0, 1} ands |= ∃A′.τnd

A (o)
iff (s ∪ s′[A′/A]) 6|= τnd

A (o) or s′ |= φ for all s′ : A → {0, 1} ands |= ∃A′.τnd
A (o) L4.12

iff s′ 6∈ imgo(s) or s′ |= φ for all s′ : A → {0, 1} ands |= ∃A′.τnd
A (o) L4.7

iff s′ ∈ imgo(s) impliess′ |= φ for all s′ : A → {0, 1} ands |= ∃A′.τnd
A (o)

iff imgo(s) ⊆ T ands |= ∃A′.τnd
A (o)

iff imgo(s) ⊆ T and there iss′ : A → {0, 1} with (s ∪ s′[A′/A]) |= τnd
A (o) L4.10

iff imgo(s) ⊆ T and there iss′ : A → {0, 1} with s′ ∈ imgo(s) L4.7
iff imgo(s) ⊆ T and there iss′ ∈ T with s′ ∈ imgo(s)
iff imgo(s) ⊆ T and there iss′ ∈ T with sos′

iff s ∈ spreimgo(T ).
Above we defines′ = s′0[A/A′] (and hences′0 = s′[A′/A].) �

Corollary 4.17 Let o = 〈c, (e1| · · · |en)〉 be an operator such that allei are deterministic. The
formula spreimgo(φ) is logically equivalent to regrnd

o (φ) as given in Definition 4.1.

Proof: By Theorems 4.2 and 4.16{s ∈ S|s |= regro(φ)} = spreimgo({s ∈ S|s |= φ}) = {s ∈
S|s |= spreimgo(φ)}. �

Example 4.18 Let o = 〈c, a ∧ (a B b)〉. Then

regrnd
o (a ∧ b) = c ∧ (> ∧ (b ∨ a)) ≡ c ∧ (b ∨ a).

The transition relation ofo is represented by

τnd
A (o) = c ∧ a′ ∧ ((b ∨ a) ↔ b′) ∧ (c ↔ c′).



CHAPTER 4. NONDETERMINISTIC PLANNING 73

The preimage ofa ∧ b with respect too is represented by

∃a′b′c′.((a′ ∧ b′) ∧ τnd
A (o)) ≡ ∃a′b′c′.((a′ ∧ b′) ∧ c ∧ a′ ∧ ((b ∨ a) ↔ b′) ∧ (c ↔ c′))

≡ ∃a′b′c′.(a′ ∧ b′ ∧ c ∧ (b ∨ a) ∧ c′)
≡ ∃b′c′.(b′ ∧ c ∧ (b ∨ a) ∧ c′)
≡ ∃c′.(c ∧ (b ∨ a) ∧ c′)
≡ c ∧ (b ∨ a)

�

Hence regression for nondeterministic operators (Definition 4.1) can be viewed as a specialized
method for computing preimages of sets of states represented as formulae.

Many algorithms include the computation of the union of images or preimages with respect
to all operators, for example

⋃
o∈O imgo(T ), or in terms of formulae,

∨
o∈O imgo(φ) whereT =

{s ∈ S|s |= φ}. A technique used by many implementations of such algorithms is the following.
Instead of computing the images or preimages one operator at a time, construct a combined tran-
sition relation for all operators. For an illustration of the technique, considerimgo1(φ)∨ imgo2(φ)
that represents the union of state sets represented byimgo1(φ) andimgo2(φ). By definition

imgo1(φ) ∨ imgo2(φ) = (∃A.(φ ∧ τnd
A (o1)))[A/A′] ∨ (∃A.(φ ∧ τnd

A (o2)))[A/A′].

Since substitution commutes with disjunction we have

imgo1(φ) ∨ imgo2(φ) = (∃A.(φ ∧ τnd
A (o1))) ∨ (∃A.(φ ∧ τnd

A (o2)))[A/A′].

Since existential abstraction commutes with disjunction we have

imgo1(φ) ∨ imgo2(φ) = (∃A.((φ ∧ τnd
A (o1)) ∨ (φ ∧ τnd

A (o2))))[A/A′].

By logical equivalence finally

imgo1(φ) ∨ imgo2(φ) = (∃A.(φ ∧ (τnd
A (o1) ∨ τnd

A (o2))))[A/A′].

Hence an alternative way of computing the union of images
∨

o∈O imgo(φ) is to first form the
disjunction

∨
o∈O τnd

A (o) and then conjoin the formula withφ and only once existentially abstract
the propositional variables inA. This may reduce the amount of computation because existential
abstraction is in general expensive and it may be possible to simplify the formulae

∨
o∈O τnd

A (o)
before existential abstraction.

The definitions ofpreimgo(φ) andspreimgo(φ) allow using
∨

o∈O τnd
A (o) in the same way.

Notice that defining progression for arbitrary formulae (sets of states) seems to require the ex-
plicit use of existential abstraction with potential exponential increase in formula size. A simple
syntactic definition of progression similar to that of regression does not seem to be possible be-
cause the value of a state variable in a given state cannot be stated in terms of the values of the
state variables in the successor state. This is because of the asymmetry of deterministic actions:
the current state and an operator determine the successor state uniquely but the successor state
and the operator do not determine the current state uniquely. In other words, the changes that
take place are a function of the current state, but not a function of the successor state. Taking an
action erases the information that determines which changes take place between two states. This
information is visible in the predecessor state but not in the successor state.



CHAPTER 4. NONDETERMINISTIC PLANNING 74

4.3 Problem definition

We state the conditional planning problem in the general form. Because the number of observa-
tions that are possible has a very strong effect on the type of solution techniques that are applicable,
we will discuss algorithms for three classes of planning problems that are defined in terms of re-
strictions on the setB of observable state variables.

The setB did not appear in the definition of deterministic planning. This is the set ofobservable
state variables. The idea is that plans can make decisions about what operations to apply and how
the execution proceeds based on the values of the observable state variables. Restrictions on
observability and sensing emerge because of various restrictions on the sensors human beings and
robots have: typically only a small part of the world can be observed.

However, because of nondeterminism and the possibility of more than one initial state, it is
in general not possible to use the same sequence of operators for reaching the goals from all the
initial states, and a more general notion of plans has to be used.

Nondeterministic planning problems under certain restrictions have very different properties
than the problem in its full generality. In Chapter 3 we had the restriction to one initial state (I
was defined as a valuation) and deterministic operators. We relax these two restrictions in this
chapter, but still consider two special cases obtained by restrictions on the setB of observable
state variables.

1. Full observability.

This is the most direct extension of the deterministic planning problem of the previous
chapter. The difference is that we have to use a more general notion of plans with branches
(and with loops, if there is no upper bound on the number of actions that might be needed
to reach the goals.)

2. No observability.

Planning without observability can be considered more difficult than planning with full ob-
servability, although they are in many respects not directly comparable.

The main difference to deterministic planning as discussed in Chapter 3 and to planning
with full observability is that during plan execution it is not known what the actual current
state is, and there are several possible current states. This complication means that planning
takes place inthe belief space: the role of individual states in deterministic planning is taken
by sets of states, calledbelief states.

Because no observations can be made, branching is not possible, and plans are still just
sequences of actions, just like in deterministic planning with one initial state.

The type of observability we consider in this lecture is very restricted as only values of in-
dividual state variables can be observed (as opposed to arbitrary formulae) and observations are
independent of what operators have been executed before. Hence we cannot for example directly
express special sensing actions. However, extensions to the above definition like sensing actions
can be relatively easily reduced to the basic definition but we will not discuss this topic further.

4.3.1 Memoryless plans

We use two definitions of plans. The simpler definition, formalized as mappings from states
to operators, is applicable to fully observable planning problems only. The general definition



CHAPTER 4. NONDETERMINISTIC PLANNING 75

has a sufficient generality for all kinds of planning problems, and includes the sequential plans
considered for deterministic planning as a special case.

Definition 4.19 Let 〈A, I,O,G, V 〉 be a succinct transition system. LetS be the set of states (all
Boolean valuations ofA). Then amemoryless planis a partial functionπ : S → O.

To be able to execute a memoryless plan the current state must always be known, otherwise the
correct operator in general cannot be correctly chosen. Hence we always assume full observability
when using a memoryless plan. In the context of Markov decision processes (see Section 5.5)
memoryless plans are also known aspoliciesor history dependent policies.

We define the satisfaction of plan objectives in terms of the transition system that is obtained
when the original transition system is being controlled by a plan, that is, the plan chooses which
of the transitions possible in a state is taken.

Definition 4.20 (Execution graph of a memoryless plan)Letπ be a memoryless plan for a suc-
cinct transition system〈A, I, O, G, V 〉. Then theexecution graphof π and the transition system is
the graph〈S, E〉 where

1. E ⊆ S × S and

2. (s, s′) ∈ E if s′ ∈ imgo(s).

The statess such thats |= I areinitial nodesof the execution graph, and the statess such that
s |= G aregoal nodesof the execution graph. We have introduced the nodes of an execution graph
as a notion that is separate from the states in the transition system because for the more general
notion of plans we define next these two notions do not coincide.

4.3.2 Conditional plans

Plans determine what actions are executed. We formalize plans as a form of directed graphs. Each
node is assigned an operator and information on zero or more successor nodes.

Definition 4.21 Let Π = 〈A, I,O,G, V 〉 be a succinct transition system. Aplan for Π is a triple
〈N, b, l〉 where

1. N is a finite set of nodes,

2. b ⊆ L×N maps initial states to starting nodes, and

3. l : N → O × 2L×N is a function that assigns each noden an operator and a set of pairs
〈φ, n′〉whereφ is a formula over the observable state variablesV andn′ ∈ N is a successor
node.

Nodesn with l(n) = 〈o, ∅〉 for someo ∈ O are terminal nodes.

Ignoring the operators and branch formulae in a planπ we can construct a graphG(π) =
〈N,E〉 with E ⊆ N ×N such that〈n, n′〉 ∈ E iff 〈φ, n′〉 ∈ B for l(n) = 〈o,B〉 and someφ. A
planπ is acyclic if there is no non-trivial path starting and ending at the same node inG(π).

Plan execution starts from a noden ∈ N and states such that〈φ, n〉 ∈ b ands |= I ∧ φ.
Execution in noden with l(n) = 〈o,B〉 proceeds by executing the operatoro and then testing for



CHAPTER 4. NONDETERMINISTIC PLANNING 76

each〈φ, n′〉 ∈ l(n) whetherφ is true in all possible current states, and if it is, continuing execution
from plan noden′. At most oneφ may be true for this to be well-defined. Plan execution ends
when none of the branch labels matches the current state. In a terminal node plan execution
necessarily ends.

Definition 4.22 (Execution graph of a conditional plan) Let〈A, I,O,G, V 〉 be a succinct tran-
sition system andπ = 〈N, b, l〉 be a plan. Definethe execution graphof π as a pair〈M,E〉 where

1. M = S × (N ∪ {⊥}), whereS is the set of Boolean valuations ofA,

2. E ⊆ M×M has an edge from〈s, n〉 ∈ S×N to 〈s′, n′〉 ∈ S×N if and only ifl(n) = 〈o,B〉
and for some〈φ, n′〉 ∈ B

(a) s′ ∈ imgo(s) and

(b) s′ |= φ.

and an edge from〈s, n〉 ∈ S ×N to 〈s′,⊥〉 if and only if

(a) l(n) = 〈o,B〉,
(b) s′ ∈ imgo(s), and

(c) there is no〈φ, n′〉 ∈ B such thats′ |= φ.

The initial nodesof these execution graphs are nodes〈s, n〉 such thats |= I ands |= φ for
some〈φ, n〉 ∈ b.

Thegoal nodesof these execution graphs are nodes〈s, n〉 such thats |= G.
We can translate every memoryless plan to a conditional plan.

Definition 4.23 Let 〈A, I,O,G, V 〉 be a succinct transition system. LetS be the set of all states
onA. Letπ : S → O be a memoryless plan. DefineC(π) = 〈N, b, l〉 where

1. N = O,

2. b = {〈FMA({s ∈ S|π(s) = o}), o〉|o ∈ O}, and

3. l(o) = (o, {〈FMA({s ∈ S|π(s) = o}), o′〉|o′ ∈ O}) for all o ∈ O.

AboveFMA(T ) is a formulaφ such thatT = {s ∈ S|s |= φ}.
The memoryless planπ corresponds the conditional planC(π) in the sense that the subgraphs

induced by the initial nodes are isomorphic, and this isomorphism preserves both initial and goal
nodes.

4.3.3 Decision problems

There are different types of objectives the plans may have to fulfill. The most basic one, considered
in much of AI planning research, is the reachability of a goal state. In this case every plan execution
has a finite length. Also problems with infinite plan executions can be considered. A plan does
not reach a goal and terminate, but is a continuing process that has to repeatedly reach goal states
or avoid visiting bad states. Examples of these are different kinds of maintenance tasks: keep a
building clean and transport mail from location A to location B.



CHAPTER 4. NONDETERMINISTIC PLANNING 77

We consider two objectives defined in terms of finite plan executions. The first objective re-
quires, just like in deterministic planning, that a goal state is reached after a given number of
operator executions.

Not all planning problems that have an intuitively plausible solution are solvable under this
objective. A problem that is intuitively solvable is tossing a coin until it yields heads. This problem
can be in practice always solved after a small number of tosses but because there is no guaranteed
upper bound on the number of tosses that are needed, under the first objective it is not solvable.
Hence we also consider another objective.

The second objective requires that from every state that can be reached by executing the plan,
the plan is either a goal state or a goal state is reachable by executing the plan further.

The third objective we consider is defined in terms of infinite plan executions. The objective
requires that all executions of a plan are infinite, and on every execution all states that are visited
are goal states. This objective is known asmaintenancebecause the transition system has to be
kept in one of the goal states.

Other infinite horizon objectives that are defined in terms of expected costs/rewards are used in
connection with probabilistic planning, see Section 5.3.

Definition 4.24 (Bounded reachability) A planπ for 〈A, I, O, G, V 〉 under theBounded Reach-
ability criterion fulfills the following.

For all initial nodesx in the execution graph, all paths starting fromx have a finite length and
maximal paths end in a goal node.

Definition 4.25 (Unbounded reachability) A plan π for 〈A, I,O,G, V 〉 under theUnbounded
Reachabilitycriterion fulfills the following.

For all initial nodesx in the execution graph, for everyx′ to which there is a path fromx there
is a path fromx′ of length≥ 0 to somex′′ such thatx′′ is a goal node without successor nodes.

This plan objective with unbounded looping can be interpreted probabilistically. For every
nondeterministic choice in an operator we have to assume that each of the alternatives has a non-
zero probability. Then for goal reachability, a plan with unbounded looping is simply a plan that
has no finite upper bound on the length of its executions, but that with probability 1 eventually
reaches a goal state. A non-looping plan also reaches a goal state with probability 1, but there is a
finite upper bound on the execution length.

Definition 4.26 (Maintenance) A plan π for 〈A, I, O, G, V 〉 under theMaintenancecriterion
fulfills the following.

All nodesx in the execution graph to which there is a path of length≥ 0 from an initial node
of the execution graph are goal nodes and have a successor node.

Example 4.27 Consider the plan〈N, b, l〉 for a problem instance with the operatorsO = {o1, o2, o3},
where

N = {1, 2}
b = {〈>, 1〉}

l(1) = 〈o3, {〈φ1, 1〉, 〈φ2, 2〉, 〈φ3, 3〉}〉
l(2) = 〈o2, {〈φ4, 1〉, 〈φ5, 3〉}〉

This could be visualized as the program.



CHAPTER 4. NONDETERMINISTIC PLANNING 78

1: o3

CASE
φ1: GOTO 1
φ2: GOTO 2
¬(φ1 ∨ φ2): GOTO 3

2: o2

CASE
φ4: GOTO 1
¬φ4: GOTO 3

3:
Every plan〈N, b, l〉 can be written as such a program. �

A plan isacyclic if it is a directed acyclic graph in the usual graph theoretic sense.

4.4 Planning with full observability

Nondeterminism causes several The differences to algorithms for deterministic planning The main
difference is that successor states are not uniquely determined by the current state and the action,
and different action may be needed for each successor state. Further, nondeterminism may require
loops. Consider tossing a die until it yields 6. Plan for this task involves tossing the die over
and over, and there is no upper bound on the number of tosses that might be needed.1 Hence we
need plans with loops for representing the sequences of actions of unbounded length required for
solving the problem.

Below in Section 4.4.1 we first discuss the simplest algorithm for planning with nondetermin-
ism and full observability. The plans this algorithm produces are acyclic, and the algorithm does
not find plans for problem instances that only have plans with loops. Then in Section 4.4.2 we
present an algorithm that also produces plans with loops. The structure of the algorithm is more
complicated. The algorithms can be implemented by using data structures like binary decision
diagrams which makes it possible to utilize the regularities in the state space and to solve very big
planning problems. Representation of planning problems with these logic-based data structures is
explained in Section 4.2.

4.4.1 An algorithm for constructing acyclic plans

Next we present an algorithm for constructing acyclic plans for nondeterministic problem with full
observability. Acyclicity means that during any execution of the plan no state is visited more than
once. Not all nondeterministic planning problems that have an intuitively acceptable solution have
a solution as an acyclic plan. For a more detailed discussion of this topic and related algorithms
see[Cimatti et al., 2003].

The basic algorithm is for transition systems as in Definition 2.1 but the techniques in Section
4.2 can be directly applied to obtain a logic-based algorithm for succinct transition systems (Def-
inition 2.11 in Section 2.3) that can be implemented easily by using any publicly available BDD
package.

In the first phase the algorithm computes distances of the states. In the second phase the
algorithm constructs a plan based on the distances.

1However, for everyp > 0 there is a finite plan that reaches the goal with probabilityp or higher.



CHAPTER 4. NONDETERMINISTIC PLANNING 79

distance toG
∞ 3 2 1 0

G

Figure 4.1: Goal distances in a nondeterministic transition system

Let G be a set of states andO a set of operators. Then we define thebackward distance sets
Dbwd

i for G, O that consist of those states for which there is a guarantee of reaching a state inG
with at mosti operator applications.

Dbwd
0 = G

Dbwd
i = Dbwd

i−1 ∪
⋃

o∈O spreimgo(Dbwd
i−1) for all i ≥ 1

Definition 4.28 LetG be as set of states andO a set of operators, and letDbwd
0 , Dbwd

1 , . . . be the
backward distance sets forG andO. Thenthe backward distanceof a states to G is

δbwd
G (s) =

{
0 if s ∈ G
i if s ∈ Dbwd

i \Dbwd
i−1

If s 6∈ Dbwd
i for all i ≥ 0 thenδbwd

G (s) = ∞.

Example 4.29 We illustrate the distance computation by the diagram in Figure 4.1. The set of
states with distance 0 is the set of goal statesG. States with distancei are those for which there
is an action that always leads to states with distancei − 1 or smaller. In this example the action
depicted by the solid arrow has this property for every state. The dashed arrows depict the second
action which for no state is guaranteed to get closer to the goal states. States for which there is no
finite upper bound on the number of actions for reaching a goal state have distance∞. �

Given the backward distance sets we can construct a plan covering all states having a finite
backward distance. LetS′ ⊆ S be those states having a finite backward distance. The planπ is
defined by assigning for everys ∈ S such thatδbwd

G (s) ≥ 1 π(s) any operatoro ∈ O such that
imgo(s) ⊆ Dbwd

i−1 wherei = δbwd
G (s).

The plan execution starts from one of the initial states. As we have full observability, we may
observe the current states and then execute the action corresponding to the operatorπ(s), reaching
one of the successor statess′ ∈ imgo(s). The plan execution proceeds by repeatedly observing the
new current states′ and executing the associated actionπ(s′) until the current state is a goal state.



CHAPTER 4. NONDETERMINISTIC PLANNING 80

Lemma 4.30 Let a states be inDj . Then there is a plan that reaches a goal state froms by at
mostj operator applications.

The algorithm can be implemented by using logic-based data structures and operations defined
in Section 4.2 by representing the set of goal states as a formula, using the logic-based operation
spreimgo(φ) instead of the set-based operationspreimgo(T ) for computing the setsDbwd

i that
are also represented as formulae, and replacing all set-theoretic operations like∪ and∩ by the
respective logical operations∨ and∧.

4.4.2 An algorithm for constructing plans with loops

There are many nondeterministic planning problems that require plans with loops because there is
no finite upper bound on the number of actions that might be needed for reaching the goals. These
plan executions with an unbounded length cannot be handled in acyclic plans of a finite size. For
unbounded execution lengths we have to allow loops (cycles) in the plans.

Example 4.31 �

The problem is those states that do not have a finite strong distance as defined Section 4.4.1.
Reaching the goals from these states is either impossible or there is no finite upper bound on the
number of actions that might be needed. For the former states nothing can be done, but the latter
states can be handled by plans with loops.

We present an algorithm based on a generalized notion of distances that does not require reach-
ability by a finitely bounded number of actions. The algorithm is based on the procedureprunethat
identifies a set of states for which reaching a goal state eventually is guaranteed. The procedure
pruneis given in Figure 4.2.

We introduce some terminology. LetS be a set of states,O a set of operators, andx : S → O
a mapping from states to operators. A sequences0, . . . , sn of states is anexecutionif for all
i ∈ {1, . . . , n} there iso ∈ O such thatsi ∈ imgo(si−1), and it is anexecution ofx if si ∈
imgx(si−1)(si−1) for all i ∈ {1, . . . , n}.

Lemma 4.32 (Procedure prune)Let S be a set of states,O a set of operators andG ⊆ S a
set of states. Then the procedure call prune(S,O,G) will terminate after a finite number of steps
returning a set of statesW ⊆ S such that there is functionx : W → O such that

1. for everys ∈ W there is an executions0, s1, . . . , sn of x with n ≥ 1 such thats = s0 and
sn ∈ G,

2. imgx(s)({s}) ⊆ W ∪G for everys ∈ W , and

3. There is no functionx satisfying the above properties for states not inW : for everys ∈
S\W and functionx′ : S → O there is an executions0, . . . , sn of x′ such thats = s0 and
there is nom ≥ n and executionsn, sn+1, . . . , sm such thatsm ∈ G.

Proof: The proof is by two nested induction proofs that respectively correspond to the repeat-until
loops on lines 9 and 13 in the procedureprune. If there is no plan that is guaranteed to reach a goal
state from a states, then this is because for any plan after some number of executions stepsi it is
possible to reach a state from which no sequence actions can reach a goal state. A plan covering



CHAPTER 4. NONDETERMINISTIC PLANNING 81

1: procedureprune(S,O,G);
2: W−1 := S;
3: W0 := ∅;
4: repeat
5: W ′

0 := W0;
6: W0 := (W ′

0 ∪
⋃

o∈O preimgo(W ′
0 ∪G)) ∩ S;

7: until W0 = W ′
0; (* States from which a goal state can be reached by≥ 1 operators *)

8: i := 0;
9: repeat

10: i := i + 1;
11: k := 0;
12: S0 := ∅;
13: repeat
14: k := k + 1; (* States from which a state inG is reachable with≤ k steps. *)
15: Sk := Sk−1 ∪

⋃
o∈O(S ∩ preimgo(Sk−1 ∪G) ∩ spreimgo(Wi−1 ∪G));

16: until Sk = Sk−1; (* States that stay withinWi−1 before reachingG. *)
17: Wi := Sk;
18: until Wi = Wi−1; (* States inWi stay withinWi before reachingG. *)
19: return Wi;

Figure 4.2: Algorithm for detecting a loop that eventually makes progress

all other states exists with an execution reaching a goal state in someh steps. The outer loop and
induction go throughi = 0, 1, 2, . . . and the inner loop and induction throughh = 0, 1, 2, . . ..

Induction hypothesis: There is functionx : Wi → O such that

1. for everys ∈ Wi there is an executions0, . . . , sn of x such thatn ≥ 1, s = s0 andsn ∈ G,

2. imgx(s)({s}) ⊆ Wi−1 ∪G for everys ∈ Wi, and

3. for all functionsx′ : S → O and statess ∈ S\Wi there isi′ ∈ {0, . . . , i} and an execution
s0, . . . , si′ of x′ such thats0 = s and there is noh ≥ i′ and executionsi′ , si′+1, . . . , sh such
thatsh ∈ G.

Base casei = 0:

1. W0 has been computed to fulfill exactly this property. We denote the value of the variables
W0 in the end of iterationi of the first repeat-until loop byW0,i.

Induction hypothesis:

(a) There is a functionx : W0,j → O such that there is an execution ofx for every
s ∈ W0,j of lengthj ≥ 1 reaching a state inG.

(b) For states not inW0,j there is nox with this property.

Base casej = 1: After the first iterationW0,1 =
⋃

o∈O preimgo(G). Hence for every
s ∈ W0,1 assignx(s) = o for anyo such thats ∈ preimgo(G).

(a) Now there is an execution of length 1 from anys ∈ W0,1 to a state inG.



CHAPTER 4. NONDETERMINISTIC PLANNING 82

(b) For states not inW0,1 no one operator may reach a state inG.

Inductive casej ≥ 2: By induction hypothesis there is a functionx with execution of length
j − 1 ≥ 1 for reaching a state inG for every state for which such an execution exists. We
extend this function to cover statess ∈ W0,j\W0,j−1 as follows:x(s) = o for anyo such
thats ∈ preimgo(W0,j−1 ∪G).

(a) For anys ∈ W0,j there is an execution ofx reaching a state inG because for states
s ∈ W0,j−1 this is by the induction hypothesis, and for states inW0,j\W0,j−1 applying
the operatorx(s) may reach a state inW0,j−1 for which an execution reachingG exists
by the induction hypothesis.

(b) Let s be a state such that there is a functionx′ : S → O with an execution that
reachesG from s with j steps. Hence there is a states′ for which an execution with
x′ reachesG from s′ with j − 1 steps. Hence by the induction hypothesiss ∈ W0,j−1

and consequentlys ∈ preimgx′(s)(W0,j−1). Therefore for any state not inW0,j there
is no such functionx′.

2. BecauseW−1 = S trivially imgx(s)({s}) ⊆ W−1 ∪G.

3. Statess ∈ W0\W−1 are exactly those states from which no operator sequence leads toG
by construction ofW0, as shown above.

Inductive casei ≥ 1: For the innerrepeat-untilloop we prove inductively the following.
Induction hypothesis: There is functionx : Sk → O such that

1. for everys ∈ Sk there is an executions0, s1, . . . , sn of x such thatn ∈ {1, . . . , k}, s = s0

andsn ∈ G,

2. imgx(s)({s}) ⊆ Wi−1 ∪G for everys ∈ Sk, and

3. for all functionsx′ : S → O and statess ∈ S\Sk either

(a) there isi′ ∈ {0, . . . , i} and an executions0, . . . , si′ of x′ such thats0 = s and there is
noh ≥ i′ and executionsi′ , si′+1, . . . , sh such thatsh ∈ G, or

(b) there is nok′ ∈ {1, . . . , k} and an executions0, . . . , sk′ of x′ such thats0 = s and
sk′ ∈ G.

Base casek = 0: BecauseS0 = ∅, cases (1) and (2) trivially hold for everys ∈ S0. It remains
to show the third component of the induction hypothesis.

3. For anys ∈ S\S0 = S (3b) is satisfied because it requires executions to be longer than
k = 0.

Inductive casek ≥ 1: We extend the functionx : Sk−1 → O to cover states inSk\Sk−1.
Let s be any state inSk. If s ∈ Sk−1 then properties (1) and (2) are by the induction hypothesis.
Otherwises ∈ Sk\Sk−1. Therefore by definition ofSk, s ∈ preimgo(Sk−1∪G)∩spreimgo(Wi−1∪
G) for someo ∈ O.



CHAPTER 4. NONDETERMINISTIC PLANNING 83

1. Becauses ∈ preimgo(Sk−1 ∪ G) for someo ∈ O, by (4) of Lemma 2.2 eithers ∈
preimgo(Sk−1) or s ∈ preimgo(G).

If s ∈ preimgo(G) then we setx(s) = o. The desired execution just consists ofs and a state
s′ ∈ G.

If s ∈ preimgo(Sk−1)\preimgo(G) then there is a states′ ∈ Sk−1 such thats′ ∈ imgo({s}).
By the induction hypothesis there is an execution ofx starting froms′ that ends in a goal
state. Fors such an execution is obtained by prefixing witho, so we definex(s) = o.

2. Becauses ∈ spreimgo(Wi−1 ∪G), by (2) and (3) of Lemma 2.2imgo({s}) ⊆ Wi−1 ∪G.

3. Take anys ∈ S\Sk. Now for every operatoro ∈ O, eithers 6∈ spreimgo(Wi−1 ∪ G) or
s 6∈ preimgo(Sk−1 ∪G). Consider any functionx′ : S → O such thatx′(s) = o.

In the first case by the outer induction hypothesis there isi′ ∈ {0, . . . , i − 1} and an ex-
ecutions0, . . . , si′ of x′ such thats0 ∈ imgo(s) and there is noh ≥ i′ and execution
si′ , si′+1, . . . , sh such thatsh ∈ G. Hence executingo first could similarly lead to the state
si′ from which no goal could be reached, now requiringi steps.

In the second case by the inner induction hypothesis for alls′ ∈ imgo(s) there is no execu-
tion of lengthk − 1 ending in a goal state.

Because this holds for anyo ∈ O, everyx′ has one of these properties.

This completes the inner induction. To establish the induction step of the outer induction
consider the following. The inner repeat-until loops ends whenSk = Sk−1. This means that
Sz = Sk for all z ≥ k. Hence executions for reaching a goal state for (1) and (3) are allowed to
have arbitrarily high lengthk. The outer induction hypothesis is obtained from the inner induction
hypothesis by removing the upper bound and replacingSk by Wi. By constructionWi = Sk.

This finishes the outer induction proof. The claim of the lemma is obtained from the outer
induction hypothesis by noticing that the outer loop exits whenWi = Wi−1 (it will exit after a
finite number of iterations becauseW0 is finite and its size decreases on every iteration) and then
we can replace bothWi andWi−1 by W to obtain the claim of the lemma. �

The algorithm in Figure 4.3 usespruneto identify states from which a goal state is reachable
by some execution and no execution leads to a state outside the set. On line 4 the algorithm tests
whether the reachability of a goal state can be guaranteed for the initial states. If not, the algorithm
terminates. Starting on line 7 the algorithm computes theweak backward distancesto G for all
states inL. Finally, starting on line 11 the algorithm assigns every state inL\G an operator that
may reduce the distance to a goal by one.

4.4.3 An algorithm for constructing plans for maintenance goals

There are many important planning problems in which the objective is not to reach a goal state and
then stop execution. Amaintanence goalis a goal that has to hold in all time points. To achieve a
maintenance goals a plan has to keep the state of the system in a goal state indefinitely.

Plans that satisfy a maintenance goal have only infinite executions.
Figure 4.4 gives an algorithm for finding plans for maintenance goals. The algorithm starts

with the setG of all states that satisfy the property to be maintained. Then iteratively such states



CHAPTER 4. NONDETERMINISTIC PLANNING 84

1: procedureFOplancyclic(I,O,G)
2: S := the set of all states;
3: L := G∪ prune(S,O,G);
4: if I 6⊆ L then return false;
5: D0 := G; (* States with weak backward distance 0 *)
6: i := 1;
7: repeat
8: Di := Di−1 ∪

⋃
o∈O(preimgo(Di−1) ∩ spreimgo(L));

9: i := i + 1;
10: until Di = Di−1;
11: for eachs ∈ Di\G do
12: d := number such thats ∈ Dd\Dd−1; (* State has weak backward distanced. *)
13: assignπ(s) := o such thatimgo(s) ⊆ L andimgo(s) ∩Dd−1 6= ∅;
14: end do

Figure 4.3: Algorithm for nondeterministic planning with full observability

1: procedureFOplanMAINTENANCE(I,O,G)
2: i := 0;
3: G0 := G;
4: repeat
5: i := i + 1; (* The subset ofGi−1 from whichGi−1 can be always reached. *)
6: Gi :=

⋃
o∈O (spreimgo(Gi−1) ∩Gi−1);

7: until Gi = Gi−1;
8: return Gi;
9: for eachs ∈ Gi do

10: assignπ(s) := o such thatimgo(s) ⊆ Gi;
11: end do

Figure 4.4: Algorithm for nondeterministic planning with full observability and maintenance goals



CHAPTER 4. NONDETERMINISTIC PLANNING 85

are removed fromG for which the satisfaction of the property cannot be guaranteed in the next
time point. More precisely, the setsGi for i ≥ 0 consist of all those states in which the goal
objective can be maintained for the nexti time points. For somei the setsGi andGi−1 coincide,
and thenGj = Gi for all j ≥ i. This means that starting from the states inGi the goal objective
can be maintained indefinitely.

Theorem 4.33 Let I be a set of initial states,O a set of operator andG a set of goal states. Let
G′ be the set returned by the procedure FOplanMAINTENANCE in Figure 4.4.

ThenG′ ⊆ G and there is a planπ such that imgπ(s)(s) ⊆ G′ for everys ∈ G′, and for every
s ∈ S\G′ and every planπ′ there isn ≥ 1 and and an executions0, . . . , sn of π′ with s0 = s such
thatsn 6∈ G.

Proof:
Induction hypothesis:

1. Gi ⊆ G,

2. there is a planπ such thatimgπ(s)(s) ⊆ Gi−1 for everys ∈ Gi, and

3. for everys ∈ S\Gi and every planπ′ there isn ∈ {1, . . . , i} and an executions0, . . . , sn

of π′ with s0 = s such thatsn 6∈ G.

Base casei = 1:

1. G1 ⊆ G0 = G by construction.

2. By constructionG1 =
⋃

o∈O(spreimgo(G0) ∩G0). Hence for everys ∈ G1 there iso ∈ O
such thats ∈ spreimgo(G0)∩G0 ⊆ spreimgo(G0). Henceimgo(s) ⊆ G0. Defineπ(s) = o.
Henceimgπ(s)(s) ⊆ G0 for everys ∈ G1.

3. Consider anys ∈ S\G1. For everyo ∈ O imgo(s) 6⊆ G0 = G becauses 6∈ G1. Hence for
everys ∈ S\G1 and every planπ′ there is an executions0, s1 of π′ with s0 = s such that
s1 6∈ G.

Inductive casei ≥ 2:

1. As Gi ⊆ Gi−1 and by the induction hypothesisGi−1 ⊆ G, Gi ⊆ G.

2. By constructionGi =
⋃

o∈O(spreimgo(Gi−1) ∩ Gi−1). Hence for everys ∈ Gi there is
o ∈ O such thats ∈ spreimgo(Gi−1) ∩ Gi−1 ⊆ spreimgo(Gi−1). Henceimgo(s) ⊆ Gi−1.
Defineπ(s) = o. Hence there is a planπ such thatimgπ(s)(s) ⊆ Gi−1 for everys ∈ Gi.

3. Consider anys ∈ S\Gi. Hences 6∈ spreimgo(Gi−1) for everyo ∈ O. Hence for every
o ∈ O there iss′ ∈ S\Gi−1 such thats′ ∈ imgo(s). By the induction hypothesis for every
planπ′ there isn ∈ {1, . . . , i− 1} and an executions0, . . . , sn of π′ with s0 = s′ such that
sn 6∈ G. Hence for every planπ′ there is alson′ = n + 1 ∈ {1, . . . , i} and an execution
s, s0, . . . , sn of π′ with s0 = s′ such thatsn 6∈ G.

BecauseGi are finite sets andGi ⊆ Gi−1 and everyGi+1 is a function ofGi, Gj = Gj−1 for
somej and the loop iteration terminates after a finite number of iterations.

Now the claim of the lemma are obtained as follows.



CHAPTER 4. NONDETERMINISTIC PLANNING 86

PASTURE

RIVER

DEATH

DESERT

PASTURE

RIVER

DESERT

PASTURE

RIVER  

DESERT

PASTURE

RIVER  

DESERT

Figure 4.5: Example run of the algorithm for maintenance goals

1. TheG′ that is returned isG′ = Gj . By the induction proofGj ⊆ G.

2. By the termination condition of the loopGj = Gj+1 = G′. Hence by the results of the
induction proof there is a planπ such thatimgπ(s)(s) ⊆ G′ for everys ∈ G′.

3. BecauseG′ = Gj = Gj−1 andGj is a function ofGj−1, the setsGk for all k ≥ j equal
Gj . Hence the constantn for the length of executions leading outsideG can be arbitrarily
high. By the results of the induction proof for everys ∈ S\G′ and everyπ′ there isn ≥ 0
and an executions0, . . . , sn of π′ with s0 = s such thatsn 6∈ G.

�

Example 4.34 Consider the problem depicted in Figure 4.5. An animal may drink at a river and
eat at a pasture. To get from the river to the pasture it must go through a desert. Its hunger and
thirst increase after every time point after respectively leaving the pasture or the river. If either one
reaches level 3 the animal dies. The hunger and thirst levels are indicated by different colors: the
upper halves of the rectanges show thirst level and the lower halves the hunger level. Blue means
no hunger or thirst, red means much hunger or thirst. The upper left diagram shows all the possible
actions the animal can take. The objective of the animal is to stay alive. The three iterations of the



CHAPTER 4. NONDETERMINISTIC PLANNING 87

o2

o1

o0

i2

i0

i1

Figure 4.6: A sorting network with three inputs

algorithm for finding a plan that satisfies the goal of staying alive are depicted by the remaining
three diagrams. The diagram on upper right depicts all the states that satisfy the goal. The diagram
on lower left depicts all the states that satisfy the goal and after which the satisfaction of the goal
can be guaranteed for at least one time period. The diagram on lower right depicts all the states
that satisfy the goal and after which the satisfaction of the goal can be guaranteed for at least two
time periods.

Further iterations of the algorithm do not eliminate further states, and hence the last diagram
depicts all those states for which the satisfaction of the goal can be guaranteed indefinitely.

Hence the only plan says that the animal has to go continuously back and forth between the
pasture and the river. The only choice the animal has is in the beginning if in the initial state it is
not at all hungry or thirsty. For instance, if it is in the desert initially, then it may freely choose
whether to first go to the pasture or the river. �

4.5 Planning without observability

4.5.1 Planning without observability by heuristic search

Planning under unobservability is similar to deterministic planning in the sense that the problem
is to find a path from the initial state(s) to the goal states. For unobservable planning, however, the
nodes in the graph do not correspond to individual states but to belief states, and the size of the
belief space is exponentially higher than the size of the state space. Algorithms for deterministic
planning have direct counterparts for unobservable planning, which is not the case for conditional
planning with full or partial observability.

Example 4.35 A sorting network[Knuth, 1998, Section 5.3.4 in 2nd edition] consists of a se-
quence of gates acting on a number of input lines. Each gate combines a comparator and a swap-
per: if the first value is greater than the second, then swap them. The goal is to sort any given input
sequence. The sorting network always has to perform the same operations irrespective of the input,
and hence constructing a sorting network corresponds to planning without observability. Figure
4.6 depicts a sorting network with three inputs. An important property of sorting networks is that
any network that sorts any sequence of zeros and ones will also sort any sequence of arbitrary
numbers. Hence it suffices to consider Boolean 0-1 input values only.

Construction of sorting networks is essentially a planning problem without observability, be-
cause there are several initial states and a goal state has to be reached by using the same sequence
of actions irrespective of the initial states.

For the 3-input sorting net the initial states are000, 001, 010, 011, 100, 101, 110, 111. and the
goal states are000, 001, 011, 111 Now we can compute the images and strong preimages of the
three sorting actions, sort12, sort02 and sort01 respectively starting from the initial or the goal
states. These yield the following belief states at different stages of the sorting network.



CHAPTER 4. NONDETERMINISTIC PLANNING 88

000, 001, 010, 011, 100, 101, 110, 111 initially
000, 001, 011, 100, 101, 111 after sort12
000, 001, 011, 101, 111 after sort02
000, 001, 011, 111 after sort01

�

The most obvious approaches to planning with unobservability is to use regression, strong
preimages or images, and to perform backward or forward search in the belief space. The differ-
ence to forward search with deterministic operators and one initial state is that belief states are
used instead of states. The difference to backward search for deterministic planning is that re-
gression for nondeterministic operators has to be used and testing whether (a subset of) the initial
belief state has been reached involves the co-NP-hard inclusion test|= I→ regro(φ) for the belief
states. With one initial state this is an easy polynomial time testI |= regro(φ) of whetherregro(φ)
is true in the initial state.

Deriving good heuristics for heuristic search in the belief space is more difficult than in de-
terministic planning. The main approaches have been to use distances in the state space as an
estimate for distances in the belief space, and to use the cardinalities of belief spaces as a measure
of progress.

Many problems cannot be solved by blindly taking actions that reduce the cardinality of the
current belief state: the cardinality of the belief state may stay the same or increase during plan
execution, and hence the decrease in cardinality is not characteristic to belief space planning in
general, even though in many problems it is a useful measure of progress.

Similarly, distances in the state space ignore the most distinctive aspect of planning with partial
observability: the same action must be used in two states if the states are not observationally
distinguishable. A given (optimal) plan for an unobservable problem may increase the actual
current state-space distance to the goal states (on a given execution) when the distance in the
belief-space monotonically decreases, and vice versa. Hence, the state space distances may yield
wildly misleading estimates of the distances in the corresponding belief space.

Heuristics based on state-space distances

The most obvious distance heuristics are based on the backward distances in the state space.

D0 = G
Di+1 = Di ∪

⋃
o∈O spreimgo(Di) for all i ≥ 1

A lower bound on plan length for belief stateZ is j if Z ⊆ Dj andZ 6⊆ Dj−1.
Next we derive distance heuristics for the belief space based on state space distances. Backward

distances yield an admissible distance heuristic for belief states.

Definition 4.36 (State space distance)Thestate space distanceof a belief stateB is d ≥ 1 when
B ⊆ Dd andB 6⊆ Dd−1, and it is0 whenB ⊆ D0 = G.

Even though computing the exact distances for the operator based representation of state spaces
is PSPACE-hard, the much higher complexity of planning problems with partial observability
still often justifies it: this computation would in many cases be an inexpensive preprocessing
step, preceding the much more expensive solution of the partially observable planning problem.
Otherwise cheaper approximations can be used.



CHAPTER 4. NONDETERMINISTIC PLANNING 89

Heuristics based on belief state cardinality

The second heuristic that has been used in algorithms for partial observability is simply based on
the cardinality of the belief states.

In forward search, prefer operators that maximally decrease the cardinality of the belief state.
In backward search, prefer operators that maximally increase the cardinality of the belief state.
These heuristics are not in general admissible, because there is no direct connection between

the distance to a goal belief state and the cardinalities of the current belief state and a goal belief
state. The belief state cardinality can decrease or increase arbitrarily much by one step.

4.6 Planning as satisfiability in the propositional logic and QBF

The techniques presented in Sections 3.6 and 3.6.5 can be extended to nondeterministic operators.
The notion of parallel application of operators and partially ordered plans can be generalized to
nondeterministic operators.

Let T be a set of operators ands a state such thats |= c for every〈c, e〉 ∈ T andE1 ∪ · · · ∪
En is consistent for for anyEi ∈ [ei]s, i ∈ {1, . . . , n} andT = {〈c1, e1〉, . . . 〈cn, en〉}. Then
defineimgT (s) as the set of statess′ that are obtained froms by makingE1 ∪ · · · ∪ En true ins
whereEi ∈ [ei]s for everyi ∈ {1, . . . , n}. We also use the notationsTs′ for s′ ∈ imgT (s) and
imgT (S) =

⋃
s∈S imgT (s).

4.6.1 Advanced translation of nondeterministic operators into propositional logic

In Section 4.1.2 we showed how nondeterministic operators can be translated into formulae in the
propositional logic. This translation is not sufficient for reasoning about actions and plans in a
setting with more than one agent. This is because the formulaeτnd

A (o1) ∨ · · · ∨ τnd
A (on) do not

distinguish between the choice of operator in{o1, . . . , on} and the nondeterministic effects (the
opponent) of each operator, even though the former is controllable and the latter is not.

In nondeterministic planning in general we have to treat the controllable and uncontrollable
choices differently. We cannot do this practically in the propositional logic but by using quanti-
fied Boolean formulae (QBF) we can. For the QBF representation of nondeterministic operators
we universally quantify over all uncontrollable eventualities (nondeterminism) and existentially
quantify over controllable eventualities (the choice of operators).

We need to universally quantify over all the nondeterministic choices because for every choice
the remaining operators in the plan must lead to a goal state. This is achieved by associating with
every atomic effect a formula that is true if and only if that effect is executed, similarly to functions
EPCl(e) in Definition 3.1, so that forl to become true the universally quantified auxiliary variables
that represent nondeterminism have to have values corresponding to an effect that makesl true.

The operators are assumed to be in normal form. For simplicity of presentation we further
transform nondeterministic choicese1| · · · |en so that only binary choices exist. For example
a|b|c|d is replaced by(a|b)|(c|d). Each binary choice can be encoded in terms of one auxiliary
variable.

The condition for the atomic effectl to be executed whene is executed isEPCnd
l (e, σ). The

sequenceσ of integers is used for deriving unique names for auxiliary variables inEPCnd
l (e, σ).

The sequences correspond to paths in the tree formed by nested nondeterministic choices and



CHAPTER 4. NONDETERMINISTIC PLANNING 90

conjunctions.

EPCnd
l (e, σ) = EPCl(e) if e is deterministic

EPCnd
l (e1|e2, σ) = (xσ ∧ EPCnd

l (e1, σ1)) ∨ (¬xσ ∧ EPCnd
l (e2, σ1))

EPCnd
l (e1 ∧ · · · ∧ en, σ) = EPCnd

l (e1, σ1) ∨ · · · ∨ EPCnd
l (en, σn)

The translation of nondeterministic operators into the propositional logic is similar to the trans-
lation for deterministic operators given in Section 3.6.4.

Nondeterminism is encoded by making the effects conditional on the values of the auxiliary
variablesxσ. Different valuations of these auxiliary variables correspond to different nondeter-
ministic effects.

The following frame axioms express the conditions under which state variablesa ∈ A may
change from true to false and from false to true. Lete1, . . . , en be the effects ofo1, . . . , on respec-
tively. Each operatoro ∈ O has a unique indexΩ(o).

(a ∧ ¬a′)→((o1 ∧ EPCnd
¬a(e1,Ω(o1))) ∨ · · · ∨ (on ∧ EPCnd

¬a(en,Ω(on))))
(¬a ∧ a′)→((o1 ∧ EPCnd

a (e1,Ω(o1))) ∨ · · · ∨ (on ∧ EPCnd
a (en,Ω(on))))

Foro = 〈c, e〉 ∈ O there is a formula for describing values of state variables in the predecessor
and successor states when the operator is applied.

(o→c)∧∧
a∈A(o ∧ EPCnd

a (e,Ω(o))→a′)∧∧
a∈A(o ∧ EPCnd

¬a(e,Ω(o))→¬a′)

Example 4.37 Considero1 = 〈¬a, (b|(c B d)) ∧ (a|c)〉 ando2 = 〈¬b, (((d B b)|c)|a)〉. The
application of these operators is described by the following formulae.

¬(a ∧ ¬a′) (¬a ∧ a′)→((o1 ∧ x12) ∨ (o2 ∧ ¬x2))
¬(b ∧ ¬b′) (¬b ∧ b′)→((o1 ∧ x11) ∨ (o2 ∧ x2 ∧ x21 ∧ d))
¬(c ∧ ¬c′) (¬c ∧ c′)→((o1 ∧ ¬x12) ∨ (o2 ∧ x2 ∧ ¬x21))
¬(d ∧ ¬d′) (¬d ∧ d′)→(o1 ∧ ¬x11 ∧ c)
o1→¬a
(o1 ∧ x12)→a′ (o1 ∧ x11)→b′

(o1 ∧ ¬x12)→c′ (o1 ∧ ¬x11 ∧ c)→d′

o2→¬b
(o2 ∧ ¬x2)→a′ (o2 ∧ x2 ∧ x21 ∧ d)→b′

(o2 ∧ x2 ∧ ¬x21)→c′

�

Two operatorso ando′ may be applied in parallel only if they do not interfere. Hence we use
formulae

¬(o ∧ o′)

for all operatorso ando′ that interfere ando 6= o′.
Let X be the set of auxiliary variablesxσ in all the above formulae. The conjunction of all the

above formulae is denoted by
R3(A,A′, O,X).



CHAPTER 4. NONDETERMINISTIC PLANNING 91

We need two auxiliary definitions for proving properties about these formulae and the transla-
tion of nondeterministic operators into the propositional logic.

Let Ξσ(e) be the set of propositional variablesxσ′ in the translation of the effecte with a given
σ. This is equal to the set of variablesxσ′ in formulaeEPCnd

a (e, σ) andEPCnd
¬a(e, σ)) for all

a ∈ A.

Definition 4.38 Define the set of literals[e]σ,v
s which are the active effects ofe whene is exe-

cuted in states and nondeterministic choices are determined by the valuationv of propositional
variablesΞσ(e) as follows.

[e]σ,v
s = [e]det

s if e is deterministic

[e1|e2]
σ,v
s =

{
[e1]

σ1,v
s if v(xσ) = 1

[e2]
σ1,v
s if v(xσ) = 0

[e1 ∧ · · · ∧ en]σ,v
s = [e1]

σ1,v
s ∪ · · · ∪ [en]σn,v

s

Lemma 4.39 Lets be a state and{v1, . . . , vn} all valuations ofX = Ξσ(e). Then
⋃

1≤i≤n[e]σ,vi
s =

[e]s.

Lemma 4.40 LetO andT ⊆ O be sets of operators. Lets ands′ be states. Letvx a valuation of
X =

⋃
〈c,e〉∈O ΞΩ(〈c,e〉)(e). Letvo be a valuation ofO such thatvo(o) = 1 iff o ∈ T .

Thens ∪ s′[A′/A] ∪ vo ∪ vx |= R3(A,A′, O,X) if and only if

1. s |= a iff s′ |= a for all a ∈ A such that{a,¬a} ∩
⋃
〈c,e〉∈T [e]Ω(〈c,e〉),vx

s = ∅,

2. s′ |=
⋃
〈c,e〉∈T [e]Ω(〈c,e〉),vx

s , and

3. s |= c for all 〈c, e〉 ∈ T .

The number of auxiliary variablesxσ can be reduced when two operatorso ando′ interfere.
Since they cannot be applied simultaneously the same auxiliary variables can control the nonde-
terminism in both operators. To share the variables rename the ones occurring in the formulae for
one of the operators so that the variables needed foro is a subset of those foro′ or vice versa.
Having as small a number of auxiliary variables as possible may be important for the efficiency
for algorithms evaluating QBF and testing propositional satisfiability.

The formulaeR3(A,A′, O,X) can be used for plan search with algorithms that evaluate QBF
(Section 4.6.2) as well as for testing by a satisfiability algorithm whether a conditional plan (with
full, partial or no observability) that allows several operators simultaneously indeed is a valid plan.

4.6.2 Finding plans by evaluation of QBF

In deterministic planning in propositional logic (Section 3.6) the problem is to find a sequence of
operators so that a goal state is reached when the operators are applied starting in the initial state.
When there are several initial states, the operators are nondeterministic and it is not possible to
use observations during plan execution for selecting operators, the problem is to find an operator
sequence so that a goal state is reached in all possible executions of the operator sequence. There
may be several executions because there may be several initial states and the operators may be
nondeterministic. Expressing the quantification over all possible executions cannot be concisely



CHAPTER 4. NONDETERMINISTIC PLANNING 92

expressed in the propositional logic. This is the reason why quantified Boolean formulae are used
instead.

The existence of ann-step partially-ordered plan that reaches a state satisfyingG from any
state satisfying the formulaI can be tested by evaluating the QBFΦqpar

n defined as

∃Vplan∀Vnd∃Vexec

I0→(R3(A0, A1, O0, X0) ∧R3(A1, A2, O1, X1) ∧ · · · ∧ R3(An−1, An, On−1, Xn−1) ∧Gn).

HereVplan = O0 ∪ · · · ∪On−1, Vnd = A0 ∪X0 ∪ · · · ∪Xn−1 andVexec= A1 ∪ · · · ∪An. Define
ΦqparM

n = I0→(R3(A0, A1, O0, X0)∧R3(A1, A2, O1, X1)∧· · ·∧R3(An−1, An, On−1, Xn−1)∧
Gn). The valuation ofVplan corresponds to a sequence of sets of operators. For a given valuation
of Vplan the valuation ofVnd determines the execution of these operators. The valuation ofVexecis
uniquely determined by the valuation ofVplan∪ Vnd.

The algorithms for evaluating QBF that extend the Davis-Putnam procedure traverse an and-or
tree in which the and-nodes correspond to universally quantified variables and or-nodes correspond
to existentially quantified variables. If the QBF istrue then these algorithms return a valuation of
the outermost existential variables. For a trueΦqpar

n this valuation ofVplan corresponds to a plan
that can be constructed like the plans in the deterministic case in Section 3.6.5.



CHAPTER 4. NONDETERMINISTIC PLANNING 93

Theorem 4.41 The QBFΦqpar
n has valuetrue if and only if there is a sequenceT0, . . . , Tn−1 of

sets of operators such that for everyi ∈ {0, . . . , n} and every sequences0, . . . , si such that

1. s0 |= I and

2. s0T0s1T1s2 · · · si−1Ti−1si

Ti is applicable insi if i < n andsi |= G if i = n.

Proof: We first prove the implication from left to right. SinceΦqpar
n is true there is a valuation

vplan of Vplan = O0 ∪ · · · ∪On−1 such that for all valuationsvnd of Vnd = A0 ∪X0 ∪ · · · ∪Xn−1

there is a valuationvexec of Vexec = A1 ∪ · · · ∪ An such thatvplan ∪ vnd ∪ vexec |= I0 →
(R3(A0, A1, O0, X0) ∧ · · · ∧ R3(An−1, An, On−1, Xn−1) ∧Gn).

Let T0, . . . , Tn−1 be the sequence of sets of operators such that for allo ∈ O and i ∈
{0, . . . , n − 1}, o ∈ Ti if and only if vplan(oi) = 1. We prove the right hand side of the the-
orem by induction onn.

Induction hypothesis: For everys0, . . . , si such thats0 |= I ands0T0s1T1s2 · · · si−1Ti−1si:

1. Ti is applicable insi if i < n.

2. si |= G if i = n.

Base casei = 0: Let s0 be any state sequence such thats0 |= I.

1. If 0 < n then we have to show thatT0 is applicable ins0.

Let E = E1 ∪ · · · ∪ Em for all j ∈ {1, . . . ,m} and anyEj ∈ [ej ]s0 , wheree1, . . . , em

are respectively the effects of the operatorso1, . . . , om in T0. Such setsE are the possible
active effects ofT0.

We have to show thatE is consistent and the preconditions of operators inT0 are true ins0.

By Lemma 4.39 there is a valuationv of X such thatE =
⋃
〈c,e〉∈T0

[e]Ω(〈c,e〉),v
s0 .

Let vnd be any valuation ofVnd such thats0[A0/A] ⊆ vnd andv[X0/X] ⊆ vnd. Since
Φqpar

n is true there is a valuation ofvexec such thatvplan ∪ vnd ∪ vexec |= ΦqparM
n .

Sincevnd |= I0 alsovplan∪vnd∪vexec |= R3(A0, A1, O0, X0). Hence by Lemma 4.40 the
preconditions of operators inT0 are true ins0 ands1 |= E wheres1 is the state such that
s1(a) = vexec(a1) for all a ∈ A. SinceE was chosen arbitrarily from the sets of possible
sets of active effects ofT0 and it is consistent,T0 is applicable ins0.

2. If n = 0 thenVplan = Vexec = ∅ and∀Vnd(I0 → G0) is true, andvnd |= G0 for every
valuationvnd of Vnd such thatvnd |= I0.

Inductive casei ≥ 1: Lets0, . . . , si be any sequence such thats0 |= I ands0T0s1 . . . si−1Ti−1si.

1. If i < n then we have to show thatTi is applicable insi.

Let E = E1 ∪ · · · ∪ Em for all j ∈ {1, . . . ,m} and anyEj ∈ [ej ]si , wheree1, . . . , em are
respectively the effects of the operatorso1, . . . , om in Ti. Such setsE are the possible active
effects ofTi.

We have to show thatE is consistent and the preconditions of operators inTi are true insi.



CHAPTER 4. NONDETERMINISTIC PLANNING 94

By Lemma 4.39 there is a valuationv of X such thatE =
⋃
〈c,e〉∈Ti

[e]Ω(〈c,e〉),v
si .

Since by the induction hypothesissjTjsj+1 for all j ∈ {0, . . . , i − 1}, by Lemma 4.39 for
everyj ∈ {0, . . . , i−1} there is a valuationvx

j of X such thatsj [A/Aj ]∪ sj+1[A′/Aj+1]∪
vo ∪ vx

j |= R3(A,A′, O,X) wherevo assigns everyo ∈ O value 1 iffo ∈ Tj .

Let vnd be any valuation ofVnd such thats0[A0/A] ⊆ vnd and v[Xi/X] ⊆ vnd and
vx
j [Xj/X] ⊆ vnd for all j ∈ {0, . . . , i− 1}.

SinceΦqpar
n is true there is a valuation ofvexec such thatvplan ∪ vnd ∪ vexec |= ΦqparM

n .

Sincevnd |= I0 alsovplan ∪ vnd ∪ vexec |= R3(Ai, Ai+1, Oi, X i). Hence by Lemma 4.40
the preconditions of operators inTi are true insi andsi+1 |= E wheresi+1 is a state such
thatsi+1(a) = vexec(ai+1) for all a ∈ A. Since anyE is consistent,Ti is applicable insi.

2. If i = n we have to show thatsn |= G. Like in the proof for the previous case we construct
valuationsvnd andvexec matching the executions0, . . . , sn and sincevplan ∪ vnd ∪ vexec |=
I0→Gn we havesn |= G.

Then we prove the implication from right to left. So there is sequenceT0, . . . , Tn−1 for which
all executions are defined and reachG.

We show thatΦqpar
n is true: there is valuationvplan of Vplan = O0 ∪ · · · ∪ On−1 such that for

every valuationvnd of Vnd = A0∪X0∪· · ·∪Xn−1 there is a valuationvexec of Vexec= A1∪· · ·∪An

such thatvplan ∪ vnd ∪ vexec |= ΦqparM
n .

We define the valuationvplan of Vplan by o ∈ Ti iff vplan(oi) = 1 for every o ∈ O and
i ∈ {0, . . . , n− 1}.

Take any valuationvnd of Vnd. Define the states0 by s0(a) = 1 iff vnd(a0) = 1 for every
a ∈ A.

If s0 6|= I thenvnd 6|= I0 andvplan ∪ vnd ∪ vexec |= ΦqparM
n for any valuationvexec of Vexec.

It remains to consider the cases0 |= I.
Define for everyi ∈ {1, . . . , n} setsEi and statessi as follows.

1. Let vi
x be a valuation ofX such thatvi

x(x) = vnd(xi−1) for everyx ∈ X.

2. Let Ei =
⋃
〈c,e〉∈Ti−1

[e]Ω(〈c,e〉),vi
x

si−1 .

We show below that this is the set of literals made true byTi−1 in si−1.

3. Definesi(a) = 1 iff a ∈ Ei or si−1(a) = 1 and¬a 6∈ Ei, for everya ∈ A.

Let vexec = s1[A1/A] ∪ · · · ∪ sn[An/A].
Induction hypothesis:vplan ∪ vnd ∪ s1[A1/A]∪ · · · ∪ si[Ai/A] |= I0 ∧R3(A0, A1, O0, X0)∧

· · · ∧ R3(Ai−1, Ai, Oi−1, X i−1) andsjTjsj+1 for all j ∈ {0, . . . , i− 1}.
Base casei = 0: Trivial becausevnd |= I0.
Inductive casei ≥ 1: Let vx ⊆ vnd be the valuation ofXi−1 determined byvnd and let

vo be the valuation ofOi−1 such thatvo(o) = vplan(oi−1) for everyo ∈ O. By Lemma 4.40
vplan ∪ vnd ∪ si−1[Ai−1/A] ∪ si[Ai/A] |= R3(Ai−1, Ai, Oi−1, X i−1). This together with the
claim of the induction hypothesis fori− 1 establishes the first part of the claim of the hypothesis
for i. By Lemma 4.39 the setEi is one of the possible sets of active effects ofTi−1 in si−1. Hence
si−1Ti−1si. This finishes the induction proof.



CHAPTER 4. NONDETERMINISTIC PLANNING 95

Hencevplan ∪ vnd ∪ vexec |= I0 ∧R3(A0, A1, O0, X0) ∧ · · · ∧ R3(An−1, An, On−1, Xn−1),
andvexec |= Gn becausesn |= G by assumption andsn[An/A] ⊆ vexec. �

4.7 Planning with partial observability

Planning with partial observability is much more complicated than its two special cases with full
and no observability. Like planning without observability, the notion of belief states becomes very
important. Like planning with full observability, formalization of plans as sequences of operators
is insufficient. However, plans also cannot be formalized as mappings from states to operators be-
cause partial observability implies that the current state is not necessarily unambiguously known.
Hence we will need the general definition of plans introduced in Section 4.3.1.

When executing operatoro in belief stateB the set of possible successor states isimgo(B), and
based on the observation that are made, this set is restricted toB′ = imgo(B) ∩ C whereC is the
equivalence class of observationally indistinguishable states corresponding to the observation.

In planning with unobservability, a backward search algorithm starts from the goal belief state
and uses regression or strong preimages for finding predecessor belief states until a belief state
covering the initial belief state is found.

With partial observability, plans do not just contain operators but may also branch. With
branching the sequence of operators may depend on the observations, and this makes it possible
to reach goals also when no fixed sequence of operators reaches the goals. Like strong preimages
in backward search correspond to images, the question arises what does branching correspond to
in backward search?

Example 4.42 Consider the blocks world with three blocks with the goal state in which all the
blocks are on the table. There are three operators, each of which picks up one block (if there is
nothing on top of it) and places it on the table. We can only observe which blocks are not below
another block. This splits the state space to seven observational classes, corresponding to the
valuations of the state variables clear-A, clear-B and clear-C in which at least one block is clear.

The plan construction steps are given in Figure 4.7. Starting from the top left, the first diagram
depicts the goal belief state. The second diagram depicts the belief states obtained by computing
the strong preimage of the goal belief state with respect to the move-A-onto-table action and
splitting the set of states to belief states corresponding to the observational classes. The next two
diagrams are similarly for strong preimages of move-B-onto-table and move-C-onto-table.

The fifth diagram depicts the computation of the strong preimage from the union of two existing
belief states in which the block A is on the table and C is on B or B is on C. In the resulting belief
state A is the topmost block in a stack containing all three blocks. The next two diagrams similarly
construct belief states in which respectively B and C are the topmost blocks.

The last three diagrams depict the most interesting cases, constructing belief states that sub-
sume two existing belief states in one observational class. The first diagram depicts the construc-
tion of the belief state consisting of both states in which A and B are clear and C is under either A
or B. This belief state is obtained as the strong preimage of the union of two existing belief states,
the one in which all blocks are on the table and the one in which A is on the table and B is on top
of C. The action that moves A onto the table yields the belief state because if A is on C all blocks
will be on the table and if A is already on the table nothing will happen. Construction of the belief



CHAPTER 4. NONDETERMINISTIC PLANNING 96

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

CA B

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

CA B A
BC

A
B C

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A
B C

CA B
A
B

C

A
B
C

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A
B C

CA B
A
B

C

AB
C

A B
C

A
B
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

CA B A
B C

A
B
C

A

B
C

A
BC A

B
C

A
B
C A B

C
AB
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

CA B A
B C

B
A
C

A
BC

B

A
C

A
B

C

A
B
C A B

C
AB
C

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

CA B A
B C

C
B
A

C

B
AA

B
C

AB
C

A B
C

A
B
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

C
B
A

A
B C

C

B
AA

B
C

CA B

A
B
C

A
B
C

A
BC

A
BC

A B
C

AB
C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

C
B
A

A
B C

C

B
A

CA B A
BC

A
B
C A B

C
AB
C

AB
C

A
B

C

A
B
C

A
BC

A
B

C

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A

B
C

A
B
C

B
A
C

B

A
C

C
B
A

C

B
A

CA B A
B C

AB
C

A
B
C

AB
C

A
B
C

A
BC A

B
C

A
BC A

B
C

A B
C

A
B C

A B
C

Figure 4.7: Solution of a simple blocks world problem

states in which B and C are clear and A and C are clear is analogous and depicted in the last two
diagrams.

The resulting plan reaches the goal state from any state in the blocks world. The plan in the
program form is given in Figure 4.8 (order of construction is from the end to the beginning.)

�

We restrict to acyclic plans. Construction of cyclic plans requires looking at more global prop-
erties of transition graphs than what is needed for acyclic plans. Taking these local properties into
account is difficult because we want to avoid explicit enumeration of the belief states.

4.7.1 Problem representation

Now we introduce the representation for sets of state sets for which a plan for reaching goal states
exists.



CHAPTER 4. NONDETERMINISTIC PLANNING 97

16:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 15
IF clear-B AND clear-C THEN GOTO 13
IF clear-A AND clear-B THEN GOTO 11
IF clear-A THEN GOTO 5
IF clear-B THEN GOTO 7
IF clear-C THEN GOTO 9

15:
move-C-onto-table

14:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-C THEN GOTO 1

13:
move-B-onto-table

12:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-B AND clear-C THEN GOTO 3

11:
move-A-onto-table

10:
IF clear-A AND clear-B AND clear-C THEN GOTO end
IF clear-A AND clear-B THEN GOTO 2

9:
move-C-onto-table

8:
IF clear-A AND clear-C THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 2

7:
move-B-onto-table

6:
IF clear-A AND clear-B THEN GOTO 1
IF clear-B AND clear-C THEN GOTO 3

5:
move-A-onto-table

4:
IF clear-A AND clear-B THEN GOTO 2
IF clear-A AND clear-C THEN GOTO 3

3:
move-C-onto-table
GOTO end

2:
move-B-onto-table
GOTO end

1:
move-A-onto-table

end:

Figure 4.8: A plan for a partially observable blocks world problem



CHAPTER 4. NONDETERMINISTIC PLANNING 98

In the following example states are viewed as valuations of state variables, and the observa-
tional classes correspond to valuations of those state variables that are observable.

Example 4.43 Consider the blocks world with the state variablesclear(X) observable, allowing
to observe the topmost block of each stack. With three blocks there are 7 observational classes
because there are 7 valuations of{clear(A), clear(B), clear(C)} with at least one block clear.

Consider the problem of trying to reach the state in which all blocks are on the table. For each
block there is an action for moving it onto the table from wherever it was before. If a block cannot
be moved nothing happens. Initially we only have the empty plan for the goal states.

CA B

CA B

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

Then we compute the preimages of this set with actions that respectively put the blocks A, B
and C onto the table, and split the resulting sets to the different observational classes.

CA B

A
BC

?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A
B
C

A B
C

A
B C

AB
C

A
B

C

CA B

preimage of A−onto−table
preimage of B−onto−table
preimage of C−onto−table

Now for these 7 belief states we have a plan consisting of one or zero actions. But we also
have plans for sets of states that are only represented implicitly. These involve branching. For
example, we have a plan for the state set consisting of the four states in which respectively all
blocks are on the table, A is on C, A is on B, and B is on A. This plan first makes observations
and branches, and then executes the plan associated with the belief state obtained in each case.
Because 3 observational classes each have 2 belief states, there are23 maximal state sets with a
branching plan. From each class only one belief state can be chosen because observations cannot
distinguish between belief states in the same class.

We can find more belief states that have plans by computing preimages of existing belief states.
Let us choose the belief states in which respectively all blocks are on the table, B is on C, C is on
B, and C is on A, and compute their union’s preimage with A-onto-table. The preimage intersected
with the observational classes yields new belief states: for the class with A and B clear there is a
new 2-state belief state covering both previous belief states in the class, and for the class with A
clear there is a new 2-state belief state.



CHAPTER 4. NONDETERMINISTIC PLANNING 99

CA B
?
?

C
?
?

B
?
?

A

? ?
B C

? ?
A C

? ?
BA

A
B C

A
B

C

A

B
C

CA B

A B
C

AB
C

A
B
C

A
BC

A

B
C

Computation of further preimages yields for each observational class a belief state covering all
the states in that class, and hence a plan for every belief state. �

Next we formalize the framework in detail.

Definition 4.44 (Belief space)Let P = (C1, . . . , Cn) be a partition of the set of all states. Then
a belief spaceis ann-tuple〈G1, . . . , Gn〉 whereGi ⊆ 2Ci for all i ∈ {1, . . . , n} andB 6⊂ B′ for
all i ∈ {1, . . . , n} and{B,B′} ⊆ Gi.

Notice that in each component of a belief space we only have set-inclusion maximal be-
lief states. The simplest belief spaces are obtained from setsB of states asF(B) = 〈{C1 ∩
B}, . . . , {Cn ∩B}〉. A belief space is extended as follows.

Definition 4.45 (Extension) LetP = (C1, . . . , Cn) be the partition of all states,G = 〈G1, . . . , Gn〉
a belief space, andT a set of states. DefineG⊕T as〈G1d(T ∩C1), . . . , Gnd(T ∩Cn)〉where the
operationd adds the latter set of states to the former set of sets of states and eliminates sets that
are not set-inclusion maximal, defined asU dV = {R ∈ U ∪{V }|R 6⊂ K for all K ∈ U ∪{V }}.

A belief spaceG = 〈G1, . . . , Gn〉 represents the set of sets of states flat(G) = {B1 ∪ · · · ∪
Bn|Bi ∈ Gi for all i ∈ {1, . . . , n}} and its cardinality is|G1| · |G2| · . . . · |Gn|.

4.7.2 Complexity of basic operations

The basic operations on belief spaces needed in planning algorithms are testing the membership
of a set of states in a belief space, and finding a set of states whose preimage with respect to an
action is not contained in the belief space. Next we analyze the complexity of these operations.

Theorem 4.46 For belief spacesG and state setsB, testing whether there isB′ ∈ flat(G) such
thatB ⊆ B′, and computingG⊕B takes polynomial time.

Proof: Idea: A linear number of set-inclusion tests suffices. �

Our algorithm for extending belief spaces by computing the preimage of a set of states (Lemma 4.48)
uses exhaustive search and runs in worst-case exponential time. This asymptotic worst-case com-
plexity is very likely the best possible because the problem is NP-hard. Our proof for this fact
is a reduction from SAT: represent each clause as the set of literals that are not in it, and then a
satisfying assignment is a set of literals that is not included in any of the sets, corresponding to the
same question about belief spaces.



CHAPTER 4. NONDETERMINISTIC PLANNING 100

Theorem 4.47 Testing if for belief spaceG there isR ∈ flat(G) such that preimgo(R) 6⊆ R′ for
all R′ ∈ flat(G) is NP-complete. This holds even for deterministic actionso.

Proof: Membership is easy: ForG = 〈G1, . . . , Gn〉 choose nondeterministicallyRi ∈ Gi for
everyi ∈ {1, . . . , n}, computeR = preimgo(R1 ∪ · · · ∪ Rn), and verify thatR ∩ Ci 6⊆ B for
somei ∈ {1, . . . , n} and allB ∈ Gi. Each of these steps takes only polynomial time.

Let T = {c1, . . . , cm} be a set of clauses over propositionsA = {a1, . . . , ak}. We define a
belief space based on states{a1, . . . , ak, â1, . . . , âk, z1, . . . , zk, ẑ1, . . . , ẑk}. The stateŝa represent
negative literals. Define

c′i = (A\ci) ∪ {â|a ∈ A,¬a 6∈ ci} for i ∈ {1, . . . ,m},
G = 〈{c′1, . . . , c′m}, {{z1}, {ẑ1}}, . . . , {{zk}, {ẑk}}〉 ,
o = {〈ai, zi〉|1 ≤ i ≤ k} ∪ {〈âi, ẑi〉|1 ≤ i ≤ k}.

We claim thatT is satisfiable if and only if there isB ∈ flat(G) such thatpreimgo(B) 6⊆ B′

for all B′ ∈ flat(G).
AssumeT is satisfiable, that is, there isM such thatM |= T . DefineM ′ = {zi|ai ∈ A,M |=

ai}∪{ẑi|ai ∈ A,M 6|= ai}. NowM ′ ⊆ B for someB ∈ flat(G) because from each class only one
of {zi} or {ẑi} is taken. LetM ′′ = preimgo(M ′) = {ai ∈ A|M |= ai} ∪ {âi|ai ∈ A,M 6|= ai}.
We show thatM ′′ 6⊆ B for all B ∈ flat(G). Take anyi ∈ {1, . . . ,m}. BecauseM |= ci, there is
aj ∈ ci ∩ A such thatM |= aj (or ¬aj ∈ ci, for which the proof goes similarly.) Nowzj ∈ M ′,
and thereforeaj ∈ M ′′. Also, aj 6∈ c′j . As there is such anaj (or ¬aj) for everyi ∈ {1, . . . ,m},
M ′′ is not a subset of anyc′i, and henceM ′′ 6⊆ B for all B ∈ flat(G).

Assume there isB ∈ flat(G) such thatD = preimgo(B) 6⊆ B′ for all B′ ∈ flat(G). Now
D is a subset ofA ∪ {â|a ∈ A} with at most one ofai andâi for any i ∈ {1, . . . , k}. Define a
modelM such that for alla ∈ A, M |= a if and only if a ∈ D. We show thatM |= T . Take
any i ∈ {1, . . . ,m} (corresponding to a clause.) AsD 6⊆ B for all B ∈ flat(G), D 6⊆ c′i. Hence
there isaj or âj in D\c′i. Consider the case withaj (âj goes similarly.) Asaj 6∈ c′i, aj ∈ ci. By
definition ofM , M |= aj and henceM |= ci. As this holds for alli ∈ {1, . . . ,m}, M |= T . �

4.7.3 Algorithms

Based on the problem representation in the preceding section, we devise a planning algorithm
that repeatedly identifies new belief states (and associated plans) until a plan covering the initial
states is found. The algorithm in Figure 4.10 tests for plan existence; further book-keeping is
needed for outputting a plan. The size of the plan is proportional to the number of iterations the
algorithm performs, and outputting the plan takes polynomial time in the size of the plan. The
algorithm uses the subprocedurefindnew(Figure 4.9) for extending the belief space (this is the
NP-hard subproblem from Theorem 4.47). Our implementation of the subprocedure orders sets
f1, . . . , fm by cardinality in a decreasing order: bigger belief states are tried first. We also use
a simple pruning technique for deterministic actionso: If preimgo(fi) ⊆ preimgo(fj) for somei
andj such thati > j, then we may ignorefi.

Lemma 4.48 Let H be a belief space ando an action. The procedure call findnew(o,∅,F,H)
returns a setB′ of states such thatB′ = preimgo(B) for someB ∈ flat(F ) andB′ 6⊆ B′′ for all
B′′ ∈ flat(H), and if no such belief state exists it returns∅.



CHAPTER 4. NONDETERMINISTIC PLANNING 101

1: procedurefindnew(o,A,F ,H);
2: if F = 〈〉 and preimgo(A) 6⊆ B for all B ∈ flat(H)
3: then return A;
4: if F = 〈〉 then return ∅;
5: F is 〈{f1, . . . , fm}, F2, . . . , Fk〉 for somek ≥ 1;
6: for i := 1 to m do
7: B := findnew(o,A ∪ fi,〈F2, . . . , Fk〉,H);
8: if B 6= ∅ then return B;
9: end;

10: return ∅;

Figure 4.9: Algorithm for finding new belief states

1: procedureplan(I,O,G);
2: H := F(G);
3: progress := true;
4: while progress andI 6⊆ I ′ for all I ′ ∈ flat(H) do
5: progress := false;
6: for eacho ∈ O do
7: B := findnew(o,∅,H,H);
8: if B 6= ∅ then
9: begin

10: H := H ⊕ preimgo(B);
11: progress := true;
12: end;
13: end;
14: end;
15: if I ⊆ I ′ for someI ′ ∈ flat(H) then return true
16: else return false;

Figure 4.10: Algorithm for planning with partial observability

Proof: Sketch: The procedure goes through the elements〈B1, . . . , Bn〉 of F1× · · · ×Fn and tests
whetherpreimgo(B1 ∪ · · · ∪Bn) is in H. The setsB1 ∪ · · · ∪Bn are the elements of flat(F ). The
traversal throughF1 × · · · × Fn is by generating a search tree with elements ofF1 as children of
the root node, elements ofF2 as children of every child of the root node, and so on, and testing
whether the preimage is inH. The second parameter of the procedure represents the state set
constructed so far from the belief space, the third parameter is the remaining belief space, and the
last parameter is the belief space that is to be extended, that is, the new belief state may not belong
to it. �

The correctness proof of the procedureplan consists of the following lemma and theorems.
The first lemma simply says that extending a belief spaceH is monotonic in the sense that the
members of flat(H) can only become bigger.

Lemma 4.49 AssumeT is any set of states andB ∈ flat(H). Then there isB′ ∈ flat(H ⊕ T ) so
thatB ⊆ B′.



CHAPTER 4. NONDETERMINISTIC PLANNING 102

The second lemma says that if we have belief states in different observational classes such that
each is included in a belief state of a belief spaceH, then there is a set in flat(H) that includes all
these belief states.

Lemma 4.50 Let B1, . . . , Bn be sets of states so that for everyi ∈ {1, . . . , n} there isB′
i ∈

flat(H) such thatBi ⊆ B′
i, and there is no observational classC such that for some{i, j} ⊆

{1, . . . , n} both i 6= j andBi ∩ C 6= ∅ andBj ∩ C 6= ∅. Then there isB′ ∈ flat(H) such that
B1 ∪ · · · ∪Bn ⊆ B′.

The proof of the next theorem shows how the algorithm is capable of finding any plan by
constructing it bottom up starting from the leaf nodes. The construction is based on first assigning
a belief state to each node in the plan, and then showing that the algorithm reaches that belief state
from the goal states by repeated computation of preimages.

Theorem 4.51 Whenever there exists a finite acyclic plan for a problem instance, the algorithm
in Figure 4.10 returnstrue.

Proof: Assume that there is a plan〈N, b, l〉 for a problem instance〈S, I,O,G, P 〉. We assume that
states inS are valuations of a set of state variables. Label all nodes of the plan as follows. Each
initial nodeni for i ∈ {1, . . . ,m} with {〈φ1, n1〉, . . . , 〈φm, nm〉} we assign the labelZ(ni) =
{s ∈ I|s |= φi}.

When all parent nodesn1, . . . , nm〉 of a noden have a label, we assign a label ton. Let l(ni) =
〈oi, {〈φi, n〉, . . .}〉 for all i ∈ {1, . . . ,m}. ThenZ(n) =

⋃
i∈{1,...,n}{s ∈ imgoi(Z(ni))|s |= φi}.

If the above labeling does not assign anything to a noden, then assignZ(n) = ∅. Each node is
labeled with exactly those states that are possible in that node on some execution.

We show that if plans forZ(n1), . . . , Z(nk) exist, wheren1, . . . , nk are children of a noden,
then the algorithm determines that a plan forZ(n) exists as well.

Induction hypothesis: for every plan noden such that all paths from it to a terminal node have
lengthi or less,B = Z(n) is a subset of someB′ ∈ flat(H) whereH is the value of the program
variableH after thewhile loop exits andH could not be extended further.

Base casei = 0: Terminal nodes of the plan are labeled with subsets ofG. By Lemma 4.49
there isG′ such thatG ⊆ G′ andG′ ∈ flat(H) because initiallyH = F(G) and thereafter it was
repeatedly extended.

Inductive casei ≥ 1: Let n be a plan node withl(n) = (o, {〈φ1, n1〉, . . . , 〈φk, nk〉}.
We show thatZ(n) ⊆ B for someB ∈ flat(H).
By the induction hypothesisZ(ni) ⊆ B for someB ∈ flat(H) for all i ∈ {1, . . . , k}.
For all i ∈ {1, . . . , k} {s ∈ imgo(Z(n))|s |= φi} ⊆ Z(ni).
Hence by Lemma 4.50B =

⋃
i∈{1,...,k}{s ∈ imgo(Z(n))|s |= φi} ⊆ B′ for someB′ ∈

flat(H). Assume that there is no suchB′′. But now by Lemma 4.48 findnew(o,∅,H,H) would
returnB′′′ such thatpreimgo(B′′′) 6⊆ B for all B ∈ flat(H), and thewhile loop could not have
exited withH, contrary to our assumption aboutH. �

Theorem 4.52 Let Π = 〈S, I,O,G, P 〉 be a problem instance. If plan(I,O,G) returnstrue, then
Π has a solution plan.

Proof: Let H0,H1, . . . be the sequence of belief spacesH produced by the algorithm.



CHAPTER 4. NONDETERMINISTIC PLANNING 103

Induction hypothesis: For everyB ∈ Hi,j for somej ∈ {1, . . . , n} andHi = 〈Hi,1, . . . ,Hi,n〉
a plan reachingG exists.

Base casei = 0: Every component ofH0 consists of a subset ofG. The empty plan reachesG.
Inductive casei ≥ 1: Hi+1 is obtained asHi ⊕ preimgo(B) whereB = findnew(o,∅,Hi,Hi)

ando is an operator.
By Lemma 4.48B ∈ flat(Hi). By the induction hypothesis there are plansπi for everyB ∩

Ci, i ∈ {1, . . . , n}. The plan that executeso followed byπi on observationCi reachesG from
preimgo(B).

Let B′ ∈ Hi+1,j for Hi+1 = 〈Hi+1,1, . . . ,Hi+1,n〉 and somej ∈ {1, . . . , n}. We show that
for B′ there is a plan for reachingG.

If B′ ∈ Hi,j then by the induction hypothesis a plan exists.
OtherwiseB′ ⊆ preimgo(B) and we can use the plan forpreimgo(B) that first applieso and

then continues with a plan associated with one of the belief states inHi. �

It would be easy to define an algorithm that systematically generates all belief states (plans)
breadth-first and therefore plans with optimal execution lengths, but this algorithm would in prac-
tice be much slower and plans would be bigger.

Above we have used only one partition of the state space to observational classes. However, it
is straightforward to generalize the above definitions and algorithms to the case in which several
partitions are used, each for a different set of actions. This means that the possible observations
depend on the action that has last been taken.

4.8 Computational complexity

In this section we analyze the computational complexity of the main decision problems related
to nondeterministic planning. The conditional planning problem is a generalization of the deter-
ministic planning problem from Chapter 3, and therefore the plan existence problem is at least
PSPACE-hard. In this section we discuss the computational complexity of each of the three plan-
ning problems, the fully observable, the unobservable, and the general partially observable plan-
ning problem, showing them respectively complete for the complexity classes EXP, EXPSPACE
and 2-EXP.

4.8.1 Planning with full observability

We first show that the plan existence problem for nondeterministic planning with full observability
is EXP-hard and then that the problem is in EXP.

The EXP-hardness proof in Theorem 4.53 is by simulating polynomial-space alternating Tur-
ing machines by nondeterministic planning problems with full observability and the using the fact
that the complexity classes EXP and APSPACE are the same (see Section 2.4.) The most inter-
esting thing in the proof is the representation of alternation. Theorem 3.59 already showed how
deterministic Turing machines with a polynomial space bound are simulated, and the difference is
that we now have nondeterminism, that is, a configuration of the TM may have several successor
configurations, and that there are both∀ and∃ states.2

2Restricting the proof of Theorem 4.53 to∃ states with nondeterministic transitions would yield a proof of the
NPSPACE-hardness of deterministic planning, but this is not interesting as PSPACE=NPSPACE.



CHAPTER 4. NONDETERMINISTIC PLANNING 104

The∀ states mean that all successor configurations must be accepting (terminal or non-terminal)
configurations. The∃ states mean that at least one successor configuration must be an accepting
(terminal or non-terminal) configuration. Both of these requirements can be represented in the
nondeterministic planning problem.

The transitions from a configuration with a∀ state will correspond to one nondeterministic
operator. That all successor configurations must be accepting (terminal or non-terminal) configu-
rations corresponds to requirement in planning that from all successor states of a state a goal state
must be reached.

Every transition from a configuration with∃ state will correspond to a deterministic operator,
that is, the transition may be chosen, as only one of the successor configurations needs to be
accepting.

Theorem 4.53 The problem of testing the existence of an acyclic plan for problem instances with
full observability is EXP-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any alternating Turing machine with a polynomial space boundp(x).
Let σ be an input string of lengthn.

We construct a problem instance in nondeterministic planning with full observability for sim-
ulating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. si for every symbols ∈ Σ ∪ {|,�} and tape celli ∈ {0, . . . , p(n)}, and

3. hi for the positions of the R/W headi ∈ {0, . . . , p(n) + 1}.

The unique initial state of the problem instance represents the initial configuration of the TM.
The corresponding formula is the conjunction of the following literals.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. si for all s ∈ Σ andi ∈ {1, . . . , n} such thatith input symbol iss.

4. ¬si for all s ∈ Σ andi ∈ {1, . . . , n} such thatith input symbol is nots.

5. ¬si for all s ∈ Σ andi ∈ {0, n + 1, n + 2, . . . , p(n)}.

6. �i for all i ∈ {n + 1, . . . , p(n)}.

7. ¬�i for all i ∈ {0, . . . , n}.

8. |0

9. ¬|i for all n ∈ {1, . . . , p(n)}

10. h1

11. ¬hi for all i ∈ {0, 2, 3, 4, . . . , p(n) + 1}



CHAPTER 4. NONDETERMINISTIC PLANNING 105

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

Next we define the operators. All the transitions may be nondeterministic, and the important
thing is whether the transition is for a∀ state or an∃ state.3 For a given input symbol and a∀ state,
the transition corresponds to one nondeterministic operator, whereas for a given input symbol and
an∃ state the transitions corresponds to a set of deterministic operators.

To define the operators, we first define effects corresponding to all possible transitions.
For all〈s, q〉 ∈ (Σ∪{|,�})×Q, i ∈ {0, . . . , p(n)} and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R}

define the effectτs,q,i(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ¬si ∧ s′i to denote that the new symbol in
theith tape cell iss′ and nots.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. We defineκ = ¬q wheni = p(n) and
m = R so that when the space bound gets violated, no accepting state can be reached.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =


¬hi ∧ hi−1 if m = L

> if m = N
¬hi ∧ hi+1 if m = R

By definition of TMs, movement at the left end of the tape is always to the right. Similarly, we
have state variable for R/W head positionp(n) + 1 and moving to that position is possible, but no
transitions from that position are possible, as the space bound has been violated.

Now, these effects that represent possible transitions are used in the operators that simulate the
ATM. Operators for existential statesq, g(q) = ∃ and for universal statesq, g(q) = ∀ differ. Let
〈s, q〉 ∈ (Σ ∪ {|,�})×Q, i ∈ {0, . . . , p(n)} andδ(s, q) = {〈s1, q1,m1〉, . . . , 〈sk, qk,mk〉}.

If g(q) = ∃, then definek deterministic operators

os,q,i,1 = 〈hi ∧ si ∧ q, τs,q,i(s1, q1,m1)〉
os,q,i,2 = 〈hi ∧ si ∧ q, τs,q,i(s2, q2,m2)〉
...
os,q,i,k = 〈hi ∧ si ∧ q, τs,q,i(sk, qk,mk)〉

That is, the plan determines which transition is chosen.
If g(q) = ∀, then define one nondeterministic operator

os,q,i = 〈hi ∧ si ∧ q, (τs,q,i(s1, q1,m1)|
τs,q,i(s2, q2,m2)|
...
τs,q,i(sk, qk,mk))〉.

That is, the transition is chosen nondeterministically.

3No operators are needed for accepting or rejecting states.



CHAPTER 4. NONDETERMINISTIC PLANNING 106

We claim that the problem instance has a plan if and only if the Turing machine accepts without
violating the space bound.

If the Turing machine violates the space bound, the state variablehp(n)+1 becomes true and an
accepting state cannot be reached because no operator will be applicable.

Otherwise, we show inductively that from a computation tree of an accepting ATM we can
extract a conditional plan that always reaches a goal state, and vice versa. For obtaining an cor-
respondence between conditional plans and computation trees it is essential that the plans are
acyclic.

kesken
So, because all alternating Turing machines with a polynomial space bound can be in polyno-

mial time translated to a nondeterministic planning problem, all decision problems in APSPACE
are polynomial time many-one reducible to nondeterministic planning, and the plan existence
problem is APSPACE-hard and consequently EXP-hard. �

We can extend Theorem 4.53 to general plans with loops. The problem looping plans cause in
the proofs of this theorem is that a Turing machine computation of infinite length is not accepting
but the corresponding infinite length zero-probability plan execution is allowed to be a part of plan
and would incorrectly count as an accepting Turing machine computation.

To eliminate infinite plan executions we have to modify the Turing machine simulation. This
is by counting the length of the plan executions and failing when at least one state or belief state
must have been visited more than once. This modification makes infinite loops ineffective, and
any plan containing a loop can be translated to a finite non-looping plan by unfolding the loop. In
the absence of loops the simulation of alternating Turing machines is faithful.

Theorem 4.54 The plan existence problem for problem instances with full observability is EXP-
hard.

Proof: This is an easy extension of the proof of Theorem 4.53. If there aren state variables, an
acyclic plan exists if and only if a plan with execution length at most2n exists, because visiting any
state more than once is unnecessary. Plans that rely on loops can be invalidated by counting the
number of actions taken and failing when this exceeds2n. This counting can be done by having
n + 1 auxiliary state variablesc0, . . . , cn that are initialized to false. Every operator〈p, e〉 is
extended to〈p, e∧ t〉 wheret is an effect that increments the binary number encoded byc0, . . . , cn

by one until the most significant bitcn becomes one. The goalG is replaced byG ∧ ¬cn.
Then a plan exists if and only if an acyclic plan exists if and only if the alternating Turing

machine accepts. �

Theorem 4.55 The problem of testing the existence of a plan for problem instances with full ob-
servability is in EXP.

Proof: The algorithm in Section 4.4.2 runs in exponential time in the size of the problem in-
stance. �



CHAPTER 4. NONDETERMINISTIC PLANNING 107

4.8.2 Planning without observability

The plan existence problem of conditional planning with unobservability is more complex than
that of conditional planning with full observability.

To show the unobservable problem EXPSPACE-hard by a direct simulation of exponential
space Turing machines, the first problem is how to encode the tape of the TM. With polynomial
space, as in the PSPACE-hardness and APSPACE-hardness proofs of deterministic planning and
conditional planning with full observability, it was possible to represent all the tape cells as the
state variables of the planning problem. With an exponential space bound this is not possible any
more, as we would need an exponential number of state variables, and the planning problem could
not be constructed in polynomial time.

Hence we have to find a more clever way of encoding the working tape. It turns out that we
can use the uncertainty about the initial state for this purpose. When an execution of the plan
that simulates the Turing machine is started, we randomly choose one of the tape cells to be the
watchedtape cell. This is the only cell of the tape for which the current symbol is represented in
the state variables. On all transitions the plan makes, if the watched tape cell changes, the change
is reflected in the state variables.

That the plan corresponds to a simulation of the Turing machine it is tested whether the tran-
sition the plan makes when the current tape cell is the watched tape cell is the one that assumes
the current symbol to be the one that is stored in the state variables. If it is not, the plan is not a
valid plan. Because the watched tape cell could be any of the exponential number of tape cells,
all the transitions the plan makes are guaranteed to correspond to the contents of the current tape
cell of the Turing machine, so if the plan does not simulate the Turing machine, the plan is not
guaranteed to reach the goal states.

The proof requires both several initial states and unobservability. Several initial states are
needed for selecting the watched tape cell, and unobservability is needed so that the plan cannot
cheat: if the plan can determine what the current tape cell is, it could choose transitions that do
not correspond to the Turing machine on all but the watched tape cell. Because of unobservability
all the transitions have to correspond to the Turing machine.

Theorem 4.56 The problem of testing the existence of a plan for problem instances with unob-
servability is EXPSPACE-hard.

Proof: Proof is a special case of the proof of Theorem 4.59. We do not have∀ states and restrict
to deterministic Turing machines. Nondeterministic Turing machines could be simulated for a
NEXPSPACE-hardness proof, but it is already known that EXPSPACE = NEXPSPACE, so this
additional generality would not bring anything.

Let 〈Σ, Q, δ, q0, g〉 be any deterministic Turing machine with an exponential space bounde(x).
Let σ be an input string of lengthn. We denote theith symbol ofσ by σi.

The Turing machine may use spacee(n), and for encoding numbers from0 to e(n) + 1 corre-
sponding to the tape cells we needm = dlog2(e(n) + 2)e Boolean state variables.

We construct a problem instance in nondeterministic planning without observability for simu-
lating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

We cannot have a state variable for every tape cell because the reduction from Turing machines
to planning would not be polynomial time. It turns out that it is not necessary to encode the whole
contents of the tape in the transition system of the planning problem, and that it suffices to keep



CHAPTER 4. NONDETERMINISTIC PLANNING 108

track of only one tape cell (which we will call thewatched tape cell) that is randomly chosen in
the beginning of every execution of the plan.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. wi for i ∈ {0, . . . ,m− 1} for the watched tape celli ∈ {0, . . . , e(n)},

3. s for every symbols ∈ Σ ∪ {|,�} for the contents of the watched tape cell,

4. hi for i ∈ {0, . . . ,m− 1} for the position of the R/W headi ∈ {0, . . . , e(n) + 1}.

The uncertainty in the initial state is about which tape cell is the watched one. Otherwise the
formula encodes the initial configuration of the TM, and it is the conjunction of the following
formulae.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. Formulae for having the contents of the watched tape cell in state variablesΣ ∪ {|,�}.

| ↔ (w = 0)
� ↔ (w > n)
s ↔

∨
i∈{1,...,n},σi=s(w = i) for all s ∈ Σ

4. h = 1 for the initial position of the R/W head.

So the initial state formula allows any values for state variableswi and the values of the state
variabless ∈ Σ are determined on the basis of the values ofwi. The expressionsw = i, w > i
denote the obvious formulae for testing integer equality and inequality of the numbers encoded by
w0, w1, . . .. Later we will also use effectsh := h + 1 andh := h− 1 that represent incrementing
and decrementing the number encoded byh0, h1, . . ..

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

To define the operators, we first define effects corresponding to all possible transitions.
For all 〈s, q〉 ∈ (Σ∪{|,�})×Q and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R} define the effect

τs,q(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ((h = w) B (¬s ∧ s′)) to denote that the
new symbol in the watched tape cell iss′ and nots.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. If R/W head movement is to the right we
defineκ = ¬q ∧ ((h < e(n)) B q′) if q 6= q′ and(h = e(n)) B ¬q otherwise. This prevents
reaching an accepting state if the space bound is violated: no further operator applications are
possible.



CHAPTER 4. NONDETERMINISTIC PLANNING 109

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =


h := h− 1 if m = L

> if m = N
h := h + 1 if m = R

By definition of TMs, movement at the left end of the tape is always to the right.
Now, these effectsτs,q(s′, q′,m) which represent possible transitions are used in the operators

that simulate the DTM. Let〈s, q〉 ∈ (Σ ∪ {|,�})×Q andδ(s, q) = {〈s′, q′,m〉}.
If g(q) = ∃, then define the operator

os,q = 〈((h 6= w) ∨ s) ∧ q, τs,q(s′, q′,m)〉

It is easy to verify that the planning problem simulates the DTM assuming that when operator
os,q is executed the current tape symbol is indeeds. So assume that someos,q is the first operator
that misrepresents the tape contents and thath = c for some tape cell locationc. Now there is an
execution of the plan so thatw = c. On this execution the preconditionos,q is not satisfied, and
the plan is not executable. Hence a valid plan cannot contain operators that misrepresent the tape
contents. �

Theorem 4.57 The problem of testing the existence of a plan for problem instances with unob-
servability is in EXPSPACE.

Proof: Proof is similar to the proof Theorem 3.60 but works at the level of belief states. �

The two theorems together yield the EXPSPACE-completeness of the plan existence problem
for conditional planning without observability.

4.8.3 Planning with partial observability

We show that the plan existence problem of the general conditional planning problem with partial
observability is 2-EXP-complete. The hardness proof is by a simulation of AEXPSPACE=2-EXP
Turing machines. Membership in 2-EXP is obtained directly from the decision procedure dis-
cussed earlier: the procedure runs in polynomial time in the size of the enumerated belief space of
doubly exponential size.

Showing that the plan existence problem for planning with partial observability is in 2-EXP is
straightforward. The easiest way to see this is to view the partially observable planning problem
as a nondeterministic fully observable planning problem with belief states viewed as states. An
operator maps a belief state to another belief state nondeterministically: compute the image of a
belief state with respect to an operator, and choose the subset of its states that correspond to one
of the possible observations. Like pointed out in the proof of Theorem 4.55, the algorithms for
fully observable planning run in polynomial time in the size of the state space. The state space
with the belief states as the states has a doubly exponential size in the size of the problem instance,
and hence the algorithm runs in doubly exponential time in the size of the problem instance. This
gives us the membership in 2-EXP.



CHAPTER 4. NONDETERMINISTIC PLANNING 110

Theorem 4.58 The plan existence problem for problem instances with partial observability is in
2-EXP.

The hardness proof is an extension of both the EXP-hardness proof of Theorem 4.53 and of
the EXPSPACE-hardness proof of Theorem 4.56. From the first proof we have the simulation of
alternating Turing machines, and from the second proof the simulation of Turing machines with
an exponentially long tape.

Theorem 4.59 The problem of testing the existence of an acyclic plan for problem instances with
partial observability is 2-EXP-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any alternating Turing machine with an exponential space bound
e(x). Let σ be an input string of lengthn. We denote theith symbol ofσ by σi.

The Turing machine may use spacee(n), and for encoding numbers from0 to e(n) + 1 corre-
sponding to the tape cells we needm = dlog2(e(n) + 2)e Boolean state variables.

We construct a problem instance in nondeterministic planning with full observability for sim-
ulating the Turing machine. The problem instance has a size that is polynomial in the size of the
description of the Turing machine and the input string.

We cannot have a state variable for every tape cell because the reduction from Turing machines
to planning would not be polynomial time. It turns out that it is not necessary to encode the whole
contents of the tape in the transition system of the planning problem, and that it suffices to keep
track of only one tape cell (which we will call thewatched tape cell) that is randomly chosen in
the beginning of every execution of the plan.

The setA of state variables in the problem instance consists of

1. q ∈ Q for denoting the internal states of the TM,

2. wi for i ∈ {0, . . . ,m− 1} for the watched tape celli ∈ {0, . . . , e(n)},

3. s for every symbols ∈ Σ ∪ {|,�} for the contents of the watched tape cell,

4. s∗ for everys ∈ Σ ∪ {|} for the symbol last written (important for nondeterministic transi-
tions),

5. L, R andN for the last movement of the R/W head (important for nondeterministic transi-
tions), and

6. hi for i ∈ {0, . . . ,m− 1} for the position of the R/W headi ∈ {0, . . . , e(n) + 1}.

The observable state variables areL, N andR, q ∈ Q, ands∗ for s ∈ Σ. These are needed by
the plan to decide how to proceed execution after a nondeterministic transition with a∀ state.

The uncertainty in the initial state is about which tape cell is the watched one. Otherwise the
formula encodes the initial configuration of the TM, and it is the conjunction of the following
formulae.

1. q0

2. ¬q for all q ∈ Q\{q0}.

3. ¬s∗ for all s ∈ Σ ∪ {|}.



CHAPTER 4. NONDETERMINISTIC PLANNING 111

4. Formulae for having the contents of the watched tape cell in state variablesΣ ∪ {|,�}.

| ↔ (w = 0)
� ↔ (w > n)
s ↔

∨
i∈{1,...,n},σi=s(w = i) for all s ∈ Σ

5. h = 1 for the initial position of the R/W head.

So the initial state formula allows any values for state variableswi and the values of the state
variabless ∈ Σ are determined on the basis of the values ofwi. The expressionsw = i, w > i
denote the obvious formulae for testing integer equality and inequality of the numbers encoded by
w0, w1, . . .. Later we will also use effectsh := h + 1 andh := h− 1 that represent incrementing
and decrementing the number encoded byh0, h1, . . ..

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

Next we define the operators. All the transitions may be nondeterministic, and the important
thing is whether the transition is for a∀ state or an∃ state. For a given input symbol and a∀ state,
the transition corresponds to one nondeterministic operator, whereas for a given input symbol and
an∃ state the transitions corresponds to a set of deterministic operators.

To define the operators, we first define effects corresponding to all possible transitions.
For all 〈s, q〉 ∈ (Σ∪{|,�})×Q and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R} define the effect

τs,q(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ((h = w) B (¬s ∧ s′)) ∧ s′∗ ∧ ¬s∗ to
denote that the new symbol in the watched tape cell iss′ and nots, and to make it possible for the
plan to detect which symbol was written to the tape by the possibly nondeterministic transition.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. If R/W head movement is to the right we
defineκ = ¬q ∧ ((h < e(n)) B q′) if q 6= q′ and(h = e(n)) B ¬q otherwise. This prevents
reaching an accepting state if the space bound is violated: no further operator applications are
possible.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =


(h := h− 1) ∧ L ∧ ¬N ∧ ¬R if m = L

N ∧ ¬L ∧ ¬R if m = N
(h := h + 1) ∧R ∧ ¬L ∧ ¬N if m = R

By definition of TMs, movement at the left end of the tape is always to the right.
Now, these effectsτs,q(s′, q′,m) which represent possible transitions are used in the opera-

tors that simulate the ATM. Operators for existential statesq, g(q) = ∃ and for universal states
q, g(q) = ∀ differ. Let 〈s, q〉 ∈ (Σ ∪ {|,�})×Q andδ(s, q) = {〈s1, q1,m1〉, . . . , 〈sk, qk,mk〉}.

If g(q) = ∃, then definek deterministic operators

os,q,1 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s1, q1,m1)〉
os,q,2 = 〈((h 6= w) ∨ s) ∧ q, τs,q(s2, q2,m2)〉
...
os,q,k = 〈((h 6= w) ∨ s) ∧ q, τs,q(sk, qk,mk)〉



CHAPTER 4. NONDETERMINISTIC PLANNING 112

That is, the plan determines which transition is chosen.
If g(q) = ∀, then define one nondeterministic operator

os,q = 〈((h 6= w) ∨ s) ∧ q, (τs,q(s1, q1,m1)|
τs,q(s2, q2,m2)|
...
τs,q(sk, qk,mk)〉).

That is, the transition is chosen nondeterministically.
We claim that the problem instance has a plan if and only if the Turing machine accepts without

violating the space bound. If the Turing machine violates the space bound, thenh > e(n) and an
accepting state cannot be reached because no further operator will be applicable.

From an accepting computation tree of an ATM we can construct a plan, and vice versa. Ac-
cepting final configurations are mapped to terminal nodes of plans,∃-configurations are mapped
to operator nodes in which an operator corresponding to the transition to an accepting successor
configuration is applied, and∀-configurations are mapped to operator nodes corresponding to the
matching nondeterministic operators followed by a branch node that selects the plan nodes corre-
sponding to the successors of the∀ configuration. The successors of∀ and∃ configurations are
recursively mapped to plans.

Construction of computation trees from plans is similar, but involves small technicalities. A
plan with DAG form can be turned into a tree by having several copies of the shared subplans.
Branches not directly following the nondeterministic operator causing the uncertainty can be
moved earlier so that every nondeterministic operator is directly followed by a branch that chooses
a successor node for every possible new state, written symbol and last tape movement. With these
transformations there is an exact match between plans and computation trees of the ATM, and
mapping from plans to ATMs is straightforward like in the opposite direction.

Because alternating Turing machines with an exponential space bound are polynomial time
reducible to the nondeterministic planning problem with partial observability, the plan existence
problem is AEXPSPACE=2-EXP-hard. �

What remains to be done is the extension of the above theorem to the case with arbitrary
(possibly cyclic) plans. For the fully observable case counting the execution length does not
pose a problem because we only have to count an exponential number of execution steps, which
can be represented by a polynomial number of state variables, but in the partially observable
case we need to count a doubly exponential number of execution steps, as the number of belief
states to be visited may be doubly exponential. A binary representation of these numbers requires
an exponential number of bits, and we cannot use an exponential number of state variables for
the purpose, because the reduction to planning would not be polynomial time. However, partial
observability together with only a polynomial number of auxiliary state variables can be used to
force the plans to count doubly exponentially far.

Theorem 4.60 The plan existence problem for problem instances with partial observability is 2-
EXP-hard.

Proof: We extend the proof of Theorem 4.59 by a counting scheme that makes cyclic plans inef-
fective. We show how counting the execution length can be achieved within a problem instance
obtained from the alternating Turing machine and the input string in polynomial time.



CHAPTER 4. NONDETERMINISTIC PLANNING 113

Instead of representing the exponential number of bits explicitly as state variables, we use a
randomizing technique for forcing the plans to count the number of Turing machine transitions.
The technique has resemblance to the idea in simulating exponentially long tapes in the proofs of
Theorems 4.56 and 4.53.

For a problem instance withn state variables (representing the Turing machine configurations)
executions that visit each belief state at most once may have length22n

. Representing numbers
from 0 to22n − 1 requires2n binary digits. We introducen + 1 new unobservable state variables
d0, . . . , dn for representing the index of one of the digits andvd for the value of that digit, and
new state variablesc0, . . . , cn through which the plan indicates changes in the counter of Turing
machine transitions. There is a set of operators by means of which the plan sets the values of these
variables before every transition of the Turing machine is made.

The idea of the construction is the following. Whenever the counter of TM transitions is incre-
mented, one of the2n digits in the counter changes from 0 to 1 and all of the less significant digits
change from 1 to 0. The plan is forced to communicate the index of the digit that changes from
0 to 1 by the state variablesc0, . . . , cn. The unobservable state variablesd0, . . . , dn, vd store the
index and value of one of the digits (chosen randomly in the beginning of the plan execution), that
we call the watched digit, and they are used for checking that the reporting ofc0, . . . , cn by the
plan is truthful. The test for truthful reporting is randomized, but this suffices to invalidate plans
that incorrectly report the increments, as a valid plan has to reach the goals on every possible exe-
cution. The plan is invalid if reporting is false or when the count can exceed22n

. For this reason
a plan for the problem instance exists if and only if an acyclic plan exists if and only if the Turing
machine accepts the input string.

Next we exactly define how the problem instances defined in the proof of Theorem 4.59 are
extended with a counter to prevent unbounded looping.

The initial state description is extended with the conjunct¬dv to signify that the watched digit
is initially 0 (all the digits in the counter implicitly represented in the belief state are 0.) The state
variablesd0, . . . , dn may have any values which means that the watched digit is chosen randomly.
The state variablesdv, d0, . . . , dn are all unobservable so that the plan does not know the watched
digit (may not depend on it).

There is also a failure flagf that is initially set to false by having¬f in the initial states formula.
The goal is extended by¬f ∧ ((d0 ∧ · · · ∧dn)→¬dv) to prevent executions that lead to setting

f true or that have length22n+1−1 or more. The conjunct(d0∧· · ·∧dn)→¬dv is false if the index
of the watched digit is2n+1− 1 and the digit is true, indicating an execution of length≥ 22n+1−1.

Then we extend the operators simulating the Turing machine transitions, as well as introduce
new operators for indicating which digit changes from 0 to 1.

The operators for indicating the changing digit are

〈>, ci〉 for all i ∈ {0, . . . , n}
〈>,¬ci〉 for all i ∈ {0, . . . , n}

The operators for Turing machine transitions are extended with the randomized test that the digit
the plan claims to change from 0 to 1 is indeed the one: every operator〈p, e〉 defined in the proof
of Theorem 4.59 is replaced by〈p, e∧t〉where the testt is the conjunction of the following effects.

((c = d) ∧ dv) B f
(c = d) B dv

((c > d) ∧ ¬dv) B f
(c > d) B ¬dv



CHAPTER 4. NONDETERMINISTIC PLANNING 114

Herec = d denotes(c0 ↔ d0) ∧ · · · ∧ (cn ↔ dn) andc > d encodes the greater-than test for the
binary numbers encoded byc0, . . . , cn andd0, . . . , dn.

The above effects do the following.

1. When the plan claims that the watched digit changes from 0 to 1 and the value ofdv is 1,
fail.

2. When the plan claims that the watched digit changes from 0 to 1, changedv to 1.

3. When the plan claims that a more significant digit changes from 0 to 1 and the value ofdv

is 0, fail.

4. When the plan claims that a more significant digit changes from 0 to 1, set the value ofdv

to 0.

That these effects guarantee the invalidity of a plan that relies on unbounded looping is because
the failure flagf will be set if the plan lies about the count, or the most significant bit with index
2n+1 − 1 will be set if the count reaches22n+1−1. Attempts of unfair counting are recognized and
consequentlyf is set to true because of the following.

Assume that the binary digit at indexi changes from 0 to 1 (and therefore all less significant
digits change from 1 to 0) and the plan incorrectly claims that it is the digitj that changes, and
this is the first time on that execution that the plan lies (hence the value ofdv is the true value of
the watched digit.)

If j > i, theni could be the watched digit (and hencec > d), and forj to change from 0
to 1 the less significant biti should be 1, but we would know that it is not becausedv is false.
Consequently on this plan execution the failure flagf would be set.

If j < i, thenj could be the watched digit (and hencec = d), and the value ofdv would
indicate that the current value of digitj is 1, not 0. Consequently on this plan execution the failure
flagf would be set.

So, if the plan does not correctly report the digit that changes from 0 to 1, then the plan is not
valid. Hence any valid plan correctly counts the execution length which cannot exceed22n+1−1. �

4.8.4 Polynomial size plans

We showed in Section 3.7 that the plan existence problem of deterministic planning is only NP-
complete, in contrast to PSPACE-complete, when a restriction to plans of polynomial length is
made. Here we investigate the same question for conditional plans.

Theorem 4.61 The plan existence problem for conditional planning without observability re-
stricted to polynomial length plans is inΣp

2.

Proof: Let p(n) be any polynomial. We give an NPNP algorithm (Turing machine) that solves the
problem. Let the problem instance〈A, I,O,G, ∅〉 have sizen.

First guess a sequence of operatorsσ = o0, o1, . . . , ok for k < p(n). This is nondeterministic
polynomial time computation.

Then use an NP-oracle for testing thatσ is a solution. The oracle is a nondeterministic
polynomial-time Turing machine that accepts if a plan execution does not lead to a goal state



CHAPTER 4. NONDETERMINISTIC PLANNING 115

or if the plan is not executable (operator precondition not satisfied). The oracle guesses an ini-
tial state and for each nondeterministic operator for each step which nondeterministic choices are
made, and then in polynomial time tests whether the execution of the operator sequence leads to a
goal state.

1. Guess valuationI ′ that satisfiesI.

2. Guess the results of the nondeterministic choices for every operator in the plan: replace
everyp1e1| · · · |pnen by a nondeterministically selectedei.

3. Computesj = appoj (appoj−1(· · ·appo2(appo1(I
′)))) for j = 0, j = 1, j = 2, . . . , j = k.

4. If sj 6|= cj for oj = 〈cj , ej〉, accept.

5. If sk 6|= G, accept.

6. Otherwise reject.

�

Theorem 4.62 The plan existence problem for conditional planning without observability re-
stricted to polynomial length plans isΣp

2-hard.

Proof: Truth of QBF of the form∃x1 · · ·xn∀y1 · · · ymφ is Σp
2-complete. We reduce this problem

to the plan existence problem of unobservable planning with polynomial length plans.

• A = {x1, . . . , xn, y1, . . . , ym, s, g}

• I = ¬x1 ∧ · · · ∧ ¬xn ∧ ¬g ∧ s

• O = {〈s, x1〉, 〈s, x2〉, . . . , 〈s, xn〉, 〈s,¬s ∧ (φ B g)〉}

• G = g

Out claim is that there is a plan if and only if∃x1 · · ·xn∀y1 · · · ymφ is true.
Assume the QBF is true, that is, there is a valuationx for x1, . . . , xn so thatx, y |= φ for any

valuationy of y1, . . . , ym. Let X = {〈s, xi〉|i ∈ {1, . . . , n}, x(xi) = 1}. Now the operatorsX
in any order followed by〈s,¬s ∧ (φ B g)〉 is a plan: whatever valuesy1, . . . , ym have,φ is true
after executing the operatorsX, and hence the last operator makesG = g true.

Assume there is a plan. The plan has one occurrence of〈s,¬s ∧ (φ B g)〉 and it must be the
last operator. Define the valuationx of x1, . . . , xn as follows. Letx(xi) = 1 iff 〈s, xi〉 is one of
the operators in the plan, for alli ∈ {1, . . . , n}. Becauseg is reached,x, y |= φ for any valuation
y of y1, . . . , ym, and the QBF is therefore true. �



CHAPTER 4. NONDETERMINISTIC PLANNING 116

deterministic deterministic non-deterministic
context-independent context-dependent context-dependent

full observability PSPACE PSPACE EXPTIME
no observability PSPACE EXPSPACE EXPSPACE
partial observability PSPACE EXPSPACE 2-EXPTIME

Table 4.2: Computational complexity of plan existence problems

deterministic deterministic non-deterministic
context-independent context-dependent context-dependent

full observability PSPACE PSPACE EXPTIME
no observability PSPACE PSPACE EXPSPACE
partial observability PSPACE PSPACE 2-EXPTIME

Table 4.3: Computational complexity of plan existence problems with one initial state

4.8.5 Summary of the results

The complexities of the plan existence problem under different restrictions on operators and ob-
servability are summarized in Tables 4.2 (with an arbitrary number of initial states) and 4.3 (with
one initial state). The different columns list the complexities with different restrictions on the
operators. In the previous sections we have considered the general problems with arbitrary opera-
tors containing conditional effects and nondeterministic choice. These results are summarized in
the third column. The second column lists the complexities in the case without nondeterminism
(choice|), and the first column without nondeterminism (choice|) and without conditional effects
(B). These results are not given in this lecture.

4.9 Literature

There is a difficult trade-off between the two extreme approaches, producing a conditional plan
covering all situations that might be encountered, and planning only one action ahead. Schoppers
[1987] proposeduniversal plansas a solution to the high complexity of planning. Ginsberg[1989]
attacked Schopper’s idea. Schopper’s proposal was to have memoryless plans that map any given
observations to an action. He argued that plans have to be memoryless in order to be able to react
to all the unforeseeable situations that might be encountered during plan execution. Ginsberg
argued that plans that are able to react to all possible situations are necessarily much too big to
be practical. It seems to us that Schopper’s insistence on using plans without a memory is not
realistic nor necessary, and that most of Ginsberg’s argumentation on impracticality of universal
plans relies on the lack of any memory in the plan execution mechanism. Of course, we agree that
a conditional plan that can be executed efficiently can be much bigger than a plan or a planner that
has no restrictions on the amount of time consumed in deciding about the action to be taken. Plans
without such restrictions could have as high expressivity as Turing machines, for example, and
then a conditional plan does not have to be less succinct than the description of a general purpose
planning algorithm.

There is some early work on conditional planning that mostly restricts to the fully observable
case and is based on partial-order planning[Etzioni et al., 1992; Peot and Smith, 1992; Pryor and



CHAPTER 4. NONDETERMINISTIC PLANNING 117

Collins, 1996]. We have not discussed these algorithms because they have only been shown to
solve very small problem instances.

A variant of the algorithm for constructing plans for nondeterministic planning with full ob-
servability in Section 4.4.1 was first presented by Cimatti et al.[2003]. The algorithms by Cimatti
et al. construct mappings of states to actions whereas our presentation in Section 4.4 focuses on
the computation of distances of states, and plans are synthesized afterwards on the basis of the
distances. We believe that our algorithms are conceptually simpler. Cimatti et al. also presented
an algorithm for findingweak plansthat may reach the goals but are not guaranteed to. However,
finding weak plans is polynomially equivalent to the deterministic planning problem of Chapter 3.

The nondeterministic planning problem with unobservability is not very interesting because
all robots and intelligent beings can sense their environment to at least some extent. However,
there are problems (outside AI) that are equivalent to the unobservable planning problem. Finding
homing/reset/synchronization sequences of circuits/automata is an example of such a problem
[Pixley et al., 1992]. There are extensions of the distance and cardinality based heuristics for
planning without observability not discussed in this lecture[Rintanen, 2004a].

Bertoli et al. have presented a forward search algorithm for finding conditional plans in the
general partially observable case[Bertoli et al., 2001].

The computational complexity of conditional planning was first investigated by Littman[1997]
and Haslum and Jonsson[2000]. They presented proofs for the EXPTIME-completeness of plan-
ning with full observability and the EXPSPACE-completeness of planning without observability.
The hardness parts of the proofs were reductions respectively from the existence problem of win-
ning strategies for the gameG4 [Stockmeyer and Chandra, 1979] and from the universality prob-
lem of regular expressions with exponentiation[Hopcroft and Ullman, 1979]. In this chapter we
gave more direct hardness proofs by direct simulation of alternating polynomial space (exponential
time) and exponential space Turing machines.


