
Chapter 3

Deterministic planning

The simplest planning problems involves finding a sequence of actions that lead from a given initial
state to a goal state. Only deterministic actions are considered. Determinism and the uniqueness of
the initial state mean that the state of the transition system after any sequence of actions is exactly
predictable. The problem instances in this chapter are deterministic succinct transition systems as
defined in Section 2.3.1.

3.1 State-space search

The simplest possible planning algorithm generates all states (valuations of the state variables),
constructs the transition graph, and then finds a path from the initial stateI to a goal stateg ∈ G
for example by a shortest-path algorithm. The plan is then simply the sequence of operators
corresponding to the edges on the shortest path from the initial state to a goal state. However,
this algorithm is not feasible when the number of state variables is higher than 20 or 30 because
the number of valuations is very high:220 = 1048576 ∼ 106 for 20 Boolean state variables and
230 = 1073741824 ∼ 109 for 30.

Instead, it will often be much more efficient to avoid generating most of the state space ex-
plicitly and to produce only the successor or predecessor states of the states currently under con-
sideration. This form of plan search can be easiest viewed as the application of general-purpose
search algorithms that can be employed in solving a wide range of search problems. The best
knownheuristic search algorithmsare A∗, IDA∗ and their variants[Hartet al., 1968; Pearl, 1984;
Korf, 1985] which can be used in finding shortest plans or plans that are guaranteed to be close to
the shortest ones.

There are two main possibilities to find a path from the initial state to a goal state: traverse
the transition graph forwards starting from the initial state, or traverse it backwards starting from
the goal states. The main difference between these possibilities is that there may be several goal
states (and one state may have several predecessor states with respect to one operator) but only one
initial state: in forward traversal we repeatedly compute the unique successor state of the current
state, whereas with backward traversal we are forced to keep track of a possibly very high number
of possible predecessor states of the goal states. Backward search is slightly more complicated to
implement but it allows to simultaneously consider several paths leading to a goal state.

27

CHAPTER 3. DETERMINISTIC PLANNING 28

3.1.1 Progression and forward search

We have already definedprogressionfor single statess asappo(s). The simplest algorithm for the
deterministic planning problem does not require the explicit representation of the whole transition
graph. The search starts in the initial state. New states are generated by progression. As soon as a
states such thats |= G is found a plan is guaranteed to exist: it is the sequence of operators with
which the states is reached from the initial state.

A planner can use progression in connection with any of the standard search algorithms. Later
in this chapter we will discuss how heuristic search algorithms together with heuristics yield an
efficient planning method.

3.1.2 Regression and backward search

With backward search the starting point is a propositional formulaG that describes the set of goal
states. An operator is selected, the set of possible predecessor states is computed, and this set is
again described by a propositional formula. A plan has been found when a formula that is true
in the initial state is reached. The computation of a formula representing the predecessor states
of the states represented by another formula is calledregression. Regression is more powerful
than progression because it allows handling potentially very big sets of states, but it is also more
expensive.

Definition 3.1 We define the condition EPCl(e) of literal l made true when an operator with the
effecte is applied recursively as follows.

EPCl(>) = ⊥
EPCl(l) = >
EPCl(l′) = ⊥ whenl 6= l′ (for literals l′)

EPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)
EPCl(c B e) = c ∧ EPCl(e)

The caseEPCl(e1∧· · ·∧en) = EPCl(e1)∨· · ·∨EPCl(en) is defined as a disjunction because
it is sufficient that at least one of the effects makesl true.

Definition 3.2 LetA be the set of state variables. We define the condition EPCl(o) of operator
o = 〈c, e〉 being applicable so that literall is made true asc ∧ EPCl(e) ∧

∧
a∈A ¬(EPCa(e) ∧

EPC¬a(e)).

For effectse the truth-value of the formulaEPCl(e) indicates in which statesl is a literal to
which the effecte assigns the value true. The connection to the earlier definition of[e]det

s is stated
in the following lemma.

Lemma 3.3 LetA be the set of state variables,s a state onA, l a literal onA, ando and operator
with effecte. Then

1. l ∈ [e]det
s if and only ifs |= EPCl(e), and

2. appo(s) is defined andl ∈ [e]det
s if and only ifs |= EPCl(o).

CHAPTER 3. DETERMINISTIC PLANNING 29

Proof: We first prove (1) by induction on the structure of the effecte.
Base case 1,e = >: By definition of [>]det

s we havel 6∈ [>]det
s = ∅, and by definition of

EPCl(>) we haves 6|= EPCl(>) = ⊥, so the equivalence holds.
Base case 2,e = l: l ∈ [l]det

s = {l} by definition, ands |= EPCl(l) = > by definition.
Base case 3,e = l′ for some literall′ 6= l: l 6∈ [l′]det

s = {l′} by definition, ands 6|= EPCl(l′) =
⊥ by definition.

Inductive case 1,e = e1 ∧ · · · ∧ en:
l ∈ [e]det

s if and only if l ∈ [e′]det
s for somee′ ∈ {e1, . . . , en}

if and only if s |= EPCl(e′) for somee′ ∈ {e1, . . . , en}
if and only if s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
if and only if s |= EPCl(e1 ∧ · · · ∧ en).

The second equivalence is by the induction hypothesis, the other equivalences are by the defi-
nitions ofEPCl(e) and[e]det

s as well as elementary facts about propositional formulae.
Inductive case 2,e = c B e′:
l ∈ [c B e′]det

s if and only if l ∈ [e′]det
s ands |= c

if and only if s |= EPCl(e′) ands |= c
if and only if s |= EPCl(c B e′).

The second equivalence is by the induction hypothesis. This completes the proof of (1).
(2) follows from the fact that the conjunctsc and

∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)) in EPCl(o)

exactly state the applicability conditions ofo. �

Note that any operator〈c, e〉 can be expressed in normal form in terms ofEPCa(e) as〈
c,

∧
a∈A

(EPCa(e) B a) ∧ (EPC¬a(e) B ¬a)

〉
.

The formulaEPCa(e)∨ (a∧¬EPC¬a(e)) expresses the condition for the trutha ∈ A after the
effecte is executed in terms of truth-values of state variables before: eithera becomes true, ora
is true before and does not become false.

Lemma 3.4 Let a ∈ A be a state variable,o = 〈c, e〉 ∈ O an operator, ands ands′ = appo(s)
states. Thens |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only ifs′ |= a.

Proof: Assume thats |= EPCa(e)∨ (a∧¬EPC¬a(e)). We perform a case analysis and show that
s′ |= a holds in both cases.

Case 1: Assume thats |= EPCa(e). By Lemma 3.3a ∈ [e]det
s , and hences′ |= a.

Case 2: Assume thats |= a ∧ ¬EPC¬a(e). By Lemma 3.3¬a 6∈ [e]det
s . Hencea is true ins′.

For the other half of the equivalence, assume thats 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Hence
s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)).

Case 1: Assume thats |= a. Now s |= EPC¬a(e) becauses |= ¬a ∨ EPC¬a(e), and hence by
Lemma 3.3¬a ∈ [e]det

s and hences′ 6|= a.
Case 2: Assume thats 6|= a. Sinces |= ¬EPCa(e), by Lemma 3.3a 6∈ [e]det

s and hences′ 6|= a.
Therefores′ 6|= a in all cases. �

The formulaeEPCl(e) can be used in defining regression.

CHAPTER 3. DETERMINISTIC PLANNING 30

Definition 3.5 (Regression)Let φ be a propositional formula ando = 〈c, e〉 an operator. The
regressionofφwith respect too is regro(φ) = φr∧c∧χwhereχ =

∧
a∈A ¬(EPCa(e)∧EPC¬a(e))

andφr is obtained fromφ by replacing everya ∈ A by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Define
regre(φ) = φr ∧ χ and use the notation regro1;...;on(φ) = regro1(· · · regron(φ) · · ·).

The conjuncts ofχ say that none of the state variables may simultaneously become true and
false. The operator is not applicable in states in whichχ is false.

Remark 3.6 Regression can be equivalently defined in terms of the conditions the state variables
stay or become false, that is, we could use the formula EPC¬a(e) ∨ (¬a ∧ ¬EPCa(e)) which tells
whena is false. The negation of this formula, which can be written as(EPCa(e)∧¬EPC¬a(e))∨
(a ∧ ¬EPC¬a(e)), is not equivalent to EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). However, if EPCa(e) and
EPC¬a(e) are not simultaneously true, we do get equivalence, that is,

¬(EPCa(e) ∧ EPC¬a(e)) |= ((EPCa(e) ∧ ¬EPC¬a(e)) ∨ (a ∧ ¬EPC¬a(e)))
↔ (EPCa(e) ∨ (a ∧ ¬EPC¬a(e)))

because¬(EPCa(e) ∧ EPC¬a(e)) |= (EPCa(e) ∧ ¬EPC¬a(e)) ↔ EPCa(e).

An upper bound on the size of the formula obtained by regression with operatorso1, . . . , on

starting fromφ is the product of the sizes ofφ, o1, . . . , on, which is exponential inn. However,
the formulae can often be simplified because there are many occurrences of> and⊥, for example
by using the equivalences>∧φ ≡ φ,⊥∧φ ≡ ⊥,>∨φ ≡ >,⊥∨φ ≡ φ,¬⊥ ≡ >, and¬> ≡ ⊥.
For unconditional operatorso1, . . . , on (with no occurrences ofB), an upper bound on the size of
the formula (after eliminating> and⊥) is the sum of the sizes ofo1, . . . , on andφ.

The reason why regression is useful for planning is that it allows to compute the predecessor
states by simple formula manipulation. The same does not seem to be possible for progression
because there is no known simple definition of successor states of aset of states expressed in
terms of a formula: simple syntactic progression is restricted to individual states only (see Section
4.2 for a general but expensive definition of progression for arbitrary formulae.)

The important property of regression is formalized in the following lemma.

Theorem 3.7 Let φ be a formula overA, o an operator overA, andS the set of all states i.e.
valuations ofA. Then{s ∈ S|s |= regro(φ)} = {s ∈ S|appo(s) |= φ}.

Proof: We show that for any states, s |= regro(φ) if and only if appo(s) is defined andappo(s) |=
φ. By definitionregro(φ) = φr∧c∧χ for o = 〈c, e〉whereφr is obtained fromφ by replacing every
state variablea ∈ A by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) andχ =

∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)).

First we show thats |= c ∧ χ if and only if appo(s) is defined.
s |= c ∧ χ iff s |= c and{a,¬a} 6⊆ [e]det

s for all a ∈ A by Lemma 3.3
iff appo(s) is defined by Definition 2.13.

Then we show thats |= φr if and only if appo(s) |= φ. This is by structural induction over
subformulaeφ′ of φ and formulaeφ′r obtained fromφ′ by replacinga ∈ A by EPCa(e) ∨ (a ∧
¬EPC¬a(e))

Induction hypothesis:s |= φ′r if and only if appo(s) |= φ′.
Base case 1,φ′ = >: Now φ′r = > and both are true in the respective states.
Base case 2,φ′ = ⊥: Now φ′r = ⊥ and both are false in the respective states.
Base case 3,φ′ = a for somea ∈ A: Now φ′r = EPCa(e)∨ (a∧¬EPC¬a(e)). By Lemma 3.4

s |= φ′r if and only if appo(s) |= φ′.

CHAPTER 3. DETERMINISTIC PLANNING 31

Inductive case 1,φ′ = ¬θ: By the induction hypothesiss |= θr iff appo(s) |= θ. Hences |= φ′r
iff appo(s) |= φ′ by the truth-definition of¬.

Inductive case 2,φ′ = θ ∨ θ′: By the induction hypothesiss |= θr iff appo(s) |= θ, ands |= θ′r
iff appo(s) |= θ′. Hences |= φ′r iff appo(s) |= φ′ by the truth-definition of∨.

Inductive case 3,φ′ = θ ∧ θ′: By the induction hypothesiss |= θr iff appo(s) |= θ, ands |= θ′r
iff appo(s) |= θ′. Hences |= φ′r iff appo(s) |= φ′ by the truth-definition of∧. �

Regression can be performed with any operator but not all applications of regression are useful.
First, regressing for example the formulaa with the effect¬a is not useful because the new unsat-
isfiable formula describes the empty set of states. Hence the sequence of operators of the previous
regressions steps do not lead to a goal from any state. Second, regressinga with the operator〈b, c〉
yieldsregr〈b,c〉(a) = a ∧ b. Finding a plan for reaching a state satisfyinga is easier than finding a
plan for reaching a state satisfyinga∧ b. Hence the regression step produced a subproblem that is
more difficult than the original problem, and it would therefore be better not to take this regression
step.

Lemma 3.8 Let there be a plano1, . . . , on for 〈A, I,O,G〉. If regrok;...;on(G) |= regrok+1;...;on(G)
for somek ∈ {1, . . . , n− 1}, then alsoo1, . . . , ok−1, ok+1, . . . , on is a plan for〈A, I,O,G〉.

Proof: By Theorem 3.7appok+1;...;on(s) |= G for any s such thats |= regrok+1;...;on(G). Since
appo1;...;ok−1

(I) |= regrok;...;on(G) andregrok;...;on(G) |= regrok+1;...;on(G) alsoappo1;...;ok−1
(I) |=

regrok+1;...;on(G). Henceappo1;...;ok−1;ok+1;...;on(I) |= G ando1; . . . ; ok−1; ok+1; . . . ; on is a plan
for 〈A, I,O,G〉. �

Therefore any regression step that makes the set of states smaller in the set-inclusion sense
is unnecessary. However, testing whether this is the case may be computationally expensive.
Although the following two problems are closely related to SAT, it could be possible that the
formulae obtained by reduction to SAT would fall in some polynomial-time subclass. We show
that this is not the case.

Lemma 3.9 The problem of testing whether regro(φ) 6|= φ is NP-hard.

Proof: We give a reduction from SAT to the problem. Letφ be any formula. Leta be a state
variable not occurring inφ. Now regr〈¬φ→a,a〉(a) 6|= a if and only if (¬φ→ a) 6|= a, because
regr〈¬φ→a,a〉(a) = ¬φ→ a. (¬φ→ a) 6|= a is equivalent to6|= (¬φ→ a)→ a that is equivalent
to the satisfiability of¬((¬φ→ a) → a). Further,¬((¬φ→ a) → a) is logically equivalent to
¬(¬(φ ∨ a) ∨ a) and further to¬(¬φ ∨ a) andφ ∧ ¬a.

Satisfiability ofφ ∧ ¬a is equivalent to the satisfiability ofφ asa does not occur inφ: if φ is
satisfiable, there is a valuationv such thatv |= φ, we can seta false inv to obtainv′, and asa
does not occur inφ, we still havev′ |= φ, and furtherv′ |= φ ∧ ¬a. Clearly, ifφ is unsatisfiable
alsoφ ∧ ¬a is.

Henceregr〈¬φ→a,a〉(a) 6|= a if and only if φ is satisfiable. �

Also the problem of testing whether a regression step leads to an empty set of states is difficult.

Lemma 3.10 The problem of testing that regro(φ) is satisfiable is NP-hard.

CHAPTER 3. DETERMINISTIC PLANNING 32

Proof: Proof is a reduction from SAT. Letφ be a formula.regr〈φ,a〉(a) is satisfiable if and only if
φ is satisfiable becauseregr〈φ,a〉(a) ≡ φ.

The problem is NP-hard even if we restrict to operators that have a satisfiable precondition:φ
is satisfiable if and only if(φ∨¬a)∧a is satisfiable if and only ifregr〈φ∨¬a,b〉(a∧ b) is satisfiable.
Herea is a state variable that does not occur inφ. Clearly,φ ∨ ¬a is true whena is false, and
henceφ ∨ ¬a is satisfiable. �

Of course, testing thatregro(φ) 6|= φ or that regro(φ) is satisfiable is not necessary for the
correctness of backward search, but avoiding useless steps improves efficiency.

Early work on planning restricted to goals and operator preconditions that are conjunctions
of state variables and to unconditional effects (STRIPS operators with only positive literals in
preconditions.) In this special case both goalsG and operator effectse can be viewed as sets of
literals, and the definition of regression is particularly simple: regressingG with respect to〈c, e〉
is (G\e) ∪ c. If there isa ∈ A such thata ∈ G and¬a ∈ e, then the result of regression is⊥, that
is, the empty set of states. We do not use this restricted type of regression in this lecture.

Some planners that use backward search and have operators with disjunctive preconditions and
conditional effects eliminate all disjunctivity by branching. For example, the backward step from
g with operator〈a ∨ b, g〉 yieldsa ∨ b. This formula corresponds to two non-disjunctive goals,
a and b. For each of these new goals a separate subtree is produced. Disjunctivity caused by
conditional effects can similarly be handled by branching. However, this branching may lead to a
very high branching factor and thus to poor performance.

In addition to being the basis of backward search, regression has many other applications in
reasoning about actions. One of them is the composition of operators. The compositiono1 ◦ o2
of operatorso1 = 〈c1, e1〉 ando2 = 〈c2, e2〉 is an operator that behaves like applyingo1 followed
by o2. For a to be true aftero2 we can regressa with respect too2, obtainingEPCa(e2) ∨ (a ∧
¬EPC¬a(e2)). Condition for this formula to be true aftero1 is obtained by regressing withe1,
leading to

regre1(EPCa(e2) ∨ (a ∧ ¬EPC¬a(e2)))
= regre1(EPCa(e2)) ∨ (regre1(a) ∧ ¬regre1(EPC¬a(e2)))
= regre1(EPCa(e2)) ∨ ((EPCa(e1) ∨ (a ∧ ¬EPC¬a(e2))) ∧ ¬regre1(EPC¬a(e2))).

Since we want to define an effectφ B a of o1 ◦o2 so thata becomes true whenevero1 followed by
o2 would make it true, the formulaφ does not have to represent the case in whicha is true already
before the application ofo1 ◦ o2. Hence we can simplify the above formula to

regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2))).

An analogous formula is needed for making¬a false. This leads to the following definition.

Definition 3.11 (Composition of operators)Let o1 = 〈c1, e1〉 ando2 = 〈c2, e2〉 be two opera-
tors onA. Then theircompositiono1 ◦ o2 is defined as〈

c,
∧
a∈A

(
((regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2)))) B a)∧
((regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2)))) B ¬a)

)〉

wherec = c1 ∧ regre1(c2) ∧
∧

a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)).

CHAPTER 3. DETERMINISTIC PLANNING 33

Note that ino1 ◦ o2 first o1 is applied and theno2, so the ordering is opposite to the usual
notation for the composition of functions.

Theorem 3.12 Let o1 ando2 be operators ands a state. Then appo1◦o2(s) is defined if and only
if appo1;o2(s) is defined, and appo1◦o2(s) = appo1;o2(s).

Proof: Let o1 = 〈c1, e1〉 ando2 = 〈c2, e2〉. Assumeappo1◦o2(s) is defined. Hences |= c1 ∧
regre1(c2)∧

∧
a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)), that is, the precondition ofo1 ◦o2 is true, ands 6|=

(regre1(EPCa(e2))∨(EPCa(e1)∧¬regre1(EPC¬a(e2))))∧(((regre1(EPC¬a(e2))∨(EPC¬a(e1)∧
¬regre1(EPCa(e2)))))) for all a ∈ A, that is, the effects do not contradict each other.

Nowappo1(s) in appo1;o2(s) = appo2(appo1(s)) defined becauses |= c1∧
∧

a∈A ¬(EPCa(e1)∧
EPC¬a(e1)). Furtherappo1(s) |= c2 by Theorem 3.7 becauses |= regre1(c2). From s 6|=
(regre1(EPCa(e2))∨(EPCa(e1)∧¬regre1(EPC¬a(e2))))∧(((regre1(EPC¬a(e2))∨(EPC¬a(e1)∧
¬regre1(EPCa(e2)))))) for all a ∈ A logically followss 6|= regre1(EPCa(e2))∧regre1(EPC¬a(e2))
for all a ∈ A. Hence by Theorem 3.7appo1(s) 6|= EPCa(e2) ∧ EPC¬a(e2) for all a ∈ A, and by
Lemma 3.3appo2(appo1(s)) is defined.

For the other direction, sinceappo1(s) is defined,s |= c1 ∧
∧

a∈A ¬ (EPCa(e1) ∧ EPC¬a(e1)).
Sinceappo2(appo1(s)) is defined,s |= regre1(c2) by Theorem 3.7.

It remains to show that the effects ofo1 ◦ o2 do not contradict. Sinceappo2(appo1(s)) is
definedappo1(s) 6|= EPCa(e2) ∧ EPC¬a(e2) ands 6|= EPCa(e1) ∧ EPC¬a(e1) for all a ∈ A.
Hence by Theorem 3.7s 6|= regre1(EPCa(e2)) ∧ regre1(EPC¬a(e2)) for all a ∈ A. Assume that
for somea ∈ A s |= regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2))), that is,a ∈ [o1 ◦
o2]det

s . If s |= regre1(EPCa(e2)) thens 6|= regre1(EPC¬a(e2)) ∨ ¬regre1(EPCa(e2)). Otherwise
s |= EPCa(e1) ∧ ¬regre1(EPC¬a(e2)) and hences 6|= EPC¬a(e1). Hence in both casess 6|=
regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2))), that is,¬a 6∈ [o1 ◦ o2]det

s . Therefore
appo1◦o2(s) is defined.

We show that for anya ∈ A, appo1◦o2(s) |= a if and only if appo1(appo2(s)) |= a. Assume
appo1◦o2(s) |= a. Hence one of two cases hold.

1. Assumes |= regre1(EPCa(e2)) ∨ (EPCa(e1) ∧ ¬regre1(EPC¬a(e2))).

If s |= regre1(EPCa(e2)) then by Theorem 3.7 and Lemma 3.3a ∈ [e1]det
appo1 (s). Hence

appo1;o2(s) |= a.

Assumes |= EPCa(e1) ∧ ¬regre1(EPC¬a(e2)). Hence by Lemma 3.3a ∈ [e1]det
s and

appo1(s) |= a, andappo1(s) 6|= EPC¬a(e2) and¬a 6∈ [e2]det
appo1 (s). Henceappo1;o2(s) |= a.

2. Assumes |= a ands 6|= regre1(EPC¬a(e2)) ∨ (EPC¬a(e1) ∧ ¬regre1(EPCa(e2))).

Sinces 6|= regre1(EPC¬a(e2)) by Theorem 3.7appo1(s) 6|= EPC¬a(e2) and hence¬a 6∈
[e2]det

appo1 (s).

Sinces 6|= EPC¬a(e1) ∧ ¬regre1(EPCa(e2)) by Lemma 3.3¬a 6∈ [e1]det
s or appe1(s) |=

EPCa(e2) and hence by Theorem 3.7a ∈ [e2]det
appo1 (s).

Hence eithero1 does not makea false, or if it makes, makeso2 it true again so thatappo1;o2(s) |= a
in all cases.

Assumeappo1;o2(s) |= a. Hence one of the following three cases must hold.

1. If a ∈ [e2]det
appo1 (s) then by Lemma 3.3appo1(s) |= EPCa(e2). By Theorem 3.7s |=

regre1(EPCa(e2)).

CHAPTER 3. DETERMINISTIC PLANNING 34

2. If a ∈ [e1]det
s and¬a 6∈ [e2]det

appo1 (s) then by Lemma 3.3appo1(s) 6|= EPC¬a(e2). By

Theorem 3.7s |= EPCa(e1) ∧ ¬regre1(EPC¬a(e2)).

3. If s |= a and¬a 6∈ [e2]det
appo1 (s) and¬a 6∈ [e1]det

s then by Lemma 3.3appo1(s) 6|= EPC¬a(e2).
By Theorem 3.7s 6|= regre1(EPC¬a(e2)).

By Lemma 3.3s 6|= EPC¬a(e1).

In the first two cases the antecedent of the first conditional in the definition ofo1 ◦ o2 is true,
meaning thatappo1◦o2(s) |= a, and in the third cases |= a and the antecedent of the second
conditional effect is false, also meaning thatappo1◦o2(s) |= a. �

The above construction can be used to eliminatesequential compositionfrom operator effects
(Section 2.3.2).

3.2 Planning by heuristic search algorithms

Search for plans can be performed forwards or backwards respectively with progression or regres-
sion as described in Sections 3.1.1 and 3.1.2. There are several algorithms that can be used for
the purpose, including depth-first search, breadth-first search, and iterative deepening, but without
informed selection of operators these algorithms perform poorly.

The use of additional information for guiding search is essential for achieving efficient plan-
ning with general-purpose search algorithms. Algorithms that use heuristic estimates on the values
of the nodes in the search space for guiding the search have been applied to planning very suc-
cessfully. Some of the more sophisticated search algorithms that can be used are A∗ [Hart et al.,
1968], WA∗ [Pearl, 1984], IDA∗ [Korf, 1985], and simulated annealing[Kirkpatrick et al., 1983].

The effectiveness of these algorithms is dependent on good heuristics for guiding the search.
The most important heuristics are estimates of distances between states. The distance is the min-
imum number of operators needed for reaching a state from another state. In Section 3.4 we will
present techniques for estimating the distances between states and sets of states. In this section we
will discuss how heuristic search algorithms are applied in planning.

When search proceeds forwards by progression starting from the initial state, we estimate the
distance between the current state and the set of goal states. When search proceeds backwards by
regression starting from the goal states, we estimate the distance between the initial state and the
current set of goal states as computed by regression.

All the systematic heuristic search algorithms can easily be implemented to keep track of the
search history which for planning equals the sequence of operators in the incomplete plan under
consideration. Therefore the algorithms are started from the initial stateI (forward search) or from
the goal formulaG (backward search) and then proceed forwards with progression or backwards
with regression. Whenever the search successfully finishes, the plan can be recovered from the
data structures maintained by the algorithm.

Local search algorithms do not keep track of the search history, and we have to define the
elements of the search space as prefixes or suffixes of plans. For forward search we use sequences
of operators (prefixes of plans)

o1; o2; . . . ; on.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the end of the plan or by deleting some of the last operators.

CHAPTER 3. DETERMINISTIC PLANNING 35

Definition 3.13 (Neighbors for local search with progression)Let〈A, I,O,G〉 be a succinct tran-
sition system. For forward search, the neighbors of an incomplete plano1; o2; . . . ; on are the
following.

1. o1; o2; . . . ; on; o for anyo ∈ O such that appo1;...;on;o(I) is defined
2. o1; o2; . . . ; oi for anyi < n

Whenappo1;o2;...;on(I) |= G theno1; . . . ; on is a plan.
Also for backward search the incomplete plans are sequence of operators (suffixes of plans)

on; . . . ; o1.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the beginning of the plan or by deleting some of the first operators.

Definition 3.14 (Neighbors for local search with regression)Let〈A, I,O,G〉 be a succinct tran-
sition system. For backward search, the children of an incomplete planon; . . . ; o1 are the follow-
ing.

1. o; on; . . . ; o1 for anyo ∈ O such that regro;on;...;o1(G) is defined

2. oi; . . . ; o1 for anyi < n

WhenI |= regron;...;o1(G) thenon; . . . ; o1 is a plan.
Backward search and forward search are not the only possibilities to define planning as a search

problem. In partial-order planning[McAllester and Rosenblitt, 1991] the search space consists of
incomplete plans which are partially ordered multisets of operators. The neighbors of an incom-
plete plan are those obtained by adding an operator or an ordering constraint. Incomplete plans can
also be formalized as fixed length sequences of operators in which zero or more of the operators
are missing. This leads to the constraint-based approaches to planning, including the planning as
satisfiability approach that is presented in Section 3.6.

3.3 Reachability

The notion of reachability is important in defining whether a planning problem is solvable and in
deriving techniques that speed up search for plans.

3.3.1 Distances

First we define the distances between states in a transition system in which all operators are deter-
ministic. Heuristics in Section 3.4 are approximations of distances.

Definition 3.15 Let I be an initial state andO a set of operators. Define theforward distance
setsDfwd

i for I,O that consist of those states that are reachable fromI by at mosti operator
applications as follows.

Dfwd
0 = {I}

Dfwd
i = Dfwd

i−1 ∪ {s|o ∈ O, s ∈ imgo(D
fwd
i−1)} for all i ≥ 1

CHAPTER 3. DETERMINISTIC PLANNING 36

Definition 3.16 Let I be a state,O a set of operators, andDfwd
0 , Dfwd

1 , . . . the forward distance
sets forI,O. Thenthe forward distanceof a states from I is

δfwd
I (s) =

{
0 if s = I

i if s ∈ Dfwd
i \Dfwd

i−1.

If s 6∈ Dfwd
i for all i ≥ 0 thenδfwd

I (s) = ∞. States that have a finite forward distance arereachable
(from I withO).

Distances can also be defined for formulae.

Definition 3.17 Let φ be a formula. Then theforward distanceδfwd
I (φ) of φ is i if there is state

s such thats |= φ andδfwd
I (s) = i and there is no states′ such thats′ |= φ andδfwd

I (s) < i. If

I |= φ thenδfwd
I (φ) = 0.

A formulaφ has a finite distance<∞ if and only if 〈A, I,O, φ〉 has a plan.
Reachability and distances are useful for implementing efficient planning systems. We mention

two applications.
First, if we know that no state satisfying a formulaφ is reachable from the initial states, then

we know that no operator〈φ, e〉 can be a part of a plan, and we can ignore any such operator.
Second, distances help in finding a plan. Consider a deterministic planning problem with goal

stateG. We can now produce a shortest plan by finding an operatoro so thatδfwd
I (regro(G)) <

δfwd
I (G), usingregro(G) as the new goal state and repeating the process until the initial stateI is

reached.
Of course, since computing distances is in the worst case just as difficult as planning (PSPACE-

complete) it is in general not useful to use subprocedures based on exact distances in a planning
algorithm. Instead, different kinds ofapproximationsof distances and reachability have to be used.
The most important approximations allow the computation of useful reachability and distance
information in polynomial time in the size of the succinct transition system. In Section 3.4 we will
consider some of them.

3.3.2 Invariants

An invariant is a formula that is true in the initial state and in every state that is reached by
applying an operator in a state in which it holds. Invariants are closely connected to reachability
and distances: a formulaφ is an invariant if and only if the distance of¬φ from the initial state is
∞. Invariants can be used for example to speed up algorithms based on regression.

Definition 3.18 Let I be a set of initial states andO a set of operators. An formulaφ is an
invariantof I,O if s |= φ for all statess that are reachable fromI by a sequence of 0 or more
operators inO.

An invariantφ is the strongest invariantif φ |= ψ for any invariantψ. The strongest invariant
exactly characterizes the set of all states that are reachable from the initial state: for every states,
s |= φ if and only if s is reachable from the initial state. We say “the strongest invariant” even
though there are actually several strongest invariants: ifφ satisfies the properties of the strongest
invariant, any other formula that is logically equivalent toφ, for exampleφ ∨ φ, also does. Hence
the uniqueness of the strongest invariant has to be understood up to logical equivalence.

CHAPTER 3. DETERMINISTIC PLANNING 37

Example 3.19 Consider a set of blocks that can be on the table or stacked on top of other blocks.
Every block can be on at most one block and on every block there can be one block at most. The
actions for moving the blocks can be described by the following schematic operators.

〈ontable(x) ∧ clear(x) ∧ clear(y),on(x, y) ∧ ¬clear(y) ∧ ¬ontable(x)〉
〈clear(x) ∧ on(x, y),ontable(x) ∧ clear(y) ∧ ¬on(x, y)〉
〈clear(x) ∧ on(x, y) ∧ clear(z),on(x, z) ∧ clear(y) ∧ ¬clear(z) ∧ ¬on(x, y)〉

We consider the operators obtained by instantiating the schemata with the objectsA,B andC. Let
all the blocks be initially on the table. Hence the initial state satisfies the formula

clear(A) ∧ clear(B) ∧ clear(C) ∧ ontable(A) ∧ ontable(B) ∧ ontable(C)∧
¬on(A,B) ∧ ¬on(A,C) ∧ ¬on(B,A) ∧ ¬on(B,C) ∧ ¬on(C,A) ∧ ¬on(C,B)

that determines the truth-values of all state variables uniquely. The strongest invariant of this
problem is the conjunction of the following formulae.

clear(A) ↔ (¬on(B,A) ∧ ¬on(C,A)) clear(B) ↔ (¬on(A,B) ∧ ¬on(C,B))
clear(C) ↔ (¬on(A,C) ∧ ¬on(B,C)) ontable(A) ↔ (¬on(A,B) ∧ ¬on(A,C))
ontable(B) ↔ (¬on(B,A) ∧ ¬on(B,C)) ontable(C) ↔ (¬on(C,A) ∧ ¬on(C,B))
¬on(A,B) ∨ ¬on(A,C) ¬on(B,A) ∨ ¬on(B,C)
¬on(C,A) ∨ ¬on(C,B)
¬on(B,A) ∨ ¬on(C,A) ¬on(A,B) ∨ ¬on(C,B)
¬on(A,C) ∨ ¬on(B,C)
¬(on(A,B) ∧ on(B,C) ∧ on(C,A)) ¬(on(A,C) ∧ on(C,B) ∧ on(B,A))

We can schematically give the invariants for any setX of blocks as follows.

clear(x) ↔ ∀y ∈ X\{x}.¬on(y, x)
ontable(x) ↔ ∀y ∈ X\{x}.¬on(x, y)
¬on(x, y) ∨ ¬on(x, z) wheny 6= z
¬on(y, x) ∨ ¬on(z, x) wheny 6= z
¬(on(x1, x2) ∧ on(x2, x3) ∧ · · · ∧ on(xn−1, xn) ∧ on(xn, x1)) for all n ≥ 1, {x1, . . . , xn} ⊆ X

The last formula says that theon relation is acyclic. �

3.4 Approximations of distances

The approximations of distances are based on the following idea. Instead of considering the num-
ber of operators required to reach individual states, we approximately compute the number of
operators to reach a state in which a certain state variable has a certain value. So instead of using
distances of states, we use distances of literals.

The estimates are not accurate for two reasons. First, and more importantly, distance estimation
is done one state variable at a time and dependencies between state variables are ignored. Second,
to achieve polynomial-time computation, satisfiability tests for a formula and a set of literals to
test the applicability of an operator and to compute the distance estimate of a formula, have to
be performed by an inaccurate polynomial-time algorithm that approximates NP-hard satisfiabil-
ity testing. As we are interested in computing distance estimates efficiently the inaccuracy is a
necessary and acceptable compromise.

CHAPTER 3. DETERMINISTIC PLANNING 38

3.4.1 Admissible max heuristic

We give a recursive procedure that computes a lower bound on the number of operator applications
that are needed for reaching from a stateI a state in which state variablesa ∈ A have certain
values. This is by computing a sequence of setsDmax

i of literals. The setDmax
i consists of literals

that are true in all states that have distance≤ i from the stateI.
Recall Definition 3.2 ofEPCl(o) for literalsl and operatorso = 〈c, e〉:

EPCl(o) = c ∧ EPCl(e) ∧
∧
a∈A

¬(EPCa(e) ∧ EPC¬a(e)).

Definition 3.20 LetL = A∪{¬a|a ∈ A} be the set of literals onA andI a state. Define the sets
Dmax

i for i ≥ 0 as follows.

Dmax
0 = {l ∈ L|I |= l}

Dmax
i = Dmax

i−1 \{l ∈ L|o ∈ O,Dmax
i−1 ∪ {EPCl(o)} is satisfiable}, for i ≥ 1

Since we consider only finite setsA of state variables and|Dmax
0 | = |A| andDmax

i+1 ⊆ Dmax
i

for all i ≥ 0, necessarilyDmax
i = Dmax

j for somei ≤ |A| and allj > i.
The above computation starts from the setDmax

0 of all literals that are true in the initial stateI.
This set of literals characterizes those states that have distance 0 from the initial state. The initial
state is the only such state.

Then we repeatedly compute sets of literals characterizing sets of states that are reachable with
1, 2 and more operators. Each setDmax

i is computed from the preceding setDmax
i−1 as follows. For

each operatoro it is tested whether it is applicable in one of the distancei−1 states and whether it
could make a literall false. This is by testing whetherEPCl(o) is true in one of the distancei− 1
states. If this is the case, the literall could be false, and it will not be included inDmax

i .
The sets of states in which the literalsDmax

i are true are an upper bound (set-inclusion) on the
set of states that have forward distancei.

Theorem 3.21 LetDfwd
i , i ≥ 0 be the forward distance sets andDmax

i the max-distance sets for

I andO. Then for alli ≥ 0,Dfwd
i ⊆ {s ∈ S|s |= Dmax

i } whereS is the set of all states.

Proof: By induction oni.
Base casei = 0: Dfwd

0 consists of the unique initial stateI andDmax
0 consists of exactly those

literals that are true inI, identifying it uniquely. HenceDfwd
i = {s ∈ S|s |= Dmax

i }.
Inductive casei ≥ 1: Let s be any state inDfwd

i . We show thats |= Dmax
i . Let l be any literal

in Dmax
i .

Assumes ∈ Dfwd
i−1. AsDmax

i ⊆ Dmax
i−1 alsol ∈ Dmax

i−1 . By the induction hypothesiss |= l.

Otherwises ∈ Dfwd
i \Dfwd

i−1. Hence there iso ∈ O ands0 ∈ Dfwd
i−1 with s = appo(s0). By

Dmax
i ⊆ Dmax

i−1 and the induction hypothesiss0 |= l. As l ∈ Dmax
i , by definition ofDmax

i the set

Dmax
i−1 ∪ {EPCl(o)} is not satisfiable. Bys0 ∈ Dfwd

i−1 and the induction hypothesiss0 |= Dmax
i−1 .

Hences0 6|= EPCl(o). By Lemma 3.3 applyingo in s0 does not makel false. Hences |= l. �

The setsDmax
i can be used for estimating the distances of formulae. The distance of a formula

is the minimum of the distances of states that satisfy the formula.

CHAPTER 3. DETERMINISTIC PLANNING 39

Definition 3.22 Letφ be a formula. Define

δmax
I (φ) =

{
0 iff Dmax

0 ∪ {φ} is satisfiable
d iff Dmax

d ∪ {φ} is satisfiable andDmax
d−1 ∪ {φ} is not satisfiable, for d ≥ 1.

Lemma 3.23 Let I be a state,O a set of operators, andDmax
0 , Dmax

1 , . . . the sets given in Defi-
nition 3.20 forI andO. Then appo1;...;on(I) |= Dmax

n for any operators{o1, . . . , on} ⊆ O.

Proof: By induction onn.
Base casen = 0: The length of the operator sequence is zero, and henceappε(I) = I. The set

Dmax
0 consists exactly of those literals that are true ins, and henceI |= Dmax

0 .
Inductive casen ≥ 1: By the induction hypothesisappo1;...;on−1(I) |= Dmax

n−1 .
Let l be any literal inDmax

n . We show it is true inappo1;...;on(I). Sincel ∈ Dmax
n and

Dmax
n ⊆ Dmax

n−1 , also l ∈ Dmax
n−1 , and hence by the induction hypothesisappo1;...;on−1(I) |= l.

Sincel ∈ Dmax
n it must be thatDmax

n−1 ∪ {EPCl(on)} is not satisfiable (definition ofDmax
n) and

further thatappo1;...;on−1(I) 6|= EPCl(on). Hence applyingon in appo1;...;on−1(I) does not makel
false, and consequentlyappo1;...;on(I) |= l.

�

The next theorem shows that the distance estimates given for formulae yield a lower bound on
the number of actions needed to reach a state satisfying the formula.

Theorem 3.24 Let I be a state,O a set of operators,φ a formula, andDmax
0 , Dmax

1 , . . . the sets
given in Definition 3.20 forI andO. If appo1;...;on(I) |= φ, thenDmax

n ∪ {φ} is satisfiable.

Proof: By Lemma 3.23appo1;...;on(I) |= Dmax
n . By assumptionappo1;...;on(I) |= φ. Hence

Dmax
n ∪ {φ} is satisfiable. �

Corollary 3.25 Let I be a state andφ a formula. Then for any sequenceo1, . . . , on of operators
such that appo1;...;on(I) |= φ, n ≥ δmax

I (φ).

The estimateδmax
s (φ) never overestimates the distance froms to φ and it is therefore an ad-

missible heuristic. It may severely underestimate the distance, as discussed in the end of this
section.

Distance estimation in polynomial time

The algorithm for computing the setsDmax
i runs in polynomial time except that the satisfiability

tests forD∪{φ} are instances of the NP-complete SAT problem. For polynomial time computation
we perform these tests by a polynomial-time approximation that has the property that ifD∪{φ} is
satisfiable then asat(D,φ) returns true, but not necessarily vice versa. A counterpart of Theorem
3.21 can be established when the satisfiability testsD ∪ {φ} are replaced by tests asat(D,φ).

The function asat(D,φ) tests whether there is a state in whichφ and the literalsD are true, or
equivalently, whetherD ∪ {φ} is satisfiable. This algorithm does not accurately test satisfiability,
and may claim thatD ∪ {φ} is satisfiable even when it is not. This, however, never leads to

CHAPTER 3. DETERMINISTIC PLANNING 40

overestimating the distances, only underestimating. The algorithm runs in polynomial time and is
defined as follows.

asat(D,⊥) = false
asat(D,>) = true
asat(D, a) = true iff ¬a 6∈ D (for state variablesa ∈ A)

asat(D,¬a) = true iff a 6∈ D (for state variablesa ∈ A)
asat(D,¬¬φ) = asat(D,φ)

asat(D,φ1 ∨ φ2) = asat(D,φ1) or asat(D,φ2)
asat(D,φ1 ∧ φ2) = asat(D,φ1) and asat(D,φ2)

asat(D,¬(φ1 ∨ φ2)) = asat(D,¬φ1) and asat(D,¬φ2)
asat(D,¬(φ1 ∧ φ2)) = asat(D,¬φ1) or asat(D,¬φ2)

In this and other recursive definitions about formulae the cases for¬(φ1 ∧φ2) and¬(φ1 ∨φ2) are
obtained respectively from the cases forφ1 ∨ φ2 andφ1 ∧ φ2 by the De Morgan laws.

The reason why the satisfiability test is not accurate is that for formulaeφ ∧ ψ (respectively
¬(φ ∨ ψ)) we make recursively two satisfiability tests that do not require that the subformulaeφ
andψ (respectively¬φ and¬ψ) aresimultaneouslysatisfiable.

We give a lemma that states the connection between asat(D,φ) and the satisfiability ofD∪{φ}.

Lemma 3.26 Let φ be a formula andD a consistent set of literals (it contains at most one ofa
and¬a for everya ∈ A.) If D ∪ {φ} is satisfiable, then asat(D,φ) returns true.

Proof: The proof is by induction on the structure ofφ.
Base case 1,φ = ⊥: The setD ∪ {⊥} is not satisfiable, and hence the implication trivially

holds.
Base case 2,φ = >: asat(D,>) always returns true, and hence the implication trivially holds.
Base case 3,φ = a for somea ∈ A: If D ∪ {a} is satisfiable, then¬a 6∈ D, and hence

asat(D, a) returns true.
Base case 4,φ = ¬a for somea ∈ A: If D ∪ {¬a} is satisfiable, thena 6∈ D, and hence

asat(D,¬a) returns true.
Inductive case 1,φ = ¬¬φ′ for someφ′: The formulae are logically equivalent, and by the

induction hypothesis we directly establish the claim.
Inductive case 2,φ = φ1∨φ2: If D∪{φ1∨φ2} is satisfiable, then eitherD∪{φ1} orD∪{φ2}

is satisfiable and by the induction hypothesis at least one of asat(D,φ1) and asat(D,φ2) returns
true. Hence asat(D,φ1 ∨ φ2) returns true.

Inductive case 3,φ = φ1 ∧ φ2: If D ∪ {φ1 ∧ φ2} is satisfiable, then bothD ∪ {φ1} and
D ∪ {φ2} are satisfiable and by the induction hypothesis both asat(D,φ1) and asat(D,φ2) return
true. Hence asat(D,φ1 ∧ φ2) returns true.

Inductive cases 4 and 5,φ = ¬(φ1 ∨ φ2) andφ = ¬(φ1 ∧ φ2): Like cases 2 and 3 by logical
equivalence. �

The other direction of the implication does not hold because for example asat(∅, a∧¬a) returns
true even though the formula is not satisfiable. The procedure is a polynomial-time approximation
of the logical consequence test from a set of literals: asat(D,φ) always returns true ifD ∪ {φ} is
satisfiable, but it may return true also when the set is not satisfiable.

CHAPTER 3. DETERMINISTIC PLANNING 41

Informativeness of the max heuristic

The max heuristic often underestimates distances. Consider an initial state in which alln state
variables are false and a goal state in which all state variables are true and a set ofn operators each
of which is always applicable and makes one of the state variables true. The max heuristic assigns
the distance 1 to the goal state although the distance isn.

The problem is that assigning every state variable the desired value requires a different operator,
and taking the maximum number of operators for each state variable ignores this fact. In this case
the actual distance is obtained as thesumof the distances suggested by each of then state variables.
In other cases the max heuristic works well when the desired state variable values can be reached
with the same operators.

Next we will consider heuristics that are not admissible like the max heuristic but in many cases
provide a much better estimate of the distances.

3.4.2 Inadmissible additive heuristic

The max heuristic is very optimistic about the distances, and in many cases very seriously underes-
timates them. If two goal literals have to be made true, the maximum of the goal costs (distances)
is assumed to be the combined cost. This however is only accurate when the easier goal is achieved
for free while achieving the more difficult goal. Often the goals are independent and then a more
accurate estimate would be the sum of the individual costs. This suggests another heuristic, first
considered by Bonet and Geffner[2001] as a more practical variant of the max heuristic in the
previous section. Our formalization differs from the one given by Bonet and Geffner.

Definition 3.27 Let I be a state andL = A ∪ {¬a|a ∈ A} the set of literals. Define the setsD+
i

for i ≥ 0 as follows.

D+
0 = {l ∈ L|I |= l}

D+
i = D+

i−1\{l ∈ L|o ∈ O, cost(EPCl(o), i) < i} for all i ≥ 1

We define cost(φ, i) by the following recursive definition.

cost(⊥, i) = ∞
cost(>, i) = 0
cost(a, i) = 0 if ¬a 6∈ D+

0 , for a ∈ A
cost(¬a, i) = 0 if a 6∈ D+

0 , for a ∈ A
cost(a, i) = j if ¬a ∈ D+

j−1\D
+
j for somej < i

cost(¬a, i) = j if a ∈ D+
j−1\D

+
j for somej < i

cost(a, i) = ∞ if ¬a ∈ D+
j for all j < i

cost(¬a, i) = ∞ if a ∈ D+
j for all j < i

cost(φ1 ∨ φ2, i) = min(cost(φ1, i), cost(φ2, i))
cost(φ1 ∧ φ2, i) = cost(φ1, i) + cost(φ2, i)

cost(¬¬φ, i) = cost(φ, i)
cost(¬(φ1 ∧ φ2), i) = min(cost(¬φ1, i), cost(¬φ2, i))
cost(¬(φ1 ∨ φ2), i) = cost(¬φ1, i) + cost(¬φ2, i)

Note that a variant of the definition of the max heuristic could be obtained by replacing the
sum+ in the definition of costs of conjunctions bymax. The definition of cost(φ, i) approximates

CHAPTER 3. DETERMINISTIC PLANNING 42

satisfiability tests similarly to the definition of asat(D,φ) by ignoring the dependencies between
state variables.

Similarly to max distances we can define distances of formulae.

Definition 3.28 Letφ be a formula. Define

δ+I (φ) = cost(φ, n)

wheren is the smallesti such thatD+
i = D+

i−1.

The following theorem shows that the distance estimates given by the sum heuristic for literals
are at least as high as those given by the max heuristic.

Theorem 3.29 LetDmax
i , i ≥ 0 be the sets defined in terms of the approximate satisfiability tests

asat(D,φ). ThenDmax
i ⊆ D+

i for all i ≥ 0.

Proof: The proof is by induction oni.
Base casei = 0: By definitionD+

0 = Dmax
0 .

Inductive casei ≥ 1: We have to show thatDmax
i−1 \{l ∈ L|o ∈ O,asat(Dmax

i−1 ,EPCl(o))} ⊆
D+

i−1\{l ∈ L|o ∈ O, cost(EPCl(o), i) < i}. By the induction hypothesisDmax
i−1 ⊆ D+

i−1. It is
sufficient to show that cost(EPCl(o), i) < i implies asat(Dmax

i−1 ,EPCl(o)).
We show this by induction on the structure ofφ = EPCl(o).
Induction hypothesis: cost(φ, i) < i implies asat(Dmax

i−1 , φ)=true.
Base case 1,φ = ⊥: cost(⊥, i) = ∞ and asat(Dmax

i ,⊥)=false.
Base case 2,φ = >: cost(>, i) = 0 and asat(Dmax

i ,>)=true.
Base case 3,φ = a: If cost(a, i) < i then¬a 6∈ D+

j for somej < i or ¬a 6∈ D+
0 . Hence

¬a 6∈ D+
i−1. By the outer induction hypothesis¬a 6∈ Dmax

i−1 and consequently¬a 6∈ Dmax
i . Hence

asat(Dmax
i , a)=true.

Base case 4,φ = ¬a: Analogous to the caseφ = a.
Inductive case 5,φ = φ1 ∨ φ2: Assume cost(φ1 ∨ φ2, i) < i. Since cost(φ1 ∨ φ2, i) =

min(cost(φ1, i), cost(φ2, i)), either cost(φ1, i) < i or cost(φ2, i) < i. By the induction hypothesis
cost(φ1, i) < i implies asat(Dmax

i−1 , φ1), and cost(φ2, i) < i implies asat(Dmax
i−1 , φ2). Hence either

asat(Dmax
i−1 , φ1) or asat(Dmax

i−1 , φ2). Therefore by definition asat(Dmax
i−1 , φ1 ∨ φ2).

Inductive case 6,φ = φ1∧φ2: Assume cost(φ1∧φ2, i) < i. Sincei ≥ 1 and cost(φ1∨φ2, i) =
cost(φ1, i) + cost(φ2, i), both cost(φ1, i) < i and cost(φ2, i) < i. By the induction hypothesis
cost(φ1, i) < i implies asat(Dmax

i−1 , φ1), and cost(φ2, i) < i implies asat(Dmax
i−1 , φ2). Hence both

asat(Dmax
i−1 , φ1) an asat(Dmax

i−1 , φ2). Therefore by definition asat(Dmax
i−1 , φ1 ∧ φ2).

Inductive case 7,φ = ¬¬φ1: By the induction hypothesis cost(φ1, i) < i implies asat(Dmax
i−1 , φ1).

By definition cost(¬¬φ1, i) = cost(φ1, i) and asat(D,¬¬φ) = asat(D,φ). By the induction hy-
pothesis cost(¬¬φ1, i) < i implies asat(Dmax

i−1 ,¬¬φ1).
Inductive case 8,φ = ¬(φ1 ∨ φ2): Analogous to the caseφ = φ1 ∧ φ2.
Inductive case 9,φ = ¬(φ1 ∧ φ2): Analogous to the caseφ = φ1 ∨ φ2. �

That the sum heuristic gives higher estimates than the max heuristic could in many cases be
viewed as an advantage because the estimates would be more accurate. However, in some cases
this leads to overestimating the actual distance, and therefore the sum distances are not an admis-
sible heuristic.

CHAPTER 3. DETERMINISTIC PLANNING 43

Example 3.30 Consider an initial state such thatI |= ¬a∧¬b∧¬c and the operator〈>, a∧b∧c〉.
A state satisfyinga ∧ b ∧ c is reached by this operator in one step butδ+I (a ∧ b ∧ c) = 3. �

3.4.3 Relaxed plan heuristic

The max heuristic and the additive heuristic represent two extremes. The first assumes that sets
of operators required for reaching the individual goal literals maximally overlap in the sense that
the operators needed for the most difficult goal literal include the operators needed for all the
remaining ones. The second assumes that the required operators are completely disjoint.

Usually, of course, the reality is somewhere in between and which notion is better depends on
the properties of the operators. This suggests yet another heuristic: we attempt to find a set of
operators that approximates, in a sense that will become clear later, the smallest set of operators
that are needed to reach a state from another state. This idea has been considered by Hoffman
and Nebel[2001]. If the approximation is exact, the cardinality of this set equals the actual dis-
tance between the states. The approximation may both overestimate and underestimate the actual
distance, and hence does not yield an admissible heuristic.

The idea of the heuristic is the following. We first choose a set of goal literals the truth of
which is sufficient for the truth ofG. These literals must be reachable in the sense of the sets
Dmax

i which we defined earlier. Then we identify those goal literals that were the last to become
reachable and a set of operators making them true. A new goal formula represents the conditions
under which these operator can make the literals true, and a new set of goal literals is produced by
a simplified form of regression from the new goal formula. The computation is repeated until we
have a set of goal literals that are true in the initial state.

The function goals(D,φ) recursively finds a setM of literals such thatM |= φ and each literal
inM is consistent withD. Note thatM itself is not necessarily consistent, for example forD = ∅
andφ = a ∧ ¬a we getM = {a,¬a}. If a setM is found goals(D,φ) = {M} and otherwise
goals(D,φ) = ∅.

Definition 3.31 LetD be a set of literals.

goals(D,⊥) = ∅
goals(D,>) = {∅}
goals(D, a) = {{a}} if ¬a 6∈ D
goals(D, a) = ∅ if ¬a ∈ D

goals(D,¬a) = {{¬a}} if a 6∈ D
goals(D,¬a) = ∅ if a ∈ D

goals(D,¬¬φ) = goals(D,φ)

goals(D,φ1 ∨ φ2) =
{

goals(D,φ1) if goals(D,φ1) 6= ∅
goals(D,φ2) otherwise

goals(D,φ1 ∧ φ2) =
{
{L1 ∪ L2} if goals(D,φ1) = {L1} and goals(D,φ2) = {L2}
∅ otherwise

goals(D,¬(φ1 ∧ φ2)) =
{

goals(D,¬φ1) if goals(D,¬φ1) 6= ∅
goals(D,¬φ2) otherwise

goals(D,¬(φ1 ∨ φ2)) =
{
{L1 ∪ L2} if goals(D,¬φ1) = {L1} and goals(D,¬φ2) = {L2}
∅ otherwise

Above in the case forφ1 ∨ φ2 if both φ1 andφ2 yield a set of goal literals the set forφ1 is
always chosen. A practically better implementation is to choose the smaller of the two sets.

CHAPTER 3. DETERMINISTIC PLANNING 44

Lemma 3.32 LetD be a set of literals andφ a formula.

1. goals(D,φ) 6= ∅ if and only if asat(D,φ) = true.

2. If goals(D,φ) = {M} then{l|l ∈M} ∩D = ∅ and asat(D,
∧

l∈M l) = true.

Proof:

1. This is by an easy induction proof on the structure ofφ based on the definitions of asat(D,φ)
and goals(D,φ).

2. This is becausel 6∈ D for all l ∈M . This can be shown by a simple induction proof.

�

Lemma 3.33 LetD andD′ ⊆ D be sets of literals. If goals(D,φ) = ∅ and goals(D′, φ) = {M}
for someM , then there isl ∈M such thatl ∈ D\D′.

Proof: Proof is by induction in the structure of formulaeφ.
Induction hypothesis: If goals(D,φ) = ∅ and goals(D′, φ) = {M} for someM , then there is

l ∈M such thatl ∈ D\D′.
Base cases 1 & 2,φ = > and 2φ = ⊥: Trivial as the condition cannot hold.
Base case 3,φ = a: If goals(D, a) = ∅ and goals(D′, a) = M = {{a}}, then respectively

¬a ∈ D and¬a 6∈ D′. Hence there isa ∈M such thata ∈ D\D′.
Inductive case 1,φ = ¬¬φ′: By the induction hypothesis as goals(D,¬¬φ′) = goals(D,φ′).
Inductive case 2,φ = φ1∨φ2: Assume goals(D,φ1∨φ2) = ∅ and goals(D′, φ1∨φ2) = {M}

for someM . Hence goals(D,φ1) = ∅ and goals(D,φ2) = ∅, and goals(D′, φ1) = {M} or
goals(D′, φ2) = {M}. Hence by the induction hypothesis withφ1 or φ2 there isl ∈M such that
l ∈ D\D′.

Inductive case 3,φ = φ1∧φ2: Assume goals(D,φ1∧φ2) = ∅ and goals(D′, φ1∧φ2) = {M}
for someM . Hence goals(D,φ1) = ∅ or goals(D,φ2) = ∅, and goals(D′, φ1) = {L1} and
goals(D′, φ2) = {L2} for someL1 andL2 such thatM = L1 ∪ L2. Hence by the induction
hypothesis withφ1 or φ2 there is eitherl ∈ L1 or l ∈ L2 such thatl ∈ D\D′.

Inductive casesφ = ¬(φ1 ∧ φ2) andφ = ¬(φ1 ∨ φ2) are analogous to cases 2 and 3. �

Definition 3.34 Defineδrlx
I (φ) = relaxedplan(A, I,O, φ).

Like the sum heuristic, the relaxed plan heuristic gives higher distance estimates than the max
heuristic.

Theorem 3.35 Letφ be a formula andδmax
I (φ) the max-distance defined in terms of asat(D,φ).

Thenδrlx
I (φ) ≥ δmax

I (φ).

Proof: We have to show that for any formulaG the procedure callrelaxedplan(A,I,O,G) returns a
number≥ δmax

I (G).
First, the procedure returns∞ if and only if asat(Dmax

i , G) = false for alli ≥ 0. In this case
by definitionδmax

I (G) = ∞.

CHAPTER 3. DETERMINISTIC PLANNING 45

1: procedure relaxedplan(A,I,O,G);
2: L := A ∪ {¬a|a ∈ A}; (* Set of all literals *)
3: compute setsDmax

i as in Definition 3.20;
4: if asat(Dmax

i , G) = false for alli ≥ 0 then return ∞; (* Goal not reachable *)
5: t := δmax

I (G);
6: LG

t+1 := ∅;
7: Nt+1 := ∅;
8: Gt :=G;
9: for i := t downto 1 do

10: begin
11: LG

i := (LG
i+1\Ni+1) ∪ {l ∈M |M ∈ goals(Dmax

i , Gi)}; (* The goal literals *)
12: Ni := {l ∈ LG

i |l ∈ Dmax
i−1 }; (* Goal literals that become true betweeni− 1 andi *)

13: Ti := a minimal subset ofO so thatNi ⊆ {l ∈ L|o ∈ Ti,asat(Dmax
i−1 ,EPCl(o))};

14: Gi−1 :=
∧

l∈Ni

∨
{EPCl(o)|o ∈ Ti}; (* New goal formula *)

15: end
16: return |T1|+ |T2|+ · · ·+ |Tt|;

Figure 3.1: Algorithm for finding a relaxed plan

Otherwiset = δmax
I (G). Now t = 0 if and only if asat(Dmax

0 , G) = true. In this case the
procedure returns 0 without iterating the loop starting on line 9.

We show that ift ≥ 1 then for everyi ∈ {1, . . . , t} the setTi is non-empty, entailing|T1| +
· · ·+ |Tt| ≥ t = δmax

I (G). This is by an induction proof fromt to 1.
We use the following auxiliary result. If asat(Dmax

i−1 , Gi) = false and asat(Dmax
i , Gi) = true

andl 6∈ Dmax
i for all l ∈ LG

i thenTi is well-defined andTi 6= ∅. The proof is as follows.

By Lemma 3.32 goals(Dmax
i−1 , Gi) = ∅ and goals(Dmax

i , Gi) = {M} for someM .
By Lemma 3.33 there isl ∈M such thatl ∈ Dmax

i−1 and henceNi 6= ∅. By definition
l ∈ Dmax

i−1 for all l ∈ Ni. By Ni ⊆ LG
i and the assumption aboutLG

i l 6∈ Dmax
i for

all l ∈ Ni. Hencel ∈ Dmax
i−1 \Dmax

i for all l ∈ Ni. Hence by definition ofDmax
i for

everyl ∈ Ni there iso ∈ O such that asat(Dmax
i−1 ,EPCl(o)). Hence there isTi ⊆ O

so thatNi ⊆ {l ∈ L|o ∈ Ti,asat(Dmax
i−1 ,EPCl(o))} and the value ofTi is defined. As

Ni 6= ∅ alsoTi 6= ∅.

In the induction proof we establish the assumptions of the auxiliary result and then invoke the
auxiliary result itself.

Induction hypothesis: For allj ∈ {i, . . . , t}

1. l 6∈ Dmax
j for all l ∈ LG

j ,

2. asat(Dmax
j , Gj) = true and asat(Dmax

j−1 , Gj) = false, and

3. Tj 6= ∅.

Base casei = t:

1. l 6∈ Dmax
t for all l ∈ LG

t by (2) of Lemma 3.32 becauseLG
t = {l ∈ goals(Dmax

t , Gt)}.

2. As t = δmax
I (Gt) by definition asat(Dmax

t−1 , Gt) = false and asat(Dmax
t , Gt) = true.

CHAPTER 3. DETERMINISTIC PLANNING 46

3. By the auxiliary result from the preceding case.

Inductive casei < t:

1. We havel 6∈ Dmax
i for all l ∈ LG

i becauseLG
i = (LG

i+1\Ni+1) ∪ {l ∈ goals(Dmax
i , Gi)}

and by the induction hypothesisl 6∈ Dmax
i+1 for all l ∈ LG

i+1 and by (2) of Lemma 3.32
l 6∈ Dmax

i for all l ∈M for M ∈ goals(Dmax
i , Gi).

2. By definition Gi =
∧

l∈Ni+1

∨
{EPCl(o)|o ∈ Ti+1}. By definition of Ti+1 for every

l ∈ Ni+1 there iso ∈ Ti+1 such that asat(Dmax
i ,EPCl(o)) = true. By definition of

asat(Dmax
i , φ1 ∨ φ2) and asat(Dmax

i , φ1 ∧ φ2) for φ1 andφ2 also asat(Dmax
i , Gi) = true.

Then we show that asat(Dmax
i−1 , Gi) = false. By definition ofDmax

i , asat(Dmax
i−1 ,EPCl(o)) =

false for alll ∈ Dmax
i ando ∈ O. Hence asat(Dmax

i−1 ,EPCl(o)) = false for alll ∈ Ni+1

ando ∈ O becausel ∈ Dmax
i . Hence asat(Dmax

i−1 ,EPCl(o)) = false for alll ∈ Ni+1 and
o ∈ Ti+1 becauseTi+1 ⊆ O. By definitionGi =

∧
l∈Ni+1

∨
{EPCl(o)|o ∈ Ti+1}. Hence

by definition of asat(D,φ) also asat(Dmax
i−1 , Gi) = false.

3. By the auxiliary result from the preceding case.

�

3.5 Algorithm for computing invariants

Planning with backward search and regression suffers from the following problem. Often only
a fraction of all valuations of state variables represent states that are reachable from the initial
state and represent possible world states. The goal formula and many of the formulae produced
by regression often represent many unreachable states. If the formulae represent only unreachable
states a planning algorithm may waste a lot of effort determining that a certain sequence of actions
is not the suffix of any plan1. Also planning with propositional logic (Section 3.6) suffers from the
same problem.

Planning can be made more efficient by restricting search to states that are reachable from
the initial state. However, determining whether a given state is reachable from the initial state
is PSPACE-complete. Consequently, exact information on the reachability of states could not be
used for speeding up the basic forward and backward search algorithms: solving the subproblem
would be just as complex as solving the problem itself.

In this section we will present a polynomial time algorithm for computing a class of invariants
that approximately characterize the set of reachable states. These invariants help in improving
the efficiency of planning algorithms based on backward search and on satisfiability testing in the
propositional logic (Section 3.6).

Our algorithm computes invariants that are clauses with at mostn literals, for some fixedn.
For representing the strongest invariant arbitrarily highn may be needed. Although the runtime
is polynomial for any fixedn, the runtimes grow quickly asn increases. However, for many
applications short invariants of lengthn = 2 are sufficient, and longer invariants are less important.

1A symmetric problem arises with forward search because with progression one may reach states from which goal
states are unreachable.

CHAPTER 3. DETERMINISTIC PLANNING 47

1: procedurepreserved(φ,C,o);
2: φ = l1 ∨ · · · ∨ ln for somel1, . . . , ln ando = 〈c, e〉 for somec ande;
3: for each l ∈ {l1, . . . , ln} do
4: if C ∪ {EPCl(o)} is unsatisfiablethen gotoOK; (* l cannot become false. *)
5: for each l′ ∈ {l1, . . . , ln}\{l} do (* Otherwise another literal inφ must be true. *)
6: if C ∪ {EPCl(o)} |= EPCl′(o) then gotoOK; (* l′ becomes true. *)
7: if C ∪ {EPCl(o)} |= l′ ∧ ¬EPCl′(o) then gotoOK; (* l′ was and stays true. *)
8: end do
9: return false; (* Truth of the clause could not be guaranteed. *)

10: OK:
11: end do
12: return true;

Figure 3.2: Algorithm that tests whethero may falsifyl1 ∨ · · · ∨ ln in a state satisfyingC

The algorithm first computes the set of all 1-literal clauses that are true in the initial state. This
set exactly characterizes the set of distance 0 states consisting of the initial state only. Then the
algorithm considers the application of every operator. If an operator is applicable it may make
some of the clauses false. These clauses are removed and replaced by weaker clauses which are
also tested against every operator. When no further clauses are falsified, we have a set of clauses
that are guaranteed to be true in all distance 1 states. This computation is repeated for distances
2, 3, and so on, until the clause set does not change. The resulting clauses are invariants because
they are true after any number of operator applications.

The flavor of the algorithm is similar to the distance estimation in Section 3.4: starting from
a description of what is possible in the initial state, inductively determine what is possible afteri
operator applications. In contrast to the distance estimation method in Section 3.4 the state sets
are characterized by sets of clauses instead of sets of literals.

LetCi be a set of clauses that characterizes those states that are reachable byi operator appli-
cations. Similarly to distance computation, we consider for each operator and for each clause in
Ci whether applying the operator may make the clause false. If it can, the clause could be false
afteri operator applications and therefore will not be in the setCi+1.

Figure 3.2 gives an algorithm that tests whether applying an operatoro ∈ O in some states
may make a formulal1 ∨ · · · ∨ ln false assuming thats |= C ∪ {l1 ∨ · · · ∨ ln}.

The algorithm performs a case analysis for every literal in the clause, testing in each case
whether the clause remains true: if a literal becomes false, either another literal becomes true
simultaneously or another literal was true before and does not become false.

Lemma 3.36 Let C be a set of clauses,φ = l1 ∨ · · · ∨ ln a clause, ando an operator. If
preserved(φ,C,o) returns true, then appo(s) |= φ for any states such thats |= C ∪ {φ} and
o is applicable ins. (It may under these conditions also returnfalse).

Proof: Assumes is a state such thats |= C ∧ φ, appo(s) is defined andappo(s) 6|= φ. We show
that the procedure returnsfalse.

Sinces |= φ andappo(s) 6|= φ at least one literal inφ is made false byo. Let {l⊥1 , . . . , l⊥m} ⊆
{l1, . . . , ln} be the set of all such literals. Hences |= l⊥1 ∧ · · · ∧ l⊥m and{l⊥1 , . . . , l⊥m} ⊆ [e]det

s .
The literals in{l1, . . . , ln}\{l⊥1 , . . . , l⊥m} are false ins ando does not make them true.

CHAPTER 3. DETERMINISTIC PLANNING 48

1: procedure invariants(A, I,O, n);
2: C := {a ∈ A|I |= a} ∪ {¬a|a ∈ A, I 6|= a}; (* Clauses true in the initial state *)
3: repeat
4: C ′ := C;
5: for eacho ∈ O and l1 ∨ · · · ∨ lm ∈ C such thatnot preserved(l1 ∨ · · · ∨ lm,C ′,o) do
6: C := C\{l1 ∨ · · · ∨ lm};
7: if m < n then (* Clause length within pre-defined limit. *)
8: begin (* Add weaker clauses. *)
9: C := C ∪ {l1 ∨ · · · ∨ lm ∨ a | a ∈ A, {a,¬a} ∩ {l1, . . . , lm} = ∅};

10: C := C ∪ {l1 ∨ · · · ∨ lm ∨ ¬a | a ∈ A, {a,¬a} ∩ {l1, . . . , lm} = ∅};
11: end
12: end do
13: until C = C ′;
14: return C;

Figure 3.3: Algorithm for computing a set of invariant clauses

Choose anyl ∈ {l⊥1 , . . . , l⊥m}. We show that when the outermostfor eachloop starting on line
3 considersl the procedure will returnfalse.

Sincel ∈ [e]det
s ando is applicable ins by Lemma 3.3s |= EPCl(o). Since by assumption

s |= C, the condition of theif statement on line 4 is not satisfied and the execution proceeds by
iteration of the innerfor eachloop.

Let l′ be any of the literals inφ exceptl. Sinceappo(s) 6|= φ, l′ 6∈ [e]det
s . Hence by Lemma

3.3 s 6|= EPCl′(o), and ass |= C ∪ {EPCl(o)} the condition of theif statement on line 6 is not
satisfied and the execution continues from line 7. Analyze two cases.

1. If l′ ∈ {l⊥1 , . . . , l⊥m} then by assumptionl′ ∈ [e]det
s and by Lemma 3.3s |= EPCl′(o). Hence

C ∪{EPCl(o)} 6|= ¬EPCl′(o) and the condition of theif statement on line 7 is not satisfied.

2. If l′ 6∈ {l⊥1 , . . . , l⊥m} thens 6|= l′. HenceC ∪ {EPCl(o)} 6|= l′ and the condition of theif
statement on line 7 is not satisfied.

Hence on none of the iterations of the innerfor eachloop is agoto OKexecuted, and as the
loop exits, the procedure returnsfalse. �

Figure 3.3 gives the algorithm for computing invariants consisting of at mostn literals. The
loop on line 5 is repeated until there are noo ∈ O and clausesφ in C such that preserved(φ,C ′,o)
returns false. This exit condition for the loop is critical for the correctness proof.

Theorem 3.37 LetA be a set of state variables,I a state,O a set of operators, andn ≥ 1 an
integer. Then the procedure call invariants(A, I,O, n) returns a setC of clauses with at mostn
literals so that for any sequenceo1; . . . ; om of operators fromO appo1;...;om(I) |= C.

Proof: Let C0 be the value first assigned to the variableC in the procedureinvariants, and
C1, C2, . . . be the values of the variable in the end of each iteration of the outermostrepeatloop.

Induction hypothesis: for every{o1, . . . , oi} ⊆ O andφ ∈ Ci, appo1;...;oi(I) |= φ.
Base casei = 0: appε(I) for the empty sequence is by definitionI itself, and by construction

C0 consists of only formulae that are true in the initial state.

CHAPTER 3. DETERMINISTIC PLANNING 49

Inductive casei ≥ 1: Take any{o1, . . . , oi} ⊆ O andφ ∈ Ci. First notice that preserved(φ,Ci,o)
returnstruebecause otherwiseφ could not be inCi. Analyze two cases.

1. If φ ∈ Ci−1, then by the induction hypothesisappo1;...;oi−1(I) |= φ. Sinceφ ∈ Ci

preserved(φ,Ci−1,o) returnstrue. Hence by Lemma 3.36appo1;...;oi(I) |= φ.

2. If φ 6∈ Ci−1, it must be because preserved(φ′,Ci−1,o′) returnsfalse for someo′ ∈ O and
φ′ ∈ Ci−1 such thatφ is obtained fromφ′ by conjoining some literals to it. Henceφ′ |= φ.

Sinceφ′ ∈ Ci−1 by the induction hypothesisappo1;...;oi−1(I) |= φ′. Sinceφ′ |= φ also
appo1;...;oi−1(I) |= φ. Since the function call preserved(φ,Ci,o) returnstrueby Lemma 3.36
appo1;...;oi(I) |= φ.

This finishes the induction proof. The iteration of the procedure stops whenCi = Ci−1, mean-
ing that the claim of the theorem holds for arbitrarily long sequenceso1; . . . ; om of operators. �

The algorithm does not find the strongest invariant for two reasons. First, only clauses until
some fixed length are considered. Expressing the strongest invariant may require clauses that are
longer. Second, the test performed bypreservedtries to prove for one of the literals in the clause
that it is true after an operator application. Consider the clausea∨b∨c and the operator〈b∨c,¬a〉.
We cannot show for any literal that it is true after applying the operator but we know that eitherb
or c is true. The test performed bypreservedcould be strengthened to handle cases like these, for
example by using the techniques discussed in Section 4.2, but this would make the computation
more expensive and eventually lead to intractability.

To make the algorithm run in polynomial time the satisfiability and logical consequence tests
should be performed by algorithms that approximate these tests in polynomial time. The procedure
asat(D,φ) is not suitable because it assumes thatD is a set of literals, whereas forpreservedthe
setC usually contain clauses with 2 or more literals. There are generalizations of the ideas behind
asat(D,φ) to this more general case but we do not discuss the topic further.

3.5.1 Applications of invariants in planning by regression and satisfiability

Invariants can be used to speed up backward search with regression. Consider the blocks world
with the goalAonB∧BonC. Regression with the operator that moves B onto C from the table yields
AonB∧ Bclear∧ Cclear∧ BonT. This formula does not correspond to an intended blocks world
state becauseAonB is incompatible withBclear, and indeed,¬AonB∨ ¬Bclear is an invariant
for the blocks world. Any regression step that leads to a formula that is incompatible with the
invariants can be ignored because that formula does not represent any state that is reachable from
the initial state, and hence no plan extending the current incomplete plan can reach the goals.

Another application of invariants and the intermediate setsCi produced by our invariant al-
gorithm is improving the heuristics in Section 3.4. UsingDmax

i for testing whether an operator
precondition, for examplea ∧ b, has distancei from the initial state, the distances ofa andb are
used separately. But even when it is possible to reach botha andb with i operator applications,
it might still not be possible to reach them both simultaneously withi operator applications. For
example, fori = 1 and an initial state in which botha andb are false, there might be no single op-
erator that makes them both true, but two operators, each of which makes only one of them true. If
¬a∨¬b ∈ Ci, we know that afteri operator applications one ofa or b must still be false, and then
we know that the operator in question is not applicable at time pointi. Therefore the invariants
and the setsCi produced during the invariant computation can improve distance estimates.

CHAPTER 3. DETERMINISTIC PLANNING 50

3.6 Planning as satisfiability in the propositional logic

A very powerful approach to deterministic planning was introduced in 1992 by Kautz and Selman
[1992; 1996]. In this approach the problem of reachability of a goal state from a given initial
state is translated into propositional formulaeφ0, φ1, φ2, . . . so that every valuation that satisfies
formulaφi corresponds to a plan of lengthi. Planning proceeds by first testing the satisfiability of
φ0. If φ0 is unsatisfiable, continue withφ1, φ2, and so on, until a satisfiable formulaφn is found.
From a valuation that satisfiesφn a plan of lengthn can be constructed.

3.6.1 Actions as propositional formulae

First we need a representation of actions in the propositional logic. We can view arbitrary propo-
sitional formulae as actions, or we can translate operators into formulae in the propositional logic.
We discuss both of these possibilities.

Given a set of state variablesA = {a1, . . . , an}, one could describe an action directly as a
propositional formulaφ over propositional variablesA ∪ A′ whereA′ = {a′1, . . . , a′n}. Here the
variablesA represent the values of state variables in the states in which an action is taken, and
variablesA′ the values of state variables in a successor states′.

A pair of valuationss ands′ can be understood as a valuation ofA ∪ A′ (the states assigns a
value to variablesA ands′ to variablesA′), and a transition froms to s′ is possible if and only if
s, s′ |= φ.

Example 3.38 The action that reverses the values of state variablesa1 anda2 is described by
φ = (a1 ↔ ¬a′1) ∧ (a2 ↔ ¬a′2). The following4× 4 incidence matrix represents this action.

a′1a
′
2 a

′
1a

′
2 a

′
1a

′
2 a

′
1a

′
2

a1a2 00 01 10 11
00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

CHAPTER 3. DETERMINISTIC PLANNING 51

The matrix can be equivalently represented as the following truth-table.

a1 a2 a
′
1 a

′
2 φ

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

�

Example 3.39 Let the set of state variables beA = {a1, a2, a3}. The formula(a1 ↔ a′2)∧(a2 ↔
a′3) ∧ (a3 ↔ a′1) represents the action that rotates the values of the state variablesa1, a2 anda3

one position right. The formula can be represented as the following adjacency matrix. The rows
correspond to valuations ofA and the columns to valuations ofA′ = {a′1, a′2, a′3}.

000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 0 0 0 1 0 0 0
010 0 1 0 0 0 0 0 0
011 0 0 0 0 0 1 0 0
100 0 0 1 0 0 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 1 0 0 0 0
111 0 0 0 0 0 0 0 1

A more conventional way of depicting the valuations of this formula would be as a truth-table
with one row for every valuation ofA ∪A′, a total of 64 rows. �

The action in Example 3.39 is deterministic. Not all actions represented by propositional for-
mulae are deterministic. A sufficient (but not necessary) condition for determinism is that the
formula is of the form(φ1 ↔ a′1) ∧ · · · ∧ (φn ↔ a′n) ∧ ψ whereA = {a1, . . . , an} is the set of
all state variables,φi are formulae overA (without occurrences ofA′ = {a′1, . . . , a′n}). There are
no restrictions onψ. Formulae of this form uniquely determine the value of every state variable
in the successor state in terms of the values in the predecessor state. Therefore they represent
deterministic actions.

CHAPTER 3. DETERMINISTIC PLANNING 52

3.6.2 Translation of operators into propositional logic

We first give the simplest possible translation of deterministic planning into the propositional logic.
In this translation every operator is separately translated into a formula, and the choice between
the operators is represented as disjunction.

Definition 3.40 The formulaτA(o) which represents the operatoro = 〈c, e〉 is defined by

τA(e) =
∧

a∈A((EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′) ∧
∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e))
τA(o) = c ∧ τA(e).

The formulaτA(e) expresses the value ofa in the successor state in terms of the values of
the state variables in the predecessor state and requires that executinge may not make any state
variable simultaneously true and false. This is like in the definition of regression in Section 3.1.2.
The formulaτA(o) additionally requires that the operator’s precondition is true.

Example 3.41 Consider operator〈a ∨ b, (b B a) ∧ (c B ¬a) ∧ (a B b)〉. The corresponding
propositional formula is

(a ∨ b) ∧((b ∨ (a ∧ ¬c)) ↔ a′)
∧((a ∨ (b ∧ ¬⊥)) ↔ b′)
∧((⊥ ∨ (c ∧ ¬⊥)) ↔ c′)
∧¬(b ∧ c) ∧ ¬(a ∧ ⊥) ∧ ¬(⊥ ∧⊥)

≡ (a ∨ b) ∧((b ∨ (a ∧ ¬c)) ↔ a′)
∧((a ∨ b) ↔ b′)
∧(c↔ c′)
∧¬(b ∧ c).

�

Lemma 3.42 Let s ands′ be states ando an operator. Letv : A ∪ A′ → {0, 1} be a valuation
such that

1. for all a ∈ A, v(a) = s(a), and

2. for all a ∈ A, v(a′) = s′(a).

Thenv |= τA(o) if and only ifs′ = appo(s).

Proof: Assumev |= τA(o). Hences |= c ands |=
∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e)), and therefore
appo(s) is defined. Consider any state variablea ∈ A. By Lemma 3.4 and the assumption
v |= (EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′, the value of every state variable ins′ matches the
definition ofappo(s). Hences′ = appo(s).

Assumes′ = appo(s). Sinces′ is defined,v |= τA(o) andv |=
∧

a∈A ¬(EPCa(e)∧EPC¬a(e)).
By Lemma 3.4v |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s′ |= a. �

Definition 3.43 DefineR1(A,A′) = τA(o1) ∨ · · · ∨ τA(on).

CHAPTER 3. DETERMINISTIC PLANNING 53

The valuations that satisfy this formula do not uniquely determine which operator was applied
because for a given state more than one operator may produce the same successor state. However,
in such cases it does not matter which operator is applied, and when constructing a plan from the
valuation any of the operators may be chosen arbitrarily.

It has been noticed that extendingR1(A,A′) by 2-literal invariants (see Section 3.5) reduces
runtimes of algorithms that test satisfiability. Note that invariants do not affect the set of models of
a formula representing planning: any satisfying valuation of the original formula also satisfies the
invariants because the values of variables describing the values of state variables at any time point
corresponds to a state that is reachable from the initial state, and hence this valuation also satisfies
any invariant.

3.6.3 Finding plans by satisfiability algorithms

We show how plans can be found by first translating succinct transition systems〈A, I,O,G〉 into
propositional formulae, and then finding satisfying valuations by a satisfiability algorithm.

In Section 3.6.1 we showed how operators can be described by propositional formulae over
setsA andA′ of propositional variables, the setA describing the values of the state variables in
the state in which the operator is applied, and the setA′ describing the values of the state variables
in the successor state of that state.

For a fixed plan lengthn, we use setsA0, . . . , An of variables to represent the values of state
variables at different time points, with variablesAi representing the values at timei. In other
words, a valuation of these propositional variables represents a sequences0, . . . , sn of states. If
a ∈ A is a state variable, then we use the propositional variableai for representing the value ofa
at time pointi.

Then we construct a formula so that the states0 is determined byI, the statesn is determined
by G, and the changes of state variables between any two consecutive states corresponds to the
application of an operator.

Definition 3.44 Let 〈A, I,O,G〉 be a deterministic transition system. Defineι0 =
∧
{a0|a ∈

A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0} for the initial state andGn as the formulaG with every
variablea ∈ A replaced byan. Define

Φseq
n = ι0 ∧R1(A0, A1) ∧R1(A1, A2) ∧ · · · ∧ R1(An−1, An) ∧Gn

whereAi = {ai|a ∈ A} for all i ∈ {0, . . . , n}.

A plan can be found by using the formulaeΦseq
i as follows. We start with plan lengthi = 0, test

the satisfiability ofΦseq
i , and depending on the result, either construct a plan (ifΦseq

i is satisfiable),
or increasei by one and repeat the previous steps, until a plan is found.

If there are no plans, it has to be somehow decided when to stop increasingi. An upper
bound on plan length is2|A| − 1 whereA is the set of state variables but this upper bound does
not provide a practical termination condition for this procedure. Some work on more practical
termination conditions are cited in Section 3.8.

The construction of a plan from a valuationv that satisfiesΦseq
i is straightforward. The plan

has exactlyi operators, and this plan is known to be the shortest one because the formulaΦseq
i−1

had already been determined to be unsatisfiable. First construct the executions0, . . . , si of the
plan fromv as follows. For allj ∈ {0, . . . , i} anda ∈ A, sj(a) = v(aj). The plan has the

CHAPTER 3. DETERMINISTIC PLANNING 54

form o1, . . . , oi. Operatoroj for j ∈ {1, . . . , i} is identified by testing for allo ∈ O whether
appo(sj−1) = sj . There may be several operators satisfying this condition, and any of them can
be chosen.

Example 3.45 LetA = {a, b}. Let the stateI satisfyI |= a ∧ b. LetG = (a ∧ ¬b) ∨ (¬a ∧ b)
ando1 = 〈>, (a B ¬a) ∧ (¬a B a)〉 ando2 = 〈>, (b B ¬b) ∧ (¬b B b)〉. The following formula
is satisfiable if and only if〈A, I, {o1, o2}, G〉 has a plan of length 3.

(a0 ∧ b0)
∧(((a0 ↔ a1) ∧ (b0 ↔ ¬b1)) ∨ ((a0 ↔ ¬a1) ∧ (b0 ↔ b1)))
∧(((a1 ↔ a2) ∧ (b1 ↔ ¬b2)) ∨ ((a1 ↔ ¬a2) ∧ (b1 ↔ b2)))
∧(((a2 ↔ a3) ∧ (b2 ↔ ¬b3)) ∨ ((a2 ↔ ¬a3) ∧ (b2 ↔ b3)))
∧((a3 ∧ ¬b3) ∨ (¬a3 ∧ b3))

One of the valuations that satisfy the formula is the following.

time i
0 1 2 3

ai 1 0 0 0
bi 1 1 0 1

This valuation corresponds to the plan that applies operatoro1 at time point 0,o2 at time point 1,
ando2 at time point 2. There are also other satisfying valuations. The shortest plans have length 1
and respectively consist of the operatorso1 ando2. �

Example 3.46 Consider the following problem. There are two operators, one for rotating the
values of bits abc one step right, and the other for inverting the values of all the bits. Consider
reaching from the initial state 100 the goal state 001 with two actions. This is represented as the
following formula.

(a0 ∧ ¬b0 ∧ ¬c0)
∧(((a0 ↔ b1) ∧ (b0 ↔ c1) ∧ (c0 ↔ a1)) ∨ ((¬a0 ↔ a1) ∧ (¬b0 ↔ b1) ∧ (¬c0 ↔ c1)))
∧(((a1 ↔ b2) ∧ (b1 ↔ c2) ∧ (c1 ↔ a2)) ∨ ((¬a1 ↔ a2) ∧ (¬b1 ↔ b2) ∧ (¬c1 ↔ c2)))
∧(¬a2 ∧ ¬b2 ∧ c2)

Since the literals describing the initial and the goal state must be true, we can replace occurrences
of these state variables in the subformulae for operators by> and⊥.

(a0 ∧ ¬b0 ∧ ¬c0)
∧(((> ↔ b1) ∧ (⊥ ↔ c1) ∧ (⊥ ↔ a1)) ∨ ((¬> ↔ a1) ∧ (¬⊥ ↔ b1) ∧ (¬⊥ ↔ c1)))
∧(((a1 ↔ ⊥) ∧ (b1 ↔ >) ∧ (c1 ↔ ⊥)) ∨ ((¬a1 ↔ ⊥) ∧ (¬b1 ↔ ⊥) ∧ (¬c1 ↔ >)))
∧(¬a2 ∧ ¬b2 ∧ c2)

After simplifying we have the following.

(a0 ∧ ¬b0 ∧ ¬c0)
∧((b1 ∧ ¬c1 ∧ ¬a1) ∨ (¬a1 ∧ b1 ∧ c1)
∧((¬a1 ∧ b1 ∧ ¬c1) ∨ (a1 ∧ b1 ∧ ¬c1))
∧(¬a2 ∧ ¬b2 ∧ c2)

CHAPTER 3. DETERMINISTIC PLANNING 55

The only way of satisfying this formula is to make the first disjuncts of both disjunctions true, that
is, b1 must be true anda1 andc1 must be false. The resulting valuation corresponds to taking the
rotation action twice.

Consider the same problem but now with the goal state 101.

(a0 ∧ ¬b0 ∧ ¬c0)
∧(((a0 ↔ b1) ∧ (b0 ↔ c1) ∧ (c0 ↔ a1)) ∨ ((¬a0 ↔ a1) ∧ (¬b0 ↔ b1) ∧ (¬c0 ↔ c1)))
∧(((a1 ↔ b2) ∧ (b1 ↔ c2) ∧ (c1 ↔ a2)) ∨ ((¬a1 ↔ a2) ∧ (¬b1 ↔ b2) ∧ (¬c1 ↔ c2)))
∧(a2 ∧ ¬b2 ∧ c2)

We simplify again and get the following formula.

(a0 ∧ ¬b0 ∧ ¬c0)
∧((b1 ∧ ¬c1 ∧ ¬a1) ∨ (¬a1 ∧ b1 ∧ c1))
∧((¬a1 ∧ b1 ∧ c1) ∨ (¬a1 ∧ b1 ∧ ¬c1))
∧(a2 ∧ ¬b2 ∧ c2)

Now there are two possible plans, to rotate first and then invert the values, or first invert and then
rotate. These respectively correspond to making the first disjunct of the first disjunction and the
second disjunct of the second disjunction true, or the second and the first disjunct. �

3.6.4 Parallel application of operators

For statess and setsT of operators we defineappT (s) as the result of simultaneously applying all
operatorso ∈ T : the preconditions of all operators inT must be true ins and the stateappT (s) is
obtained froms by making the literals in

⋃
〈p,e〉∈T [e]det

s true. Analogously to sequential plans we
can defineappT1;T2;...;Tn(s) asappTn(· · ·appT2(appT1(s)) · · ·).

Next we show how the translation of deterministic operators into the propositional logic in
Section 3.6.2 can be extended to the simultaneous application of operators as inappT (s).

Consider the formulaτA(o) representing one operatoro = 〈c, e〉.

c ∧
∧
a∈A

((EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′) ∧
∧
a∈A

¬(EPCa(e) ∧ EPC¬a(e)).

This formula can be rewritten to the following logically equivalent formula that separately says
which state variables are changed by the operator and which state variables retain their values.

c∧∧
a∈A(EPCa(e)→a′)∧∧
a∈A(EPC¬a(e)→¬a′)∧∧
a∈A((a ∧ ¬a′)→EPC¬a(e))∧∧
a∈A((¬a ∧ a′)→EPCa(e))

We use this formulation ofτA(o) as basis of obtaining encodings of planning that allowseveral
operators in parallel. Every operator applied at a given time point causes its effects to be true
and requires its precondition to be true. This is expressed by the first three conjuncts. The last
two conjuncts say that, assuming the operator that is applied is the only one, certain state variables
retain their value. These formulae have to be modified to accommodate the possibility of executing
several operators in parallel.

We introduce propositional variableso for denoting the execution of operatorso ∈ O.

CHAPTER 3. DETERMINISTIC PLANNING 56

Definition 3.47 Let A be the set of state variables andO a set of operators. Let the formula
τA(O) denote the conjunction of formulae

(o→c)∧∧
a∈A(o ∧ EPCa(e)→a′)∧∧
a∈A(o ∧ EPC¬a(e)→¬a′)

for all 〈c, e〉 ∈ O and∧
a∈A((a ∧ ¬a′)→((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (on ∧ EPC¬a(en))∧∧
a∈A((¬a ∧ a′)→((o1 ∧ EPCa(e1)) ∨ · · · ∨ (on ∧ EPCa(en)))

whereO = {o1, . . . , on} ande1, . . . , en are the respective effects.

The difference to the definition ofτA(o) in Section 3.6.2 is that above the formulae do not
assume that there is only one operator explaining the changes that take place.

The formulaτA(O) matches the definition ofappT (s).

Lemma 3.48 Let s ands′ be states andO andT ⊆ O sets of operators. Letv : A ∪ A′ ∪ O →
{0, 1} be a valuation such that

1. for all o ∈ O, v(o) = 1 iff o ∈ T ,

2. for all a ∈ A, v(a) = s(a), and

3. for all a ∈ A, v(a′) = s′(a).

Thenv |= τA(O) if and only ifs′ = appT (s).

Proof: For the proof from right to left we assume thats′ = appT (s) and show thatv |= τA(O).
For the formulaeo→ c consider anyo = 〈c, e〉 ∈ O. If o 6∈ T thenv 6|= o andv |= o→ c.

So assumeo ∈ T . By assumptions is a state such thatappT (s) is defined. Hences |= c. Hence
v |= o→c.

For the formulaeo ∧ EPCa(e)→ a′ consider anyo = 〈c, e〉 ∈ O. If o 6∈ T thenv 6|= o and
v |= o ∧ EPCl(e)→ l for all literals l. So assumeo ∈ T . Now v |= o ∧ EPCl(e)→ l because
if s |= EPCl(e) then l ∈ [e]det

s by Lemma 3.3 ands′ |= l. Proof foro ∧ EPC¬a(e) → ¬a′ is
analogous.

For the formulae((a ∧ ¬a′) → ((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (on ∧ EPC¬a(en)) consider any
a ∈ A. According to the definition ofs′ = appT (s), a can be true ins and false ins′ only if
¬a ∈ [o]det

s for someo ∈ T . By Lemma 3.3¬a ∈ [o]det
s if and only if s |= EPC¬a(o). So if the

antecedent of(a∧¬a′)→((o1 ∧EPC¬a(o1))∨ · · · ∨ (om ∧EPC¬a(om))) is true, then one of the
disjuncts of the consequent is true, whereO = {o1, . . . , om}. The proof for the change from false
to true is analogous.

For the proof from left to right we assumev |= τA(O) and show thats′ = appT (s).
The preconditionc of everyo ∈ T is true ins becausev |= o andv |= o→ c, ands′ |= [e]det

s

for everyo = 〈c, e〉 ∈ T becausev |= o andv |= o ∧ EPCl(e)→ l for every literall. This also
means that[T]det

s is consistent andappT (s) is defined.
For state variablesa not occurring in[T]det

s we have to show thats(a) = s′(a). Sincea does not
occur in[T]det

s , for everyo ∈ {o1, . . . , om} = O = {〈c1, e1〉, . . . , 〈cm, em〉} eithero 6∈ T or both

CHAPTER 3. DETERMINISTIC PLANNING 57

a 6∈ [e]det
s and¬a 6∈ [e]det

s . Hence eitherv 6|= o or (by Lemma 3.3)v |= ¬(EPCa(e))∧¬EPC¬a(e).
This together with the assumptions thatv |= (a ∧ ¬a′) → ((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (om ∧
EPC¬a(em))) andv |= (¬a ∧ a′)→ ((o1 ∧ EPCa(o1)) ∨ · · · ∨ (om ∧ EPCa(em))) impliesv |=
(a→a′)∧ (¬a→¬a′). Therefore everya ∈ A not occurring in[T]det

s remains unchanged. Hence
s′ = appT (s). �

Example 3.49 Let o1 = 〈¬LAMP1, LAMP1〉 ando2 = 〈¬LAMP2, LAMP2〉. The applica-
tion of none, one or both of these operators is described by the following formula.

(¬LAMP1 ∧ LAMP1′)→((o1 ∧ >) ∨ (o2 ∧ ⊥)
(LAMP1 ∧ ¬LAMP1′)→((o1 ∧ ⊥) ∨ (o2 ∧ ⊥)
(¬LAMP2 ∧ LAMP2′)→((o1 ∧ ⊥) ∨ (o2 ∧ >)
(LAMP2 ∧ ¬LAMP2′)→((o1 ∧ ⊥) ∨ (o2 ∧ ⊥)
o1→LAMP1′

o1→¬LAMP1
o2→LAMP2′

o2→¬LAMP2

�

3.6.5 Partially-ordered plans

In this section we consider a more general notion of plans in which several operators can be applied
simultaneously. This kind of plans are formalized as sequences of sets of operators. In such a plan
the operators are partially ordered because there is no ordering on the operators taking place at the
same time point. This notion of plans is useful for two reasons.

First, consider a number of operators that affect and depend on disjoint state variables so that
they can be applied in any order. If there aren such operators, there aren! plans that are equivalent
in the sense that each leads to the same state. When a satisfiability algorithm shows that there is
no plan of lengthn consisting of these operators, it has to show that none of then! plans reaches
the goals. This may be combinatorially very difficult ifn is high.

Second, when several operators can be applied simultaneously, it is not necessary to represent
all intermediate states of the corresponding sequential plans: partially-ordered plans require less
time points than the corresponding sequential plans. This reduces the number of propositional
variables that are needed for representing the planning problem, which may make testing the
satisfiability of these formulae much more efficient.

In Section 3.6.4 we have shown how to represent the parallel application of operators in the
propositional logic. However, this definition is too loose because it allows plans that cannot be
executed.

Example 3.50 The operators〈a,¬b〉 and〈b,¬a〉 may be executed simultaneously resulting in a
state satisfying¬a ∧ ¬b, although this state is not reachable by the two operators sequentially.�

A realistic way of interpreting parallelism in partially ordered plans is that any total ordering
of the simultaneous operators is executable and results in the same state in all cases. This is the
definition used in planning research so far.

CHAPTER 3. DETERMINISTIC PLANNING 58

Definition 3.51 (Step plans)For a set of operatorsO and an initial stateI, a step plan forO
andI is a sequenceT = 〈T0, . . . , Tl−1〉 of sets of operators for somel ≥ 0 such that there is a
sequence of statess0, . . . , sl (the execution ofT) such that

1. s0 = I,

2. for all i ∈ {0, . . . , l−1} and every total orderingo1, . . . , on ofTi, appo1;...;on(si) is defined
and equalssi+1.

Theorem 3.52 Testing whether a sequence of sets of operators is a step plan is co-NP-hard.

Proof: The proof is by reduction from the co-NP-complete validity problem TAUT. Letφ be any
propositional formula. LetA = {a1, . . . , an} be the set of propositional variables occurring inφ.
Our set of state variables isA. Let oz = 〈φ,>〉 andO = {〈>, a1〉, . . . , 〈>, an〉, oz}. Let s ands′

be states such thats 6|= a ands′ |= a for all a ∈ A. We show thatφ is a tautology if and only if
T = 〈O〉 is a step plan forO ands.

Assumeφ is a tautology. Now for any total orderingo0, . . . , on of O the stateappo0;...;on(s)
is defined and equalss′ because all preconditions are true in all states and the set of effects of all
operators isA (the set is consistent and making the effects true ins yieldss′.) HenceT is a step
plan.

AssumeT is a step plan. Letv be any valuation. We show thatv |= φ. LetOv = {〈>, a〉|a ∈
A, v |= a}. The operatorsO can be ordered too0, . . . , on so that the operatorsOv = {o0, . . . , ok}
precedeoz andO\(Ov ∪ {oz}) follow oz. SinceT is a step plan,appo0;...;on(s) is defined. Since
alsoappo0;...;ok;oz(s) is defined, the preconditionφ of oz is true inv = appo0;...;ok

(s). Hence
v |= φ. Since this holds for any valuationv, φ is a tautology. �

To avoid intractability it is better to restrict to a class of step plans that are easy to recognize.
One such class is based on the notion ofinterference.

Definition 3.53 (Affect) LetA be a set of state variables ando = 〈c, e〉 ando′ = 〈c′, e′〉 opera-
tors overA. Theno affectso′ if there isa ∈ A such that

1. a is an atomic effect ine anda occurs in a formula ine′ or it occurs negatively inc′, or

2. ¬a is an atomic effect ine anda occurs in a formula ine′ or it occurs positively inc′.

Definition 3.54 (Interference) Operatorso ando′ interfereif o affectso′ or o′ affectso.

Testing for interference of two operators is easy polynomial time computation. Non-interference
not only guarantees that a set of operators is executable in any order, but it also guarantees that the
result equals to applying all the operators simultaneously.

Lemma 3.55 Let s be a state andT a set of operators so that appT (s) is defined and no two
operators interfere. Then appT (s) = appo1;...;on(s) for any total orderingo1, . . . , on of T .

Proof: Let o1, . . . , on be any total ordering ofT . We prove by induction on the length of a prefix
of o1, . . . , on the following statement for alli ∈ {0, . . . , n − 1} by induction oni: s |= a if and
only if appo1;...;oi(s) |= a for all state variablesa occurring in an antecedent of a conditional effect
or a precondition of operatorsoi+1, . . . , on.

CHAPTER 3. DETERMINISTIC PLANNING 59

Base casei = 0: Trivial.
Inductive casei ≥ 1: By the induction hypothesis the antecedents of conditional effects ofoi

have the same value ins and inappo1;...;oi−1(s), from which follows[oi]det
s = [oi]det

appo1;...;oi−1 (s).

Sinceoi does not interfere with operatorsoi+1, . . . , on, no state variable occurring in[oi]det
s occurs

in an antecedent of a conditional effect or in the precondition ofoi+1, . . . , on, that is, these state
variables do not change. Since[oi]det

s = [oi]det
appo1;...;oi−1 (s) this also holds whenoi is applied in

appo1;...;oi−1(s). This completes the induction proof.
SinceappT (s) is defined, the precondition of everyo ∈ T is true ins and[o]det

s is consistent.
By the fact we established above, the precondition of everyo ∈ T is true also inappo1;...;ok

(s)
and [o]det

appo1;...;ok
(s) is consistent for any{o1, . . . , ok} ⊆ T\{o}. Hence any total ordering of

the operators is executable. By the fact we established above,[o]det
s = [o]det

appo1;...;ok
(s) for every

{o1, . . . , ok} ⊆ T\{o}. Hence every operator causes the same changes no matter what the total
ordering is. SinceappT (s) is defined, no operator inT undoes the effects of another operator.
Hence the same states′ = appT (s) is reached in every case. �

For finding plans by using the translation of parallel actions from Section 3.6.4 it remains to
encode the condition that no two parallel actions are allowed to interfere.

Definition 3.56 Define

R2(A,A′, O) = τA(O) ∧
∧
{¬(o ∧ o′)|{o, o′} ⊆ O, o 6= o′, o ando′interfere}

Definition 3.57 Let 〈A, I,O,G〉 be a deterministic succinct transition system. Define

Φpar
n = ι0 ∧R2(A0, A1, O0) ∧R2(A1, A2, O1) ∧ · · · ∧ R2(An−1, An, On−1) ∧Gn

whereAi = {ai|a ∈ A} for all i ∈ {0, . . . , n} andOi = {oi|o ∈ O} for all i ∈ {1, . . . , n} and
ι0 =

∧
{a0|a ∈ A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0} andGn isG with everya ∈ A replaced

byan.

If Φpar
n is satisfiable andv is a valuation such thatv |= Φpar

n , then defineTi = {o ∈ O|v |=
oi} for every i ∈ {1, . . . , n}. Then 〈T1, . . . , Tn〉 is a plan for the transition system, that is,
appT1;...;Tn(I) |= G.

It may be tempting to think that non-interference implies that the actions occurring in parallel
in a plan could always be executed simultaneously in the real world. This however is not the case.
For genuine temporal parallelism the formalization of problems as operators has to fulfill much
stronger criteria than when sequential execution is assumed.

Example 3.58 Consider the operators

transport-A-with-truck-1= 〈AinFreiburg,AinStuttgart∧ ¬AinFreiburg〉
transport-B-with-truck-1= 〈BinFreiburg,BinKarlsruhe∧ ¬BinFreiburg〉

which formalize the transportation of two objects with one vehicle. The operators do not interfere,
and our notion of plans allows the simultaneous execution of these operators. However, these
actions cannot really be simultaneous because the corresponding real world actions involve the
same vehicle going to different destinations. �

CHAPTER 3. DETERMINISTIC PLANNING 60

3.7 Computational complexity

In this section we discuss the computational complexity of the main decision problems related to
deterministic planning.

The plan existence problem of deterministic planning is PSPACE-complete. The result was
proved by Bylander[1994]. He proved the hardness part by giving a simulation of deterministic
polynomial-space Turing machines, and the membership part by giving an algorithm that solves
the problem in polynomial space. We later generalize his Turing machine simulation to alter-
nating Turing machines to obtain an EXP-hardness proof for nondeterministic planning with full
observability in Theorem 4.53.

Theorem 3.59 The problem of testing the existence of a plan is PSPACE-hard.

Proof: Let 〈Σ, Q, δ, q0, g〉 be any deterministic Turing machine with a polynomial space bound
p(x). Letσ be an input string of lengthn.

We construct a deterministic succinct transition system for simulating the Turing machine. The
succinct transition system has a size that is polynomial in the size of the description of the Turing
machine and the input string.

The setA of state variables in the succinct transition system consists of

1. q ∈ Q for denoting the internal states of the TM,

2. si for every symbols ∈ Σ ∪ {|,�} and tape celli ∈ {0, . . . , p(n)}, and

3. hi for the positions of the R/W headi ∈ {0, . . . , p(n) + 1}.

The initial state of the succinct transition system represents the initial configuration of the TM.
The initial stateI is as follows.

1. I(q0) = 1

2. I(q) = 0 for all q ∈ Q\{q0}.

3. I(si) = 1 if and only if ith input symbol iss ∈ Σ, for all i ∈ {1, . . . , n}.

4. I(si) = 0 for all s ∈ Σ andi ∈ {0, n+ 1, n+ 2, . . . , p(n)}.

5. I(�i) = 1 for all i ∈ {n+ 1, . . . , p(n)}.

6. I(�i) = 0 for all i ∈ {0, . . . , n}.

7. I(|0) = 1

8. I(|i) = 0 for all n ∈ {1, . . . , p(n)}

9. I(h1) = 1

10. I(hi) = 0 for all i ∈ {0, 2, 3, 4, . . . , p(n) + 1}

The goal is the following formula.

G =
∨
{q ∈ Q|g(q) = accept}

CHAPTER 3. DETERMINISTIC PLANNING 61

To define the operators, we first define effects corresponding to all possible transitions.
For all〈s, q〉 ∈ (Σ∪{|,�})×Q, i ∈ {0, . . . , p(n)} and〈s′, q′,m〉 ∈ (Σ∪{|})×Q×{L,N,R}

define the effectτs,q,i(s′, q′,m) asα ∧ κ ∧ θ where the effectsα, κ andθ are defined as follows.
The effectα describes what happens to the tape symbol under the R/W head. Ifs = s′ then

α = > as nothing on the tape changes. Otherwise,α = ¬si ∧ s′i to denote that the new symbol in
theith tape cell iss′ and nots.

The effectκ describes the change to the internal state of the TM. Again, either the state changes
or does not, soκ = ¬q ∧ q′ if q 6= q′ and> otherwise. We defineκ = ¬q wheni = p(n) and
m = R so that when the space bound gets violated, no accepting state can be reached.

The effectθ describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

θ =

¬hi ∧ hi−1 if m = L

> if m = N
¬hi ∧ hi+1 if m = R

By definition of TMs, movement at the left end of the tape is always to the right. Similarly, we
have state variable for R/W head positionp(n) + 1 and moving to that position is possible, but no
transitions from that position are possible, as the space bound has been violated.

Now, these effects that represent possible transitions are used in the operators that simulate the
Turing machine. Let〈s, q〉 ∈ (Σ ∪ {|,�})×Q, i ∈ {0, . . . , p(n)} andδ(s, q) = {〈s′, q′,m〉}. If
g(q) = ∃, then define the operator

os,q,i = 〈hi ∧ si ∧ q, τs,q,i(s′, q′,m)〉.

We claim that the succinct transition system has a plan if and only if the Turing machine accepts
without violating the space bound.

If the Turing machine violates the space bound, the state variablehp(n)+1 becomes true and an
accepting state cannot be reached because no further operator will be applicable.

So, because all deterministic Turing machines with a polynomial space bound can be in poly-
nomial time translated into a planning problem, all decision problems in PSPACE are polynomial
time many-one reducible to deterministic planning, and the plan existence problem is PSPACE-
hard. �

Theorem 3.60 The problem of testing the existence of a plan is in PSPACE.

Proof: A recursive algorithm for testingm-step reachability between two states withlogm mem-
ory consumption is given in Figure 3.4. The parameters of the algorithm are the setO of operators,
the starting states, the terminal states′, andm characterizing the maximum number2m of opera-
tors needed for reachings′ from s.

We show that when the algorithm is called with the numbern = |A| of state variables as the
last argument, it consumes a polynomial amount of memory inn. The recursion depth isn. At the
recursive calls memory is needed for storing the intermediate statess′′. The memory needed for
this is polynomial inn. Hence at any point of time the space consumption isO(m2).

A succinct transition system〈A, I,O,G〉 with n = |A| state variables has a plan if and only
if reach(O,I,s′,n) returnstrue for somes′ such thats′ |= G. Iteration over all statess′ can be
performed in polynomial space and testings′ |= G can be performed in polynomial time in the

CHAPTER 3. DETERMINISTIC PLANNING 62

1: procedure reach(O,s,s′,m)
2: if m = 0 then (* Plans of length 0 and 1 *)
3: if s = s’or there iso ∈ O such thats′ = appo(s) then return true
4: else return false
5: else
6: begin (* Longer plans *)
7: for all statess′′ do (* Iteration over intermediate states *)
8: if reach(O,s,s′′,m− 1) and reach(O,s′′,s′,m− 1) then return true

; 9: end
10: return false;
11: end

Figure 3.4: Algorithm for testing plan existence in polynomial space

size ofG. Hence the whole memory consumption is polynomial. �

Part of the high complexity of planning is due to the fact that plans can be exponentially long.
If a polynomial upper bound for plan length exists, testing the existence of plans is still intractable
but much easier.

Theorem 3.61 The problem of whether a plan having a length bounded by a given polynomial
exists is NP-hard.

Proof: We reduce the satisfiability problem of the classical propositional logic to the plan existence
problem. The length of the plans, whenever they exist, is bounded by the number of propositional
variables and hence is polynomial.

Let φ be a formula over the propositional variables inA. LetN = 〈A, {(a, 0)|a ∈ A}, O, φ〉
whereO = {〈>, a〉|a ∈ A} We show thatN has a plan if and only if the formulaφ is satisfiable.

Assumeφ ∈ SAT , that is, there is a valuationv : A → {0, 1} such thatv |= φ. Now take the
operators{〈>, a〉|v |= a, a ∈ A} in any order: these operators form a plan that reach the statev
that satisfiesφ.

AssumeN has a plano1, . . . , om. The valuationv = {(a, 1)|(>, a) ∈ {o1, . . . , om}} ∪
{(a, 0)|a ∈ A, (>, a) 6∈ {o1, . . . , om}} of A is the terminal state of the plan and satisfiesφ. �

Theorem 3.62 The problem of whether a plan having a length bounded by a given polynomial
exists is in NP.

Proof: Let p(m) be a polynomial. We give a nondeterministic algorithm that runs in polynomial
time and determines whether a plan of lengthp(m) exists.

LetN = 〈A, I,O,G〉 be a deterministic succinct transition system.

1. Nondeterministically guess a sequence ofl ≤ p(m) operatorso1, . . . , ol from the setO.
Sincel is bounded by the polynomialp(m), the time consumptionO(p(m)) is polynomial
in the size ofN .

2. Computes = appol
(appol−1

(· ·appo2(appo1(I)) · ·)). This takes polynomial time in the size
of the operators and the number of state variables.

CHAPTER 3. DETERMINISTIC PLANNING 63

3. Tests |= G. This takes polynomial time in the size of the operators and the number of state
variables.

This nondeterministic algorithm correctly determines whether a plan of length at mostp(m) exists
and it runs in nondeterministic polynomial time. Hence the problem is in NP. �

These theorems show the NP-completeness of the plan existence problem for polynomial-
length plans.

3.8 Literature

Progression and regression were used early in planning research[Rosenschein, 1981]. Our defi-
nition of regression in Section 3.1.2 is related to the weakest precondition predicates for program
synthesis[de Bakker and de Roever, 1972; Dijkstra, 1976]. Instead of using the general definition
of regression we presented, earlier work on planning with regression and a definition of operators
that includes disjunctive preconditions and conditional effects has avoided all disjunctivity by pro-
ducing only goal formulae that are conjunctions of literals[Andersonet al., 1998]. Essentially,
these formulae are the disjuncts ofregro(φ) in DNF, although the formulaeregro(φ) are not gen-
erated. The search algorithm then produces a search tree with one branch for every disjunct of the
DNF formula. In comparison to the general definition, this approach often leads to a much higher
branching factor and an exponentially bigger search tree.

The use of algorithms for the satisfiability problem of the classical propositional logic in plan-
ning was pioneered by Kautz and Selman, originally as a way of testing satisfiability algorithms,
and later shown to be more efficient than other planning algorithms at the time[Kautz and Sel-
man, 1992; 1996]. In addition to Kautz and Selman[1996], parallel plans were used by Blum and
Furst in their Graphplan planner[Blum and Furst, 1997]. Parallelism in this context serves the
same purpose as partial-order reduction[Godefroid, 1991; Valmari, 1991], reducing the number
of orderings of independent actions to consider. There are also other notions of parallel plans
that may lead to much more efficient planning[Rintanenet al., 2005]. Ernst et al.[1997] have
considered translations of planning into the propositional that utilize the regular structure of sets
of operators obtained from schematic operators. Planning by satisfiability has been extended to
model-checking for testing whether a finite or infinite execution satisfying a given Linear Tem-
poral Logic (LTL) formula exists[Biereet al., 1999]. This approach to model-checking is called
bounded model-checking.

It is trickier to use a satisfiability algorithm for showing that no plans of any length exist than
for finding a plan of a given length. To show that no plans exist all plan lengths up to2n − 1
have to be considered when there aren state variables. In typical planning applicationsn is
often some hundreds or thousands, and generating and testing the satisfiability of all the required
formulae is practically impossible. That no plans of a given lengthn < 2|A| do not exist does not
directly imply anything about the existence of longer plans. Some other approaches for solving
this problem based on satisfiability algorithms have been recently proposed[McMillan, 2003;
Mneimneh and Sakallah, 2003].

The use of general-purpose heuristic search algorithms has recently got a lot of attention. The
class of heuristics currently in the focus of interest was first proposed by McDermott[1999] and
Bonet and Geffner[2001]. The distance estimatesδmax

I (φ) andδ+I (φ) in Section 3.4 are based on
the ones proposed by Bonet and Geffner[2001]. Many other distance estimates similar to Bonet

CHAPTER 3. DETERMINISTIC PLANNING 64

and Geffner’s exist[Haslum and Geffner, 2000; Hoffmann and Nebel, 2001; Nguyenet al., 2002].
Theδrlx

I (φ) estimate generalizes ideas proposed by Hoffmann and Nebel[2001].
Other techniques for speeding up planning with heuristic state-space search include symmetry

reduction[Starke, 1991; Emerson and Sistla, 1996] and partial-order reduction[Godefroid, 1991;
Valmari, 1991; Aluret al., 1997], both originally introduced outside planning in the context of
reachability analysis and model-checking in computer-aided verification. Both of these techni-
ques address the main problem in heuristic state-space search, high branching factor (number of
applicable operators) and high number of states.

The algorithm for invariant computation was originally presented for simple operators with-
out conditional effects[Rintanen, 1998]. The computation parallels the construction of planning
graphs in the Graphplan algorithm[Blum and Furst, 1997], and it would seem to us that the notion
of planning graph emerged when Blum and Furst noticed that the intermediate stages of invariant
computation are useful for backward search algorithms: if a depth-bound ofn is imposed on the
search tree, then formulae obtained bym regression steps (suffixes of possible plans of length
m) that do not satisfy clausesCn−m cannot lead to a plan, and the search tree can be pruned. A
different approach to find invariants has been proposed by Gerevini and Schubert[1998].

Some researchers extensively use Graphplan’s planning graphs[Blum and Furst, 1997] for var-
ious purposes but we do not and have not discussed them in more detail for certain reasons. First,
the graph character of planning graphs becomes inconvenient when preconditions of operators are
arbitrary formulae and effects are conditional. As a result, the basic construction steps of planning
graphs become unintuitive. Second, even when the operators have the simple form, the practi-
cally and theoretically important properties of planning graphs are not graph-theoretic. We can
equivalently represent the contents of planning graphs as sequences of sets of literals and 2-literal
clauses, as we have done in Section 3.5. In general it seems that the graph representation does
not provide advantages over more conventional logic-based and set-based representations and is
primarily useful for visualization purposes.

The algorithms presented in this section cannot in general be ordered in terms of efficiency.
The general-purpose search algorithms with distance heuristics are often very effective in solving
big problem instances with a sufficiently simple structure. This often entails better runtimes than
in the SAT/CSP approach because of the high overheads with handling big formulae or constraint
nets in the latter. Similarly, there are problems that are quickly solved by the SAT/CSP approach
but on which heuristic state-space search fails.

There are few empirical studies on the behavior of different algorithms on planning problems
in general or average. Bylander[1996] gives empirical results suggesting the existence of hard-
easy pattern and a phase transition behavior similar to those found in other NP-hard problems
like propositional satisfiability[Selmanet al., 1996]. Bylander also demonstrates that outside the
phase transition region plans can be found by a simple hill-climbing algorithm or the inexistence
of plans can be determined by using a simple syntactic test. Rintanen[2004b] complemented
Bylander’s work by analyzing the behavior of different types of planning algorithms on difficult
problems inside the phase transition region, suggesting that current planners based on heuristic
state space search are outperformed by satisfiability algorithms on difficult problems.

The PSPACE-completeness of the plan existence problem for deterministic planning is due to
Bylander[1994]. The same result for another succinct representation of graphs had been estab-
lished earlier by Lozano and Balcazar[1990].

Any computational problem that is NP-hard – not to mention PSPACE-hard – is considered too
difficult to be solved in general. As planning even in the deterministic case is PSPACE-hard there

CHAPTER 3. DETERMINISTIC PLANNING 65

has been interest in finding restricted special cases in which efficient (polynomial-time) planning
is always guaranteed. Syntactic restrictions have been investigated by several researchers[Bylan-
der, 1994; B̈ackstr̈om and Nebel, 1995] but the restrictions are so strict that very few interesting
problems can be represented.

Schematic operators increase the conciseness of the representations of some problem instances
exponentially and lift the worst-case complexity accordingly. For example, deterministic planning
with schematic operators is EXPSPACE-complete[Erol et al., 1995]. If function symbols are
allowed, encoding arbitrary Turing machines becomes possible and the plan existence problem is
undecidable[Erol et al., 1995].

3.9 Exercises

3.1 Show that regression for goalsG that are sets (conjunctions) of state variables and operators
with preconditionsp that are sets (conjunctions) of state variables and effects that consist of an
add lista (a set of state variables that become true) and a delete listd (a set of state variables that
become false) can equivalently be defined as(G\a) ∪ p whend ∩G = ∅.

3.2Show that the problem in Lemma 3.9 is in NP and therefore NP-complete.

3.3 Satisfiability testing in the propositional logic is tractable in some special cases, like for sets
of clauses with at most 2 literals in each, and for Horn clauses, that is sets of clauses with at most
one positive literal in each clause.

Can you identify special cases in which existence of ann-step plan can be determined in
polynomial time (inn and the size of the problem instance), because the corresponding formula
transformed to CNF is a set of 2-literal clauses or a set of Horn clauses?

