Chapter 3

Deterministic planning

The simplest planning problems involves finding a sequence of actions that lead from a given initial
state to a goal state. Only deterministic actions are considered. Determinism and the uniqueness of
the initial state mean that the state of the transition system after any sequence of actions is exactly
predictable. The problem instances in this chapter are deterministic succinct transition systems as
defined in Section 2.3.1.

3.1 State-space search

The simplest possible planning algorithm generates all states (valuations of the state variables),
constructs the transition graph, and then finds a path from the initial Gtata goal statg € G

for example by a shortest-path algorithm. The plan is then simply the sequence of operators
corresponding to the edges on the shortest path from the initial state to a goal state. However,
this algorithm is not feasible when the number of state variables is higher than 20 or 30 because
the number of valuations is very high?® = 1048576 ~ 10° for 20 Boolean state variables and

230 = 1073741824 ~ 10 for 30.

Instead, it will often be much more efficient to avoid generating most of the state space ex-
plicitly and to produce only the successor or predecessor states of the states currently under con-
sideration. This form of plan search can be easiest viewed as the application of general-purpose
search algorithms that can be employed in solving a wide range of search problems. The best
knownheuristic search algorithmare A+, IDAx and their variantfHartet al,, 1968; Pearl, 1984;

Korf, 1989 which can be used in finding shortest plans or plans that are guaranteed to be close to
the shortest ones.

There are two main possibilities to find a path from the initial state to a goal state: traverse
the transition graph forwards starting from the initial state, or traverse it backwards starting from
the goal states. The main difference between these possibilities is that there may be several goal
states (and one state may have several predecessor states with respect to one operator) but only one
initial state: in forward traversal we repeatedly compute the unique successor state of the current
state, whereas with backward traversal we are forced to keep track of a possibly very high number
of possible predecessor states of the goal states. Backward search is slightly more complicated to
implement but it allows to simultaneously consider several paths leading to a goal state.

27

CHAPTER 3. DETERMINISTIC PLANNING 28

3.1.1 Progression and forward search

We have already defingaogressiorfor single states asapp,(s). The simplest algorithm for the
deterministic planning problem does not require the explicit representation of the whole transition
graph. The search starts in the initial state. New states are generated by progression. As soon as a
states such thats = G is found a plan is guaranteed to exist: it is the sequence of operators with
which the state is reached from the initial state.

A planner can use progression in connection with any of the standard search algorithms. Later
in this chapter we will discuss how heuristic search algorithms together with heuristics yield an
efficient planning method.

3.1.2 Regression and backward search

With backward search the starting point is a propositional forrautaat describes the set of goal

states. An operator is selected, the set of possible predecessor states is computed, and this set is
again described by a propositional formula. A plan has been found when a formula that is true

in the initial state is reached. The computation of a formula representing the predecessor states
of the states represented by another formula is calgtession Regression is more powerful

than progression because it allows handling potentially very big sets of states, but it is also more
expensive.

Definition 3.1 We define the condition ERE) of literal [made true when an operator with the
effecte is applied recursively as follows.

EPG(T) =L

EPG() =T

EPQ("y = Lwhenl £ (for literals ')

EPG(e1 A---Nep) = EPG(er) V- VEPG(ey)
EPQ(C >e) =cNEPG(e)

The cas&PG(e1 A---Ney) = EPG(er) V- --VEPG(ey,) is defined as a disjunction because
it is sufficient that at least one of the effects makésie.

Definition 3.2 Let A be the set of state variables. We define the condition;&ER©f operator
o = (c, e) being applicable so that literal is made true ag A EPG(e) A A ,c4 ~(EPG,(e) A
EPC..(e)).

For effectse the truth-value of the formul&PG (e) indicates in which statekis a literal to
which the effect assigns the value true. The connection to the earlier definitide] %f is stated
in the following lemma.

Lemma 3.3 Let A be the set of state variablesa state onA4, [a literal on A, ando and operator
with effecte. Then

1. 1 € [e]% if and only ifs = EPG(e), and
2. app,(s) is defined and € [e]?¢ if and only ifs = EPG (o).

CHAPTER 3. DETERMINISTIC PLANNING 29

Proof. We first prove (1) by induction on the structure of the effect
Base case 1 = T: By definition of [T]4¢* we havel ¢ [T]%! = (), and by definition of
EPG(T) we haves [~ EPG(T) = L, so the equivalence holds.
Base case 2, = I: [€ [l]9¢* = {I} by definition, ands = EPG (/) = T by definition.
Base case 3, = I’ for some literal’ # I: I ¢ [I')%* = {I'} by definition, ands [~ EPG (') =
1 by definition.
Inductive case Ig = e1 A --- Aey:
1€ le]d ifandonlyif 1€ [¢/]9 for somee’ € {e1,..., e}
ifand only if s = EPG(e’) for somee’ € {ey,...,e,}
ifand only if s = EPG(e;)V---VEPG(en)
ifandonly if s} EPG(e1 A--- Aep).
The second equivalence is by the induction hypothesis, the other equivalences are by the defi-
nitions of EPG (e) and[e]?** as well as elementary facts about propositional formulae.
Inductive case 2 = ¢ > ¢’:
l€[c>e]d ifandonlyif 1€ [¢/]% ands = ¢
ifand only if s = EPG(e') ands = ¢
ifand only if s = EPG(cr> ¢).
The second equivalence is by the induction hypothesis. This completes the proof of (1).
(2) follows from the fact that the conjunctsand A\ .. , ~(EPG,(e) A EPC.4(e)) in EPG(0)
exactly state the applicability conditions af O

Note that any operatd;, e) can be expressed in normal form in term$E6fC, (e) as

<c, /\ (EPGi(e) > a) A (EPCoy(e) > —|a)> .

acA

The formulaEPG, (e) V (a A =EPC.4(e)) expresses the condition for the trutle A after the
effecte is executed in terms of truth-values of state variables before: eitbhecomes true, of
is true before and does not become false.

Lemma 3.4 Leta € A be a state variabley = (c,e) € O an operator, ands ands’ = app,(s)
states. Ther = EPG,(¢) V (a A “EPC_,(e)) if and only ifs’ = a.

Proof: Assume that = EPG,(e) V (a A =EPC_,(e)). We perform a case analysis and show that
s’ = a holds in both cases.

Case 1: Assume that= EPG,(e). By Lemma 3.3 € [¢]¢¢, and hence’ |= a.

Case 2: Assume that= a A ~EPC.,(e). By Lemma 3.3-a ¢ [e]9!. Henceu is true ins’.

For the other half of the equivalence, assume thgt EPC,(e) V (a A =EPC_,(e)). Hence
s = —EPGy(e) A (ma VvV EPC.4(e)).

Case 1: Assume that= a. Now s = EPC_,(e) because = —a vV EPC,(¢), and hence by
Lemma 3.3-a € [e]?! and hence’ = a.

Case 2: Assume thatl~ a. Sinces = ~EPGC,(e), by Lemma 3.3 ¢ [e]9¢! and hence’ [~ a.

Therefores’ |~ a in all cases. O

The formulaeEPG;(e) can be used in defining regression.

CHAPTER 3. DETERMINISTIC PLANNING 30

Definition 3.5 (Regression)Let ¢ be a propositional formula and = (c,e) an operator. The
regressiomf ¢ with respect t@ is regr, (¢) = ¢ AcAx wherex = A, 4 ~(EPCi(e)AEPC_,(¢))
and ¢, is obtained fromyp by replacing every. € A by EPG,(e) V (a A “=EPC_,(e)). Define
regr.(¢) = ¢» A x and use the notation regy. ., (¢) = regr,, (- - -regr,, (¢) - - -).

The conjuncts ofy say that none of the state variables may simultaneously become true and
false. The operator is not applicable in states in whidh false.

Remark 3.6 Regression can be equivalently defined in terms of the conditions the state variables
stay or become false, that is, we could use the formula ERG v (—a A -EPG,(e)) which tells
whena is false. The negation of this formula, which can be writteiERG, (e) A -EPC_,(e)) V

(a N =EPC_,(e)), is not equivalent to EPCZe) vV (a A “EPC_,(e)). However, if EPG(e) and
EPC_,(e) are not simultaneously true, we do get equivalence, that is,

~(EPC,(¢) AEPC.4(e)) = ((EPGy(¢) A ~EPC.4(¢)) V (a A =EPC.4(¢))
— (EPC,(e) V (a A =EPC_4(e)))

because~(EPGC,(e) A EPC.,(e)) = (EPGy(e) A =EPC.4(e)) «» EPG,(e).

An upper bound on the size of the formula obtained by regression with opeeators, o,,
starting from¢ is the product of the sizes @f o4, ..., 0,, Which is exponential im. However,
the formulae can often be simplified because there are many occurrencesdfL, for example
by using the equivalencésA¢ = ¢, LA¢ =L, TVe=T,1LVve=¢,~L=T,and-T = L.

For unconditional operators, . . ., o, (with no occurrences a#), an upper bound on the size of
the formula (after eliminating” and_l) is the sum of the sizes of, .. . , 0,, and¢.

The reason why regression is useful for planning is that it allows to compute the predecessor
states by simple formula manipulation. The same does not seem to be possible for progression
because there is no known simple definition of successor statesetfod states expressed in
terms of a formula: simple syntactic progression is restricted to individual states only (see Section
4.2 for a general but expensive definition of progression for arbitrary formulae.)

The important property of regression is formalized in the following lemma.

Theorem 3.7 Let ¢ be a formula overA, o an operator overA, and S the set of all states i.e.
valuations ofA. Then{s € S|s = regr,(¢)} = {s € S|app.(s) = ¢}.

Proof: We show that for any state s |= regr,(¢) if and only if app,(s) is defined andpp,(s) &=
¢. By definitionregr, (¢) = ¢, AcAx for o = (¢, e) whereg, is obtained fromp by replacing every
state variable. € A by EPC,(e) V (a A -EPC,(e)) andx = A, c4 ~(EPG,(e) AEPC.4(e)).

First we show that = ¢ A x if and only if app,(s) is defined.

sEcAy iff s|=cand{a,—~a} Z [e] forallac A byLemma 3.3
iff app.(s) is defined by Definition 2.13.

Then we show that = ¢, if and only if app,(s) = ¢. This is by structural induction over
subformulaep’ of ¢ and formulaep!. obtained fromy’ by replacinga € A by EPG,(e) V (a A
—EPC.(e))

Induction hypothesiss |= ¢!, if and only ifapp,(s) = ¢'.

Base case 1y = T: Now ¢/. = T and both are true in the respective states.

Base case 2y = L: Now ¢/. = L and both are false in the respective states.

Base case 3} = a for somea € A: Now ¢, = EPGC,(e) V (a A =EPC_,(e)). By Lemma 3.4

s = ¢, ifand only ifapp,(s) = ¢'.

CHAPTER 3. DETERMINISTIC PLANNING 31

Inductive case 1’ = —6: By the induction hypothesis = 0, iff app,(s) = 6. Hences = ¢..
iff app,(s) = ¢’ by the truth-definition of-.

Inductive case 2’ = 0 v §’: By the induction hypothesis |~ 0, iff app,(s) = 6, ands = 6.,
iff app,(s) = 6. Hences |= ¢/, iff app,(s) | ¢’ by the truth-definition of/.

Inductive case 3p' = 6 A 0’: By the induction hypothesis = 0, iff app,(s) = 6, ands = 0.,
iff app,(s) = 6. Hences |= ¢/, iff app,(s) | ¢’ by the truth-definition of\. O

Regression can be performed with any operator but not all applications of regression are useful.
First, regressing for example the formulavith the effect-a is not useful because the new unsat-
isfiable formula describes the empty set of states. Hence the sequence of operators of the previous
regressions steps do not lead to a goal from any state. Second, regresgimthe operatofb, c)
yieldsregr, . (a) = a A b. Finding a plan for reaching a state satisfyings easier than finding a
plan for reaching a state satisfying\ b. Hence the regression step produced a subproblem that is
more difficult than the original problem, and it would therefore be better not to take this regression
step.

Lemma 3.8 Letthere be aplany,..., o, for (A, 1,0,G). Ifregr,,, (G) = regr, . ,....o, (G)
forsomek € {1,...,n — 1}, then alsw;,...,0x_1,0%41,...,0n is@planfor(A, I,0,G).

Proof: By Theorem 3.7app,, . ,......, (s) = G for anys such thats |= regr,, ..., (G). Since

regro, , 1;..;0, (G). HENCEAPR,, ;. ..o, _1:05415.50, (1) F G @Ndoy;. .. 50510k 415 - - .5 0 IS @ plan
for (A, 1,0,G). O

Therefore any regression step that makes the set of states smaller in the set-inclusion sense
is unnecessary. However, testing whether this is the case may be computationally expensive.
Although the following two problems are closely related to SAT, it could be possible that the
formulae obtained by reduction to SAT would fall in some polynomial-time subclass. We show
that this is not the case.

Lemma 3.9 The problem of testing whether rgge) |~ ¢ is NP-hard.

Proof: We give a reduction from SAT to the problem. Lgtbe any formula. Let be a state
variable not occurring imp. Now regr_4 ., .y(a) % a if and only if (-¢ — a) % a, because
regr(~p—a,a)(a) = ~¢ — a. (¢ — a) |~ a is equivalent td~ (-¢ — a) — a that is equivalent
to the satisfiability of~((-¢ — a) — a). Further,=((—¢ — a) — a) is logically equivalent to
=(=(¢ V a) V a) and further to-(—¢ V a) and¢ A —a.

Satisfiability of¢ A —a is equivalent to the satisfiability @f asa does not occur i: if ¢ is
satisfiable, there is a valuatiansuch that = ¢, we can set: false inv to obtainv’, and asu
does not occur i, we still havev’ = ¢, and further’ = ¢ A —a. Clearly, if ¢ is unsatisfiable
alsog A —ais.

Henceregr -, _q.q)(a) i a if and only if ¢ is satisfiable. O

Also the problem of testing whether a regression step leads to an empty set of states is difficult.

Lemma 3.10 The problem of testing that regi) is satisfiable is NP-hard.

CHAPTER 3. DETERMINISTIC PLANNING 32

Proof: Proof is a reduction from SAT. Let be a formularegr . (a) is satisfiable if and only if
¢ is satisfiable becausegr,) (a) = ¢.

The problem is NP-hard even if we restrict to operators that have a satisfiable preconglition:
is satisfiable if and only if¢ vV —a) A a is satisfiable if and only ifegr -4 (a A b) is satisfiable.
Herea is a state variable that does not occuwinClearly, ¢ vV —a is true whena is false, and
hencep Vv —a is satisfiable. O

Of course, testing thaegr,(¢) [~ ¢ or thatregr,(¢) is satisfiable is not necessary for the
correctness of backward search, but avoiding useless steps improves efficiency.

Early work on planning restricted to goals and operator preconditions that are conjunctions
of state variables and to unconditional effects (STRIPS operators with only positive literals in
preconditions.) In this special case both gaaland operator effects can be viewed as sets of
literals, and the definition of regression is particularly simple: regressimgth respect toc, e)
is (G\e) Uc. Ifthere isa € A such thats € G and—a € e, then the result of regression s that
is, the empty set of states. We do not use this restricted type of regression in this lecture.

Some planners that use backward search and have operators with disjunctive preconditions and
conditional effects eliminate all disjunctivity by branching. For example, the backward step from
g with operator(a V b, g) yieldsa \V b. This formula corresponds to two non-disjunctive goals,

a andb. For each of these new goals a separate subtree is produced. Disjunctivity caused by
conditional effects can similarly be handled by branching. However, this branching may lead to a
very high branching factor and thus to poor performance.

In addition to being the basis of backward search, regression has many other applications in
reasoning about actions. One of them is the composition of operators. The compeasition
of operators; = (c1,e1) andos = (co, e2) is an operator that behaves like applymgfollowed
by 0,. Fora to be true aften, we can regress with respect tw,, obtainingePG,(e2) V (a A
—-EPC_,(e2)). Condition for this formula to be true aftef is obtained by regressing with,
leading to

regre, (EPG,(e2) V (a A "EPC.,(e2)))
= regr., (EPG,(e2)) V (regre, (a) A —regre, (EPC.,(e2)))
= regr., (EPG,(e2)) V ((EPG.(e1) V (a A "EPC.4(e2))) A —regr., (EPC.,(e2))).

Since we want to define an effegt> a of 01 0 05 S0 thata becomes true whenevey followed by
02 would make it true, the formula does not have to represent the case in whightrue already
before the application af; o 0. Hence we can simplify the above formula to

regr., (EPG,(e2)) V (EPGy(e1) A —regre, (EPC.4(e2))).

An analogous formula is needed for making false. This leads to the following definition.

Definition 3.11 (Composition of operators)Leto; = (c1,e1) andos = (c2, e2) be two opera-
tors onA. Then theircompositiorno; o os is defined as

. /\ <((regr€1(EPQ1(62)) V (EPC,(e1) A —regr., (EPC_4(e2)))) > a)A >
’ ((regre, (EPC-q(e2)) V (EPC.4(e1) A —regre, (EPGy(e2)))) > —a)

a€A

wherec = c; Aregre, (c2) A Ngea ~ (EPGy(er) A EPC 4 (e1)).

CHAPTER 3. DETERMINISTIC PLANNING 33

Note that ino; o 05 first oy is applied and thems, so the ordering is opposite to the usual
notation for the composition of functions.

Theorem 3.12 Leto; and oy be operators and a state. Then app.., (s) is defined if and only
if appy, .0, () is defined, and appoo, () = AP ;05 (S)-

Proof: Let o; = (c1,e1) andoy = (co,e3). ASSUMEAPN,, 00, () IS defined. Hence = ¢; A
regre, (c2) A N\yea = (EPGi(e1) AEPC4(e1)), thatis, the precondition af; o o, is true, ands [~
(regr., (EPG,(e2)) V(EPG,(e1) A-regre, (EPC 4 (e2)))) A(((regre, (EPCoq(e2)) V (EPC (1) A
—regr., (EPG,(e2)))))) for all a € A, that is, the effects do not contradict each other.

Now app,, (s) in app, ;0. (s) = apm, (app, (s)) defined becausel= ciAA ¢ 4 ~(EPGy(e1)A
EPC.,(e1)). Furtherapp,, (s) = c2 by Theorem 3.7 because = regre, (c2). Froms B
(regre, (EPC,(e2)) v (EPG,(e1) A—regre, (EPC.a(e2)))) A(((regre, (EPCua(e2)) V (EPCua(e1) A
—regr., (EPC,(e2)))))) foralla € Alogically follows s = regr., (EPG,(e2))Aregre, (EPC.4(e2))
for all a € A. Hence by Theorem 3.8pp,, (s) = EPG,(e2) A EPC.,(e2) for all a € A, and by
Lemma 3.3app,, (app,, (s)) is defined.

For the other direction, sin@pp,, (s) is defineds = c1 A A\,c 4 ~ (EPGy(e1) A EPC 4(e1)).
Sinceapp,, (app,, (s)) is defineds |= regr., (c2) by Theorem 3.7.

It remains to show that the effects of o 02 do not contradict. Sincapp,,(app,,(s)) is
definedapp,, (s) = EPG,(e2) A EPC.,(e2) ands = EPG,(e1) A EPC.,(e1) for all a € A.
Hence by Theorem 3.9 [~ regr., (EPG,(e2)) A regre, (EPC.,(e2)) for all a € A. Assume that
for somea € A s |= regre, (EPG(e2)) V (EPG,(e1) A —regre, (EPC.4(e2))), thatis,a € [0 o
024, If s |= regr., (EPC,(e2)) thens [~ regr., (EPC.,(e2)) V —regr., (EPC,(ez2)). Otherwise
s = EPG(e1) N —regre, (EPC.4(e2)) and hences = EPC.,(e1). Hence in both cases (-
regr., (EPC.q(e2)) V (EPC_y(e1) A —regr., (EPC,(e2))), that is,—a ¢ [o1 o 02]9t. Therefore
apm, oo, (s) is defined.

We show that for any. € A, app,,00,(s) = a if and only if app,, (app,(s)) E a. Assume
app, .0, (s) E a. Hence one of two cases hold.

1. Assumes = regr., (EPG,(e2)) V (EPGy(e1) A —regre, (EPC.4(e2))).
If s = regr., (EPC,(e2)) then by Theorem 3.7 and Lemma 3¢ [ei]9et .. Hence

app, (s)
AP0, (8) = a.
Assumes = EPGC,(e1) A —regre, (EPC.4(e2)). Hence by Lemma 3.3 € [e1]9¢* and
app, (s) = a, andapp,, (s) = EPC.4(e2) and—a ¢ [62]25&1 (s)- Henceapp,, 0, (s) = a.

2. Assumes = a ands [~ regre, (EPC.,(e2)) V (EPC.4(e1) A —regre, (EPG,(e2))).

Sinces [~ regr., (EPC.,(e2)) by Theorem 3.7app,, (s) %= EPC.,(e2) and hence-a ¢
[e23pp, o)
1

Sinces = EPC.,(e1) A —regr, (EPC,(e2)) by Lemma 3.3-a ¢ [e1]% or app, (s) =

EPC,(e2) and hence by Theorem 3a7c [62}23171 ()"

Hence eitheo,; does not make false, or if it makes, makes it true again so thapp,, .., (s) = a

in all cases.
Assumeapp,, .., (s) = a. Hence one of the following three cases must hold.

1. 1fa € [eg]gfﬁ%l («) then by Lemma 3.3pp,, (s) | EPG,(e2). By Theorem 3.7s |=

regre, (EPG,(e2)).

CHAPTER 3. DETERMINISTIC PLANNING 34

2.1f a € [eg]9t and—a ¢ [eQ]ggﬁbl(s) then by Lemma 3.21pp,, (s) = EPC..(e2). By

Theorem 3.7% |= EPG,(e1) A —regre, (EPC.4(e2)).

3. If s = aand-a ¢ [eg}ggf%l (s @nd—a & [e1]¢°" then by Lemma 3.8pp,, (s) £ EPC.q(e2).

By Theorem 3.% - regr., (EPC.,(e2)).
By Lemma 3.3s = EPC_,(e1).

In the first two cases the antecedent of the first conditional in the definition ©b, is true,
meaning thaepp,,..,(s) = a, and in the third case = a and the antecedent of the second
conditional effect is false, also meaning thaip,, .., (s) = a. O

The above construction can be used to elimirsgguential compositioftom operator effects
(Section 2.3.2).

3.2 Planning by heuristic search algorithms

Search for plans can be performed forwards or backwards respectively with progression or regres-
sion as described in Sections 3.1.1 and 3.1.2. There are several algorithms that can be used for
the purpose, including depth-first search, breadth-first search, and iterative deepening, but without
informed selection of operators these algorithms perform poorly.

The use of additional information for guiding search is essential for achieving efficient plan-
ning with general-purpose search algorithms. Algorithms that use heuristic estimates on the values
of the nodes in the search space for guiding the search have been applied to planning very suc-
cessfully. Some of the more sophisticated search algorithms that can be used|&i@rtt al.,

1964, WA« [Pearl, 198} IDA « [Korf, 1989, and simulated annealiirkpatrick et al., 1989.

The effectiveness of these algorithms is dependent on good heuristics for guiding the search.
The most important heuristics are estimates of distances between states. The distance is the min-
imum number of operators needed for reaching a state from another state. In Section 3.4 we will
present techniques for estimating the distances between states and sets of states. In this section we
will discuss how heuristic search algorithms are applied in planning.

When search proceeds forwards by progression starting from the initial state, we estimate the
distance between the current state and the set of goal states. When search proceeds backwards by
regression starting from the goal states, we estimate the distance between the initial state and the
current set of goal states as computed by regression.

All the systematic heuristic search algorithms can easily be implemented to keep track of the
search history which for planning equals the sequence of operators in the incomplete plan under
consideration. Therefore the algorithms are started from the initial 5{édeward search) or from
the goal formula& (backward search) and then proceed forwards with progression or backwards
with regression. Whenever the search successfully finishes, the plan can be recovered from the
data structures maintained by the algorithm.

Local search algorithms do not keep track of the search history, and we have to define the
elements of the search space as prefixes or suffixes of plans. For forward search we use sequences
of operators (prefixes of plans)

01;025...50n.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the end of the plan or by deleting some of the last operators.

CHAPTER 3. DETERMINISTIC PLANNING 35

Definition 3.13 (Neighbors for local search with progression)Let(A, I, O, G) be a succinct tran-

sition system. For forward search, the neighbors of an incomplete @lamy; .. .; 0, are the
following.

1. o01;09;...;0p;0f0ranyo € O such that app,......,..({) is defined

2. 01;00;...;0; foranyi < n

Whenapp,,.o.;....o, () = G thenoy;. .. ; 0, is a plan.
Also for backward search the incomplete plans are sequence of operators (suffixes of plans)

Opj...5;071.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the beginning of the plan or by deleting some of the first operators.

Definition 3.14 (Neighbors for local search with regression)Let (A, I, O, G) be a succinct tran-
sition system. For backward search, the children of an incompletedylan . ; o; are the follow-

ing.
1. o;0p;...;01 foranyo € O such thatregs.,,. .., (G) is defined

2. 0;...;01 foranyi <n

WhenI = regr,,.. .., (G) theno,;...; 01 is a plan.

Backward search and forward search are not the only possibilities to define planning as a search
problem. In partial-order plannirig/cAllester and Rosenblitt, 199the search space consists of
incomplete plans which are partially ordered multisets of operators. The neighbors of an incom-
plete plan are those obtained by adding an operator or an ordering constraint. Incomplete plans can
also be formalized as fixed length sequences of operators in which zero or more of the operators
are missing. This leads to the constraint-based approaches to planning, including the planning as
satisfiability approach that is presented in Section 3.6.

3.3 Reachability

The notion of reachability is important in defining whether a planning problem is solvable and in
deriving techniques that speed up search for plans.

3.3.1 Distances

First we define the distances between states in a transition system in which all operators are deter-
ministic. Heuristics in Section 3.4 are approximations of distances.

Definition 3.15 Let I be an initial state and) a set of operators. Define tiferward distance
setsDzWd for I, O that consist of those states that are reachable fibimy at mosti operator
applications as follows.

fwd
Dy~ = {I}
D?”d = Dif‘ﬁ‘i U{slo€e O,s € imgo(Dif‘ﬁ‘i)} foralli > 1

CHAPTER 3. DETERMINISTIC PLANNING 36

Definition 3.16 Let I be a state a set of operators, andDg‘Nd, Dfl""d,
sets forl, O. Thenthe forward distancef a states from I is

5fwd()_ 0ifs=1
1= if s e DM\ DM,

... the forward distance

Ifs & D?Nd foralli >0 thené?"’d(s) = oo. States that have a finite forward distance erachable
(from I with O).

Distances can also be defined for formulae.

Definition 3.17 Let ¢ be a formula. Then théorward distanceﬁ?”d(@ of ¢ is i if there is state
s such thats = ¢ and 6?"’(’(5) = ¢ and there is no state’ such thats’ = ¢ and 5§Wd(s) <. If
I |= ¢ thens™(4) = 0.

A formula ¢ has a finite distance oo if and only if (A, I, O, ¢) has a plan.

Reachability and distances are useful for implementing efficient planning systems. We mention
two applications.

First, if we know that no state satisfying a formufds reachable from the initial states, then
we know that no operatdgp, e) can be a part of a plan, and we can ignore any such operator.

Second, distances help in finding a plan. Consider a deterministic planning problem with goal
stateG. We can now produce a shortest plan by finding an opetaﬁnrthat&?"'d(regro(G)) <
63‘Nd(G), usingregr,(G) as the new goal state and repeating the process until the initial/sate
reached.

Of course, since computing distances is in the worst case just as difficult as planning (PSPACE-
complete) it is in general not useful to use subprocedures based on exact distances in a planning
algorithm. Instead, different kinds approximation®f distances and reachability have to be used.
The most important approximations allow the computation of useful reachability and distance
information in polynomial time in the size of the succinct transition system. In Section 3.4 we will
consider some of them.

3.3.2 Invariants

An invariant is a formula that is true in the initial state and in every state that is reached by
applying an operator in a state in which it holds. Invariants are closely connected to reachability
and distances: a formulais an invariant if and only if the distance ofy from the initial state is

oo. Invariants can be used for example to speed up algorithms based on regression.

Definition 3.18 Let I be a set of initial states an® a set of operators. An formula is an
invariantof I, O if s |= ¢ for all statess that are reachable froni by a sequence of O or more
operators inO.

An invariant¢ is the strongest invariant ¢ |= ¢ for any invariant). The strongest invariant
exactly characterizes the set of all states that are reachable from the initial state: for every state
s = ¢ if and only if s is reachable from the initial state. We say “the strongest invariant” even
though there are actually several strongest invariants:sttisfies the properties of the strongest
invariant, any other formula that is logically equivalengidor examplep V ¢, also does. Hence
the uniqueness of the strongest invariant has to be understood up to logical equivalence.

CHAPTER 3. DETERMINISTIC PLANNING 37

Example 3.19 Consider a set of blocks that can be on the table or stacked on top of other blocks.
Every block can be on at most one block and on every block there can be one block at most. The
actions for moving the blocks can be described by the following schematic operators.

(ontabléx) A clear(z) A clear(y),on(z,y) A —clealy) A —ontabléz))
(cleafz) A on(z,y), ontabldz) A cleary) A —on(zx, y))
(clearz) A on(z,y) A cleal(z),on(z, z) A clealy) A —clear(z) A —on(z,y))

We consider the operators obtained by instantiating the schemata with the ohjé&ctndC'. Let
all the blocks be initially on the table. Hence the initial state satisfies the formula

cleai(A) A clea B) A clea(C') A ontabld A) A ontablé B) A ontabléC)A
—0n(A4, B) A —on(A4,C) A —on(B, A) A —on(B, C) A —on(C, A) A —on(C, B)

that determines the truth-values of all state variables uniquely. The strongest invariant of this
problem is the conjunction of the following formulae.

cleafA) < (—on(B, A) A —on(C,A)) clea(B) < (-on(4, B) A —on(C, B))

clea(C) < (—on(A,C) A—-on(B,C)) ontabléA) < (—on(A, B) A —on(A, C))
ontablé B) « (—on(B, A) A —on(B, C)) ontabléC) «— (-on(C, A) A —on(C, B))
-0on(A4, B) V —on(4, C) -on(B, A) vV —on(B, C)
-on(C, A) v -on(C, B)
—on(B, A) vV -on(C, A)
—on(A4,C) Vv -on(B,(C)
—(on(A, B) Aon(B,C) Aon(C, A)) —(on(A,C) Aon(C, B) Aon(B, A))

-on(A, B) vV -on(C, B)

We can schematically give the invariants for any Xebf blocks as follows.

clea(z) « Vy € X\{z}.-on(y, z)

ontabldz) « Vy € X\{z}.—on(z,y)

—on(z,y) V —on(z, z) wheny # z

—on(y, x) V —on(z, z) wheny # z

—(on(zy, x2) Aon(za, x3) A« AON(Tp—1,2n) AON(xy,z1)) foralln > 1,{z1,...,2,} CX

The last formula says that tlea relation is acyclic. |

3.4 Approximations of distances

The approximations of distances are based on the following idea. Instead of considering the num-
ber of operators required to reach individual states, we approximately compute the number of
operators to reach a state in which a certain state variable has a certain value. So instead of using
distances of states, we use distances of literals.

The estimates are not accurate for two reasons. First, and more importantly, distance estimation
is done one state variable at a time and dependencies between state variables are ignored. Second,
to achieve polynomial-time computation, satisfiability tests for a formula and a set of literals to
test the applicability of an operator and to compute the distance estimate of a formula, have to
be performed by an inaccurate polynomial-time algorithm that approximates NP-hard satisfiabil-
ity testing. As we are interested in computing distance estimates efficiently the inaccuracy is a
necessary and acceptable compromise.

CHAPTER 3. DETERMINISTIC PLANNING 38

3.4.1 Admissible max heuristic

We give a recursive procedure that computes a lower bound on the number of operator applications
that are needed for reaching from a stata state in which state variablese A have certain
values. This is by computing a sequence of g&t$'* of literals. The seD]"** consists of literals
that are true in all states that have distagcéfrom the statd.

Recall Definition 3.2 oEPG (o) for literals! and operators = (c, e):

EPG(0) = ¢ AEPG(e) A /\ ~(EPC,(e) A EPC.q(e)).

a€A

Definition 3.20 Let L = AU {—ala € A} be the set of literals od and ! a state. Define the sets
Die® for ¢ > 0 as follows.

Dg** ={le Ll =1}
Direr = Di"*\{l € L|o € O, D*%* U{EPG(0)} is satisfiablg, fori > 1

Since we consider only finite setsof state variables andy'**| = |A| and Dj}4* € Dj"*
forall ¢ > 0, necessarilyD"** = Dy for somei < |A| and allj > 1.

The above computation starts from the Bgt** of all literals that are true in the initial stafe
This set of literals characterizes those states that have distance 0 from the initial state. The initial
state is the only such state.

Then we repeatedly compute sets of literals characterizing sets of states that are reachable with
1, 2 and more operators. Each $§t** is computed from the preceding def*%” as follows. For
each operatas it is tested whether it is applicable in one of the distained states and whether it
could make a literal false. This is by testing wheth&PGC (o) is true in one of the distande- 1
states. If this is the case, the litefalould be false, and it will not be included ;" **.

The sets of states in which the literdl$™** are true are an upper bound (set-inclusion) on the
set of states that have forward distance

Theorem 3.21 Let D?Nd,i > 0 be the forward distance sets arig]"** the max-distance sets for
I'andO. Then for alli > 0, D?”d C {s € S|s = Dj"**} whereS is the set of all states.

Proof: By induction on.

Base case = 0: Dg”d consists of the unique initial stafeand Dj*** consists of exactly those
literals that are true id, identifying it uniquely. HenceD?’"d = {s € S|s = D"*"}.

Inductive casé > 1: Let s be any state irDIWd. We show that = D!"*. Let! be any literal
in D"e*,

Assumes ¢ Dz‘f‘i As D*** C D" alsol € D;"9*. By the induction hypothesis |= I.

Otherwises € D?Nd\D‘;‘fdl. Hence there i® € O andsg € le"fi with s = app,(so). By
D C D" and the induction hypothesig = [. Asl € D;"**, by definition of D;"** the set
D5 U {EPG{(0)} is not satisfiable. By, € le‘ﬁ(i and the induction hypothesig = D;"4".
Hences, [~ EPG(0). By Lemma 3.3 applying in sy does not makeéfalse. Hences = 1. O

The setsD;"** can be used for estimating the distances of formulae. The distance of a formula
is the minimum of the distances of states that satisfy the formula.

CHAPTER 3. DETERMINISTIC PLANNING 39

Definition 3.22 Let¢ be a formula. Define

5K 5) — 0 iff DJ*** U {¢} is satisfiable
I | diff DT U {¢} is satisfiable andD'%" U {¢} is not satisfiable for d > 1.

Lemma 3.23 Let I be a state a set of operators, an@d;***, D***, . .. the sets given in Defi-
nition 3.20 for/ andO. Then app,.. .., (I) = D;'** for any operators{os, ...,0,} C O.

Proof: By induction onn.

Base case = 0: The length of the operator sequence is zero, and hemgé/) = 1. The set
D{* consists exactly of those literals that are trus,iand hencd = D{***,

Inductive case: > 1: By the induction hypothes&spp,,, , () = D7,

Let ! be any literal inD"**. We show it is true irapp,.....,(I). Sincel € D'** and

Dper C Dot alsol € DY, and hence by the induction hypotheag,,, , () = L

n—11 n—11
Sincel € D;'** it must be thatD]*¢ U {EPC(0,)} is not satisfiable (definition ab;**) and
further thatapp,, ;.....,_, (I) = EPG(o,). Hence applying,, in app,,;....,,_, () does not make
false, and consequentypp,, ..., (I) = L.

O

The next theorem shows that the distance estimates given for formulae yield a lower bound on
the number of actions needed to reach a state satisfying the formula.

Theorem 3.24 Let I be a state(a set of operatorsp a formula, andDg***, D***, .. . the sets
given in Definition 3.20 fof andO. If app,,......, (I) = ¢, thenD"** U {¢} is satisfiable.

Proof: By Lemma 3.23app,,......,(I) = D;'**. By assumptiorapp,,....,(I) = ¢. Hence
Der U {¢} is satisfiable. O

Corollary 3.25 Let [be a state an@ a formula. Then for any sequenag . . ., o, of operators
such thatapp,....., (1) = ¢, n > 07 (¢).

The estimaté"'®{¢) never overestimates the distance frero ¢ and it is therefore an ad-
missible heuristic. It may severely underestimate the distance, as discussed in the end of this
section.

Distance estimation in polynomial time

The algorithm for computing the sef3]"** runs in polynomial time except that the satisfiability
tests forDU{¢} are instances of the NP-complete SAT problem. For polynomial time computation
we perform these tests by a polynomial-time approximation that has the propertyfhafif} is
satisfiable then as@b, ¢) returns true, but not necessarily vice versa. A counterpart of Theorem
3.21 can be established when the satisfiability tésts {4} are replaced by tests a6t ¢).

The function asaD, ¢) tests whether there is a state in whigland the literals are true, or
equivalently, whetheD U {¢} is satisfiable. This algorithm does not accurately test satisfiability,
and may claim thatD U {¢} is satisfiable even when it is not. This, however, never leads to

CHAPTER 3. DETERMINISTIC PLANNING 40

overestimating the distances, only underestimating. The algorithm runs in polynomial time and is
defined as follows.

asafD, 1) = false
asatD, T) = true
asatD, a) = true iff —a ¢ D (for state variablea € A)
asatD, —a) = trueiff a ¢ D (for state variables € A)
asatD, ——¢) = asatD, ¢)
asatD, ¢1 V ¢2) = asatD, ¢1) or asatD, ¢2)
asa(D qbl A ¢o) = asatD, ¢1) and asatD, ¢2)
asatD, —(¢1 V ¢2)) = asatD, —¢1) and asdtD, —¢p2)
asatD, - (gbl A ¢2)) = asatD, —¢1) or asatD, —¢2)

In this and other recursive definitions about formulae the cases(forA ¢2) and—(¢; V ¢2) are
obtained respectively from the casesfarv ¢o andg, A ¢2 by the De Morgan laws.

The reason why the satisfiability test is not accurate is that for formtilae) (respectively
—(¢ V 1)) we make recursively two satisfiability tests that do not require that the subformulae
and+) (respectively-¢ and—1)) aresimultaneouslgatisfiable.

We give alemma that states the connection betweefiasaj and the satisfiability oDU{¢}.

Lemma 3.26 Let ¢ be a formula andD a consistent set of literals (it contains at most one: of
and—a for everya € A.) If D U {¢} is satisfiable, then as@b, ¢) returns true.

Proof: The proof is by induction on the structure of

Base case 1p = L: The setD U { L} is not satisfiable, and hence the implication trivially
holds.

Base case 2y = T: asatD, T) always returns true, and hence the implication trivially holds.

Base case 3 = a for somea € A: If D U {a} is satisfiable, thema ¢ D, and hence
asatD, a) returns true.

Base case 4p = —a for somea € A: If D U {—a} is satisfiable, them ¢ D, and hence
asatD, —a) returns true.

Inductive case 1¢ = ——¢’ for some¢’: The formulae are logically equivalent, and by the
induction hypothesis we directly establish the claim.

Inductive case 2p = ¢1V ¢o: If DU{¢1V 2} is satisfiable, then eithdd U{¢1} or DU{¢2}
is satisfiable and by the induction hypothesis at least one of/asat) and asdatD, ¢2) returns
true. Hence aséb, ¢ V ¢2) returns true.

Inductive case 3¢ = ¢1 A ¢2: If DU {¢1 A ¢2} is satisfiable, then botth U {¢,} and
D U {¢2} are satisfiable and by the induction hypothesis both(&sat;) and asdtD, ¢2) return
true. Hence as@b, ¢ A ¢) returns true.

Inductive cases 4 and B,= —(¢1 V ¢2) and¢ = —(¢1 A ¢2): Like cases 2 and 3 by logical
equivalence. O

The other direction of the implication does not hold because for exampl@ asat-a) returns
true even though the formula is not satisfiable. The procedure is a polynomial-time approximation
of the logical consequence test from a set of literals:(d%at) always returns true ib U {¢} is
satisfiable, but it may return true also when the set is not satisfiable.

CHAPTER 3. DETERMINISTIC PLANNING 41

Informativeness of the max heuristic

The max heuristic often underestimates distances. Consider an initial state in whichtaie
variables are false and a goal state in which all state variables are true and a epecdtors each
of which is always applicable and makes one of the state variables true. The max heuristic assigns
the distance 1 to the goal state although the distance is

The problem is that assigning every state variable the desired value requires a different operator,
and taking the maximum number of operators for each state variable ignores this fact. In this case
the actual distance is obtained asshenof the distances suggested by each ofilstate variables.
In other cases the max heuristic works well when the desired state variable values can be reached
with the same operators.

Next we will consider heuristics that are not admissible like the max heuristic but in many cases
provide a much better estimate of the distances.

3.4.2 Inadmissible additive heuristic

The max heuristic is very optimistic about the distances, and in many cases very seriously underes-
timates them. If two goal literals have to be made true, the maximum of the goal costs (distances)
is assumed to be the combined cost. This however is only accurate when the easier goal is achieved
for free while achieving the more difficult goal. Often the goals are independent and then a more
accurate estimate would be the sum of the individual costs. This suggests another heuristic, first
considered by Bonet and Geffng001] as a more practical variant of the max heuristic in the
previous section. Our formalization differs from the one given by Bonet and Geffner.

Definition 3.27 LetI be a state and. = A U {—a|a € A} the set of literals. Define the sely"
for ¢ > 0 as follows.

Df = {leL|I):l}
D = D} \{l € L|o € O,cos{EPG(0), i) < i} forall i > 1

We define coép, i) by the following recursive definition.

cos(L,i) =
cos(T,i) =
cos{a,i) = |fﬂa§zD5F,foraeA
cos{—a,i) = 0ifa g D7, forae A

costa,i) = jif ~a € D+ \Dj for somej < i

)
)
)
)
) =
) =
)
)
)
i)
i)
i)

cos(—a,i) = jifa € D} \DJr for somej < i
cos(a,i) = oo if ﬁaeDJr forallj <i
cos{—a,i) = coifa € D+ forall j <
cos(¢p1 V ¢o,1) = mm(cos(qﬁl, ,COS(2, 1))
COS{(P1 A ¢2,1) = COS{(¢h1, %) + COS{by, %)
cos(——¢, i) = cos(o, 1)
cos{—(¢p1 A ¢2),4) = min(cos{—¢1, i), COS{—¢pa,1))

cos(—(¢1 V ¢2),1)

Note that a variant of the definition of the max heuristic could be obtained by replacing the
sum+- in the definition of costs of conjunctions byax. The definition of cosip, i) approximates

cost{—¢y, i) + cos{—ps, i)

CHAPTER 3. DETERMINISTIC PLANNING 42

satisfiability tests similarly to the definition of agat, ¢) by ignoring the dependencies between
state variables.
Similarly to max distances we can define distances of formulae.

Definition 3.28 Let¢ be a formula. Define

51 (¢) = cos(¢, n)
wheren is the smallest such thatD;” = D" ,.

The following theorem shows that the distance estimates given by the sum heuristic for literals
are at least as high as those given by the max heuristic.

Theorem 3.29 Let D"** ¢ > 0 be the sets defined in terms of the approximate satisfiability tests
asatD,). ThenD™ C D forall i > 0.

Proof: The proof is by induction omn.
Base casé = 0: By definition D = Dy e*,
Inductive casé > 1. We have to show thab*{*\{l € L|o € O,asatD;"5",EPG(0))} C
D" \{l € L|o € O, cos{tEPG(o) i < i}. By the induction hypothesi®%® C DI . Itis
suff|C|ent to show that coEPC(0), i) < i implies asa(tDj”‘?ff, EPG(0)).

We show this by induction on the structuredt= EPG{(0)

Induction hypothesis: cogt, :) < i implies asatD!"4",)=true.

Base case Iy = L: cos(_L,) = oo and asdtD;"**, L)=false.

Base case 2y = T: cos(T,:) = 0 and asdtD!"**, T)=true.

Base case 3p = a: If cost(a,i) < i then—a ¢ D] for somej < ior-a ¢ Dy. Hence
—a ¢ D;" . By the outer induction hypothesis: ¢ D™%* and consequentlya ¢ D%, Hence
asatD;"** a)=true.

Base case 4) = —a: Analogous to the casg = a.

Inductive case 5¢ = ¢ V ¢a: Assume cogtp; V ¢o,i) < i. Since coslp; V ¢2,i) =
min(cos{¢1,1),cos{¢2,1)), either costpy,7) < i or costepe,i) < i. By the induction hypothesis
cos(¢y,i) < i implies asd ;mf”,dn) and costys, i) < i implies asatD!"%", ¢2). Hence either
asatD;"4", ¢1) or asatD!"%", ¢2). Therefore by definition as@D!"%", ¢1 V ¢2).

Inductive case 6p = ¢ Ao Assume cogtry A ¢o, i) < i. Slncez > 1 and costo Vg2, i) =
cos{(¢q,1) + cos(¢s,1), both costey,i) < i and cosfps,i) < i. By the induction hypothesis
cos{¢1,1) < i implies asatD!"%”, ¢1), and costpz, i) < ¢ |mpI|es asatD!"4", ¢2). Hence both
asatD;"4", ¢1) an asatD]"%", ¢2). Therefore by definition as@D;"", o1 A ¢2).

Inductive case 7 = ——¢;: By the induction hypothesis cdst, i) < i implies asatD}"4", ¢1).
By definition cos{——¢1,7) = cos{(¢1,i) and asatD, -—¢) = asatD, ¢). By the induction hy-
pothesis cogt—¢1, 1) < i implies asatD"4", =—¢1).

Inductive case 8 = —(¢1 V ¢2): Analogous to the casg = ¢ A ¢o.

Inductive case % = —(¢1 A ¢2): Analogous to the case = ¢1 V ¢o. O

That the sum heuristic gives higher estimates than the max heuristic could in many cases be
viewed as an advantage because the estimates would be more accurate. However, in some cases
this leads to overestimating the actual distance, and therefore the sum distances are not an admis-
sible heuristic.

CHAPTER 3. DETERMINISTIC PLANNING 43

Example 3.30 Consider an initial state such that= —a A —bA —c and the operatofT,a AbAc).
A state satisfying: A b A cis reached by this operator in one step Jfgtl(a AbAc)=3. |

3.4.3 Relaxed plan heuristic

The max heuristic and the additive heuristic represent two extremes. The first assumes that sets
of operators required for reaching the individual goal literals maximally overlap in the sense that
the operators needed for the most difficult goal literal include the operators needed for all the
remaining ones. The second assumes that the required operators are completely disjoint.

Usually, of course, the reality is somewhere in between and which notion is better depends on
the properties of the operators. This suggests yet another heuristic: we attempt to find a set of
operators that approximates, in a sense that will become clear later, the smallest set of operators
that are needed to reach a state from another state. This idea has been considered by Hoffman
and Nebe[2001]. If the approximation is exact, the cardinality of this set equals the actual dis-
tance between the states. The approximation may both overestimate and underestimate the actual
distance, and hence does not yield an admissible heuristic.

The idea of the heuristic is the following. We first choose a set of goal literals the truth of
which is sufficient for the truth ofs. These literals must be reachable in the sense of the sets
Di"e* which we defined earlier. Then we identify those goal literals that were the last to become
reachable and a set of operators making them true. A new goal formula represents the conditions
under which these operator can make the literals true, and a new set of goal literals is produced by
a simplified form of regression from the new goal formula. The computation is repeated until we
have a set of goal literals that are true in the initial state.

The function goal&D, ¢) recursively finds a se¥/ of literals such thal/ = ¢ and each literal
in M is consistent withD. Note that)M itself is not necessarily consistent, for examplefbe= ()
and¢ = a A —a we getM = {a,—a}. If a setM is found goalsD, ¢) = {M} and otherwise

goalg D, ¢) = 0.
Definition 3.31 Let D be a set of literals.

goalyD, 1) =0
goal§ D, T) = {0}
goalgyD,a) = {{a}}if~a ¢ D
goal§D,a) = Qif —a € D
goaly D, ~a) = {{~a}}ifa g D
goalgD,—a) = 0ifa e D
goal{ D, =—¢) = goalyD, ¢)
) goalg D, ¢1) if goals(D, ¢1) # 0
goalg D, ¢2) otherwise
goals D, ¢1 A ¢o) = {éLl U Ly} gtazil\llvsl(sl; ¢1) = {L1} and goal$D, ¢3) = {L2}
goalg D, —¢,) if goals(D, —¢1) # ()
goalg D, —¢9) otherwise

goalg D, (41 V ¢2)) = { éLl U Ly} ic]:t%(;?\lii(s% —¢1) = {L1} and goal$D, ~¢») = {L2}

goaly D, g1 V ¢2) = {

goals D, ~(¢1 A 6)) = {

Above in the case fop; V ¢, if both ¢, and¢- yield a set of goal literals the set fgr is
always chosen. A practically better implementation is to choose the smaller of the two sets.

CHAPTER 3. DETERMINISTIC PLANNING 44

Lemma 3.32 Let D be a set of literals and a formula.

1. goal{ D, ¢) # () if and only if asatD, ¢) = true.

2. Ifgoals(D, ¢) = {M} then{l|l € M} N D = 0 and asatD, A\,) = true.
Proof:

1. Thisis by an easy induction proof on the structure dfased on the definitions of asat ¢)
and goal§D, ¢).

2. This is becausé¢ D for all [€ M. This can be shown by a simple induction proof.

0

Lemma 3.33 Let D and D’ C D be sets of literals. If goal®, ¢) = () and goalgD’, ¢) = {M}
for someM, then there i € M such that € D\D'.

Proof: Proof is by induction in the structure of formulae

Induction hypothesis: If goal®, ¢) = () and goal§D’, ¢) = { M} for somel, then there is
l € M suchthat € D\D'.

Base cases 1 & 2y = T and 2¢ = _L: Trivial as the condition cannot hold.

Base case 3 = a: If goals(D,a) = 0 and goal§D’,a) = M = {{a}}, then respectively
—a € D and—a ¢ D'. Hence there is € M such that € D\D'.

Inductive case 19 = ——¢’: By the induction hypothesis as go@ls ——¢') = goalg D, ¢’).

Inductive case 2p = ¢1 V ¢o: Assume goaldD, ¢1 V ¢2) = 0 and goalsD’, ¢1 V o) = {M }
for someM. Hence goaldD, ¢1) = 0 and goaléD, ¢») = 0, and goal§D’, ¢1) = {M} or
goalg D', ¢2) = {M}. Hence by the induction hypothesis with or ¢, there isl € M such that
le D\D'.

Inductive case 3p = ¢1 A ¢o: Assume goaldD, ¢1 A ¢2) = 0 and goalsD’, p1 A ¢o) = { M}
for someM. Hence goalgD, ¢1) = 0 or goal§D, ¢3) = 0, and goaléD’, 1) = {L;} and
goal§ D', ¢2) = {Lo} for someL, and L, such thatM = L, U Lo. Hence by the induction
hypothesis withp; or ¢, there is eithet € Ly orl € Lo such thal € D\D'.

Inductive case® = —(¢1 A ¢2) andgp = —(¢1 V ¢2) are analogous to cases 2 and 3. [

Definition 3.34 Defines™ (¢) = relaxedplariA, I, O, ¢).

Like the sum heuristic, the relaxed plan heuristic gives higher distance estimates than the max
heuristic.

Theorem 3.35 Let ¢ be a formula and"®(¢) the max-distance defined in terms of &#at¢).
Thens™ (¢) > 61 ¢p).

Proof: We have to show that for any formufathe procedure catelaxedplarA,l,0,G) returns a
number> 67"¥(G).

First, the procedure returns if and only if asatD;"**,) = false for all: > 0. In this case
by definitiond"®(G) = oo.

CHAPTER 3. DETERMINISTIC PLANNING 45

1: procedurerelaxedplan(A,l,0,G);
2: L:=AU{~-ala € A}; (* Set of all literals *)
3: compute set®*** as in Definition 3.20;
4: if asatD"**, G) = false for alli > 0 then return oo; (* Goal not reachable *)
5. t:=01G);
6: L&, =0
7. Nigq = 0;
8. G;:=G,
9: for i:=tdownto1ldo
10: begin
11: LE = (LY \Niy1) U{l € M|M € goalg D", G;)}; (* The goal literals *)
12: N;:={l € L¥|l € D™4*}; (* Goal literals that become true betweer- 1 andi *)
13: T; := a minimal subset of so thatV; C {l € L|o € T;,asatD;"%", EPG(0))};
14: Gi-1:= N\ien, VIEPG(0)|o € T;}; (* New goal formula *)
15: end

16: return |Ty| + |Ta| + -+ |T3

Figure 3.1: Algorithm for finding a relaxed plan

Otherwiset = §"®(G). Now ¢t = 0 if and only if asatDg***, G) = true. In this case the
procedure returns 0 without iterating the loop starting on line 9.

We show that ift > 1 then for everyi € {1,...,t} the setT; is non-empty, entailingZ| +
<+ Ty >t = 6"G). This is by an induction proof fromto 1.

We use the following auxiliary result. If agd?"%", G;) = false and asaD;"**, G;) = true
andl ¢ D for all | € LY thenT; is well-defined and’; # . The proof is as follows.

By Lemma 3.32 goal®;"4*, G;) = () and goalsD***, G;) = {M } for somel/.
By Lemma 3.33 there isc M such that € D™%* and henceV; # . By definition
I € D foralll € N;. By N; C L§ and the assumption aboLf’ [¢ D for

alll € N;. Hencel € D™\ D" for all | € N;. Hence by definition oD for
everyl € N; thereiso € O such that asaD"4*, EPG(0)). Hence there i§; C O
sothatN; C {l € L|o € T;,asatD"4*, EPG(0))} and the value of; is defined. As
N; # () alsoT; # (.

In the induction proof we establish the assumptions of the auxiliary result and then invoke the
auxiliary result itself.
Induction hypothesis: For afl € {i,...,t}

1.1¢ D foralll € LY,

2. asatD7***, ;) = true and asaD}'*", G;) = false, and

3.T; #0.

Base case = ¢:

1. 1 ¢ Do foralll € LY by (2) of Lemma 3.32 becaudg’ = {I € goalg D"** G)}.
2. Ast = d1"*(G,) by definition asatD;"%", G;) = false and as@D;"**, G;) = true.

CHAPTER 3. DETERMINISTIC PLANNING 46

3. By the auxiliary result from the preceding case.

Inductive casé < t:

1. We havel ¢ D for all | € LY because.{ = (LY, \Ni1) U {l € goalg D", G;)}
and by the induction hypothesis¢ Dha* for all I € LZ-GJr1 and by (2) of Lemma 3.32
I ¢ D" foralll € M for M € goalg D", G,).

2. By definition G; = Ay, VIEPG(o)lo € Tiy1}. By definition of T;,, for every
[€ N4 there iso € Tjq such that asaD;"**, EPG(0)) = true. By definition of

asatD"" 1 V ¢2) and asdtD]"**, ¢1 A ¢2) for ¢1 and¢, also asatD!"**, G;) = true.

Then we show that asd®;"%", G;) = false. By definition ofD;"**, asatD;"4*, EPG/(0)) =
false for alll € D"** ando € O. Hence asaD;"%", EPG(0)) = false for alll € N;;
ando € O becausé € D™, Hence as&D!%* EPG/(o0)) = false for alll € N;;; and
o € T;11 becausd;, 1 C O. By definitionG; = /\leM+1 V{EPG(o)|o € T;+1}. Hence
by definition of asdtD, ¢) also asdtD;"%", G;) = false.

3. By the auxiliary result from the preceding case.

3.5 Algorithm for computing invariants

Planning with backward search and regression suffers from the following problem. Often only
a fraction of all valuations of state variables represent states that are reachable from the initial
state and represent possible world states. The goal formula and many of the formulae produced
by regression often represent many unreachable states. If the formulae represent only unreachable
states a planning algorithm may waste a lot of effort determining that a certain sequence of actions
is not the suffix of any plah Also planning with propositional logic (Section 3.6) suffers from the
same problem.

Planning can be made more efficient by restricting search to states that are reachable from
the initial state. However, determining whether a given state is reachable from the initial state
is PSPACE-complete. Consequently, exact information on the reachability of states could not be
used for speeding up the basic forward and backward search algorithms: solving the subproblem
would be just as complex as solving the problem itself.

In this section we will present a polynomial time algorithm for computing a class of invariants
that approximately characterize the set of reachable states. These invariants help in improving
the efficiency of planning algorithms based on backward search and on satisfiability testing in the
propositional logic (Section 3.6).

Our algorithm computes invariants that are clauses with at mdiggrals, for some fixech.

For representing the strongest invariant arbitrarily higimay be needed. Although the runtime
is polynomial for any fixedn, the runtimes grow quickly as increases. However, for many
applications short invariants of length= 2 are sufficient, and longer invariants are less important.

1A symmetric problem arises with forward search because with progression one may reach states from which goal
states are unreachable.

CHAPTER 3. DETERMINISTIC PLANNING 47

1: procedure preservedf,C',0);
2. ¢=101V---Vli,forsomely,...,l, ando = (c,e) for somec ande;
3: foreachl e {l,...,l,}do
4: if C'U{EPGC(o)} is unsatisfiablehen goto OK; (* [cannot become false. *)
5: foreachl’ € {ly,...,1,}\{l} do (* Otherwise another literal inp must be true. *)
6: if C U{EPG(0)} = EPG/ (o) then gotoOK; (* I’ becomes true. *)
7: if C U{EPG(0)} =" A -EPC;(0) then goto OK; (* I” was and stays true. *)
8: end do
9: return false; (* Truth of the clause could not be guaranteed. *)
10: OK:
11: enddo
12: return true;

Figure 3.2: Algorithm that tests whethemay falsifyl; v - - - V [,, in a state satisfying’

The algorithm first computes the set of all 1-literal clauses that are true in the initial state. This
set exactly characterizes the set of distance 0 states consisting of the initial state only. Then the
algorithm considers the application of every operator. If an operator is applicable it may make
some of the clauses false. These clauses are removed and replaced by weaker clauses which are
also tested against every operator. When no further clauses are falsified, we have a set of clauses
that are guaranteed to be true in all distance 1 states. This computation is repeated for distances
2, 3, and so on, until the clause set does not change. The resulting clauses are invariants because
they are true after any number of operator applications.

The flavor of the algorithm is similar to the distance estimation in Section 3.4: starting from
a description of what is possible in the initial state, inductively determine what is possible after
operator applications. In contrast to the distance estimation method in Section 3.4 the state sets
are characterized by sets of clauses instead of sets of literals.

Let C; be a set of clauses that characterizes those states that are reachatypetator appli-
cations. Similarly to distance computation, we consider for each operator and for each clause in
C; whether applying the operator may make the clause false. If it can, the clause could be false
afteri operator applications and therefore will not be in the(3get; .

Figure 3.2 gives an algorithm that tests whether applying an operatof) in some state
may make a formulg Vv --- Vv [, false assuming that= C U {l; vV ---V [, }.

The algorithm performs a case analysis for every literal in the clause, testing in each case
whether the clause remains true: if a literal becomes false, either another literal becomes true
simultaneously or another literal was true before and does not become false.

Lemma 3.36 Let C' be a set of clauses) = I VvV --- V [, a clause, anth an operator. If
preservedf,C,0) returnstrue, then app(s) | ¢ for any states such thats = C U {¢} and
o is applicable ins. (It may under these conditions also retdatse).

Proof: Assumes is a state such thatl= C A ¢, app,(s) is defined anapp,(s) £ ¢. We show
that the procedure returfalse

Sinces |= ¢ andapp,(s) [~ ¢ at least one literal in is made false by. Let {i;,... It} C
{l1,...,1,} be the set of all such literals. Henge= I~ A --- A Lt and{i{, ..., Ik} C [e]de.
The literals in{iy, ..., 1, }\{l{, ..., L} are false ins ando does not make them true.

CHAPTER 3. DETERMINISTIC PLANNING 48

1: procedureinvariants@, I, O, n);
2. C:={acAlEa}U{alaec A I}}a}; (* Clauses true in the initial state *)
3. repeat
4: C'=C,;
5: foreacho e Oandl; Vv --- VI, € C such thanot preserved(V - - - V [,,,C",0) do
6: C:=C\{l4 V- Vin};
7 if m < nthen (* Clause length within pre-defined limit. *)
8: begin (* Add weaker clauses. *)
9: C=Cu{lyVv---VipValaeA{a,~a}N{l,...,ln} =0}
10: C=Cu{lhVv---VipV-a|aecA{a,~a}N{l,....ln} =0}
11: end
12: end do
13: until C =C";
14: return C,
Figure 3.3: Algorithm for computing a set of invariant clauses
Choose any € {I{,...,l}. We show that when the outermdet eachloop starting on line

3 considerg the procedure will returfalse

Sincel € [e]? ando is applicable ins by Lemma 3.3s = EPG(0). Since by assumption
s = C, the condition of thef statement on line 4 is not satisfied and the execution proceeds by
iteration of the innefor eachloop.

Let !’ be any of the literals i exceptl. Sinceapp,(s) £ ¢, I’ € [e]%t. Hence by Lemma
3.3s [~ EPG/(0), and ass = C'U {EPG(o)} the condition of thef statement on line 6 is not
satisfied and the execution continues from line 7. Analyze two cases.

1. 1f I € {l{,...,1;;} then by assumptioh € [e]4*" and by Lemma 3.3 |= EPC;(0). Hence
CU{EPG(0)} = -EPC;(0) and the condition of thé statement on line 7 is not satisfied.

2.1f U ¢ {li,..., 1} thens (= I". HenceC U {EPG;(0)} §~ !’ and the condition of th&
statement on line 7 is not satisfied.

Hence on none of the iterations of the inrier eachloop is agoto OKexecuted, and as the
loop exits, the procedure returfadse O

Figure 3.3 gives the algorithm for computing invariants consisting of at mdiserals. The
loop on line 5 is repeated until there aresma O and clauses in C such that preserved(C’,0)
returns false. This exit condition for the loop is critical for the correctness proof.

Theorem 3.37 Let A be a set of state variable$,a state,O a set of operators, and > 1 an
integer. Then the procedure call invariants(Z, O, n) returns a setC of clauses with at most
literals so that for any sequeneg; . . . ; o, of operators fronO app,,.. ..., (1) = C.

)

Proof: Let Cy be the value first assigned to the variallein the procedurenvariants and
C1,Cy, . .. be the values of the variable in the end of each iteration of the outerspestioop.
Induction hypothesis: for everjp,,...,0;} C O and¢ € C;, app,.....o, (1) = ¢.
Base case = 0: app.(/) for the empty sequence is by definitidritself, and by construction
Cy consists of only formulae that are true in the initial state.

CHAPTER 3. DETERMINISTIC PLANNING 49

Inductive case > 1: Take any{o1,...,0;} C O and¢ € C;. First notice that preservet(;,0)
returnstrue because otherwisg could not be inC;. Analyze two cases.

1. If ¢ € C;_1, then by the induction hypothes&pp,,.. .., ,(I) = ¢. Since¢ € C;
preservedt,C;_1,0) returnstrue. Hence by Lemma 3.38pp,,......,(I) = ¢.

2. If ¢ € C;_1, it must be because preserveéd(;_1,0") returnsfalsefor someo’ € O and
¢’ € C;_1 such that is obtained fromy’ by conjoining some literals to it. Heneg = ¢.

Since¢’ € C;_; by the induction hypothesiapp,,.. .., ,(I) = ¢'. Since¢’ = ¢ also
apm, ..o, , (I) = ¢. Since the function call preserved(;,o) returnstrue by Lemma 3.36
apPy,;....0. (1) = ¢.
This finishes the induction proof. The iteration of the procedure stops WhenC;_1, mean-
ing that the claim of the theorem holds for arbitrarily long sequenges . ; o,,, of operators. [

The algorithm does not find the strongest invariant for two reasons. First, only clauses until
some fixed length are considered. Expressing the strongest invariant may require clauses that are
longer. Second, the test performedprgservedries to prove for one of the literals in the clause
that it is true after an operator application. Consider the clawde/ c and the operatobV ¢, —a).

We cannot show for any literal that it is true after applying the operator but we know that either
orcis true. The test performed lpreservectould be strengthened to handle cases like these, for
example by using the techniques discussed in Section 4.2, but this would make the computation
more expensive and eventually lead to intractability.

To make the algorithm run in polynomial time the satisfiability and logical consequence tests
should be performed by algorithms that approximate these tests in polynomial time. The procedure
asatD, ¢) is not suitable because it assumes thas a set of literals, whereas fpreservedhe
setC usually contain clauses with 2 or more literals. There are generalizations of the ideas behind
asatD, ¢) to this more general case but we do not discuss the topic further.

3.5.1 Applications of invariants in planning by regression and satisfiability

Invariants can be used to speed up backward search with regression. Consider the blocks world

with the goalAonBABonC Regression with the operator that moves B onto C from the table yields

AonBA Bclear A Cclear A BonT. This formula does not correspond to an intended blocks world

state becaus@onBis incompatible withBclear, and indeed;-AonBV —Bclearis an invariant

for the blocks world. Any regression step that leads to a formula that is incompatible with the

invariants can be ignored because that formula does not represent any state that is reachable from

the initial state, and hence no plan extending the current incomplete plan can reach the goals.
Another application of invariants and the intermediate ggtproduced by our invariant al-

gorithm is improving the heuristics in Section 3.4. Usibg** for testing whether an operator

precondition, for example A b, has distance from the initial state, the distances @fandb are

used separately. But even when it is possible to reach datidb with ¢ operator applications,

it might still not be possible to reach them both simultaneously wiperator applications. For

example, for = 1 and an initial state in which bothandb are false, there might be no single op-

erator that makes them both true, but two operators, each of which makes only one of them true. If

—a V —b € C;, we know that aftef operator applications one afor b must still be false, and then

we know that the operator in question is not applicable at time poiiiherefore the invariants

and the set€’; produced during the invariant computation can improve distance estimates.

CHAPTER 3. DETERMINISTIC PLANNING 50

3.6 Planning as satisfiability in the propositional logic

A very powerful approach to deterministic planning was introduced in 1992 by Kautz and Selman
[1992; 1996. In this approach the problem of reachability of a goal state from a given initial
state is translated into propositional formulag ¢1, ¢, . .. SO that every valuation that satisfies
formulag; corresponds to a plan of lengthPlanning proceeds by first testing the satisfiability of
¢o. If ¢g is unsatisfiable, continue witdy, ¢2, and so on, until a satisfiable formujg is found.

From a valuation that satisfigs, a plan of lengtm can be constructed.

3.6.1 Actions as propositional formulae

First we need a representation of actions in the propositional logic. We can view arbitrary propo-
sitional formulae as actions, or we can translate operators into formulae in the propositional logic.
We discuss both of these possibilities.

Given a set of state variables = {ay,...,a,}, one could describe an action directly as a
propositional formulap over propositional variabled U A’ whereA’ = {d},...,a,}. Here the
variablesA represent the values of state variables in the statewhich an action is taken, and
variablesA’ the values of state variables in a successor state

A pair of valuationss ands’ can be understood as a valuationf) A’ (the states assigns a
value to variables! ands’ to variablesA4’), and a transition froms to s’ is possible if and only if

s, s = ¢.

Example 3.38 The action that reverses the values of state variabjesnd a, is described by
¢ = (a1 < —a}) A (a2 < —dl). The following4 x 4 incidence matrix represents this action.

! ! ! ! ! ! ! !
a1Gg Q1G9 Q1G9 Q709
ajag 00 01 10 11

6o o0 0 0 1
orf{o0o 0 1 O
)]0 1 0 O
1m1j1 0 0 O

CHAPTER 3. DETERMINISTIC PLANNING 51

The matrix can be equivalently represented as the following truth-table.

aj ag al al

000

[e R i e B e B e B e B en B e B e B e
S OO R OO R OO~ OO OO oL

=== O OO0 O -0 OO
R, OO, P OO, M, OOFFO
— O O R OFRFROFRORFRORFOM

Example 3.39 Let the set of state variables He= {a1, a2, as}. The formula(a; < a)) A (az <

as) A (a3 < a}) represents the action that rotates the values of the state varigbtesandas

one position right. The formula can be represented as the following adjacency matrix. The rows
correspond to valuations of and the columns to valuations df = {a}, a5, a4}

000 001 010011 100 101 110 111
ooo1r 0 0 0O O O 0 O
oory0 0 0 O 1 O O O
01000 1 0 0 O O O O
01,0 o 0 0 O 1 0 O
10000 0 1 0 O O O O
101f0 0 0 O O O 1 O
11000 0 0 1 O O O O
1110 0 0 0 O 0 0 1

A more conventional way of depicting the valuations of this formula would be as a truth-table
with one row for every valuation oft U A’, a total of 64 rows. [|

The action in Example 3.39 is deterministic. Not all actions represented by propositional for-
mulae are deterministic. A sufficient (but not necessary) condition for determinism is that the
formula is of the form(¢y < a}) A -+ A (¢, < al,) A whereA = {ay,...,a,} is the set of
all state variablesp; are formulae over (without occurrences oft’ = {d}, ..., a,}). There are
no restrictions ony. Formulae of this form uniquely determine the value of every state variable
in the successor state in terms of the values in the predecessor state. Therefore they represent
deterministic actions.

CHAPTER 3. DETERMINISTIC PLANNING 52

3.6.2 Translation of operators into propositional logic

We first give the simplest possible translation of deterministic planning into the propositional logic.
In this translation every operator is separately translated into a formula, and the choice between
the operators is represented as disjunction.

Definition 3.40 The formular4 (o) which represents the operator= (c, e) is defined by

7A(€) = Naea((EPGi(e) V (a A ~EPC4(e€))) < a’) A Ay p 7(EPCy(e) A EPCoq(e))
T4(0) = ¢ ATale).

The formular(e) expresses the value afin the successor state in terms of the values of
the state variables in the predecessor state and requires that execo@ygnot make any state
variable simultaneously true and false. This is like in the definition of regression in Section 3.1.2.
The formular4 (o) additionally requires that the operator’s precondition is true.

Example 3.41 Consider operatofa V b, (b > a) A (¢ > —a) A (a > b)). The corresponding
propositional formula is

(aVb) A(bV (a AN=c)) «d)
A(aV (bA-L)) <)
A(LV(eA—1)) <)

A=(bAe)AN=(aN L)yAN=(LAL)

=(aVb) A(bV (aNh-c)) «—d)
A((aVb) < b)
N)

A=(b A c).
|

Lemma 3.42 Let s and s’ be states and an operator. Lety : AU A’ — {0, 1} be a valuation
such that

1. foralla € A, v(a) = s(a), and
2. foralla € A, v(d') = §(a).
Thenv = 74(0) if and only ifs’ = app,(s).

Proof: Assumev |= 74(0). Hences |= cands = A, 4 7(EPG,(e) A EPC.4(e)), and therefore
app,(s) is defined. Consider any state varialece A. By Lemma 3.4 and the assumption
v = (EPG(e) V (a AN "EPC.4(e))) < d, the value of every state variable $h matches the
definition ofapp,(s). Hences’ = app,(s).

Assumes’ = app,(s). Sinces’ is definedp |= 74(0) andv = A ,. 4 ~(EPG,(e) AEPC_,(e)).
By Lemma 3.4 | EPG,(e) V (a A =EPC.,(e)) if and only if s’ |= a. O

Definition 3.43 DefineR (A, A") = 74(01) V -+ V 7a(0p).

CHAPTER 3. DETERMINISTIC PLANNING 53

The valuations that satisfy this formula do not uniquely determine which operator was applied
because for a given state more than one operator may produce the same successor state. However,
in such cases it does not matter which operator is applied, and when constructing a plan from the
valuation any of the operators may be chosen arbitrarily.

It has been noticed that extendifity (A, A") by 2-literal invariants (see Section 3.5) reduces
runtimes of algorithms that test satisfiability. Note that invariants do not affect the set of models of
a formula representing planning: any satisfying valuation of the original formula also satisfies the
invariants because the values of variables describing the values of state variables at any time point
corresponds to a state that is reachable from the initial state, and hence this valuation also satisfies
any invariant.

3.6.3 Finding plans by satisfiability algorithms

We show how plans can be found by first translating succinct transition systemsO, GG) into
propositional formulae, and then finding satisfying valuations by a satisfiability algorithm.

In Section 3.6.1 we showed how operators can be described by propositional formulae over
setsA and A’ of propositional variables, the sdtdescribing the values of the state variables in
the state in which the operator is applied, and thed$elescribing the values of the state variables
in the successor state of that state.

For a fixed plan length, we use setst’, ..., A" of variables to represent the values of state
variables at different time points, with variablel$ representing the values at tinie In other
words, a valuation of these propositional variables represents a sequence s,, of states. |If
a € Ais a state variable, then we use the propositional variabler representing the value of
at time point.

Then we construct a formula so that the statés determined by, the states,, is determined
by G, and the changes of state variables between any two consecutive states corresponds to the
application of an operator.

Definition 3.44 Let (A, I, 0, G) be a deterministic transition system. Defile= A{a’|a €
A I(a) = 1} U{=a’la € A, I(a) = 0} for the initial state and=™ as the formulaG with every
variablea € A replaced byu™. Define

@5e4 = O ARy (A, AV ARy (AL, A2) A - AR (APL, A™) A GP
whereA? = {a’la € A} foralli € {0,...,n}.

A plan can be found by using the formul@g“? as follows. We start with plan lengih= 0, test
the satisfiability ofd;“?, and depending on the result, either construct a plab(ff is satisfiable),
or increase by one and repeat the previous steps, until a plan is found.

If there are no plans, it has to be somehow decided when to stop increasiag upper
bound on plan length i8l4l — 1 where A is the set of state variables but this upper bound does
not provide a practical termination condition for this procedure. Some work on more practical
termination conditions are cited in Section 3.8.

The construction of a plan from a valuatierthat satisfiesp;“? is straightforward. The plan
has exactly; operators, and this plan is known to be the shortest one because the fdrjffhla
had already been determined to be unsatisfiable. First construct the exegution s; of the
plan fromwv as follows. For allj € {0,...,i} anda € A, s;j(a) = v(a;). The plan has the

CHAPTER 3. DETERMINISTIC PLANNING 54

formoq,...,0;. Operatoro; for j € {1,...,i} is identified by testing for alb € O whether
app,(sj—1) = s;. There may be several operators satisfying this condition, and any of them can
be chosen.

Example 3.45Let A = {a,b}. Let the statd satisfyl = a A b. LetG = (a A =) V (—a A b)
ando; = (T, (a > —a) A (-a > a)) andoy = (T, (b > —b) A (=b > b)). The following formula
is satisfiable if and only if A, I, {01, 02}, G) has a plan of length 3.

(@ = a') A" = =b)) v ((a® < =a') A (0 < b))
AM((a' = a®) A (b = =b%) V ((a! < —a?) A (b1 < b%)))

(((@® & a®) A (b? < =b)) V ((a® & =a”) A (b < b))
A((a® A=) V (=a® A b3))

One of the valuations that satisfy the formula is the following.

This valuation corresponds to the plan that applies opetatat time point 0,0, at time point 1,
ando, at time point 2. There are also other satisfying valuations. The shortest plans have length 1
and respectively consist of the operatorsando,. |

Example 3.46 Consider the following problem. There are two operators, one for rotating the
values of bits abc one step right, and the other for inverting the values of all the bits. Consider
reaching from the initial state 100 the goal state 001 with two actions. This is represented as the
following formula.

(a /\—\bO 0)

A(((a® — bl) (0" = YA (P = a')) V((=a® = ar) A (=) < b)) A (= < c)))
A((ah = b*) A (b1 AN (= a®)V((ma' < a®) A(=b' < B) A (=t <)
A(=a? A =b% A c?)

Since the literals describing the initial and the goal state must be true, we can replace occurrences
of these state variables in the subformulae for operators bgd L.

(a® A =% A =)

AT & BY A (L o) A (Lo al)) V(4T & an) A (oL o B) A (~L & 1))
A((a! = DA =T A o L)V (0! = 1) A (B = 1) (el = T))
A(=a? A =b% A c?)

After simplifying we have the following.

(a® A =0 /\)
A((B' A = /\—|a)\/(—|a1/\bl/\cl)
A((=a* AbE A =ct) vV (at AbE A =)
A(=a? A =b% A ?)

CHAPTER 3. DETERMINISTIC PLANNING 55

The only way of satisfying this formula is to make the first disjuncts of both disjunctions true, that
is, b must be true and! andc! must be false. The resulting valuation corresponds to taking the
rotation action twice.

Consider the same problem but now with the goal state 101.

(a® A =B0 A =)
NM((a® bl) (07 =) A (= a)) Vv ((ma® < ar) A (20 < b A (2 < c!)))
All(a! < D) A (0" = @) A (h o @)V ((mad & a?) A (FB) < B2) A (= o 2)))
A(a® A =b? A c?)

We simplify again and get the following formula.

(a® A =00 A =)
A((BE A =ct A=al) Vv (ma; ABEAC))
A((mat A A)V (mal ABE A =et))
A(a? A =b% A c?)

Now there are two possible plans, to rotate first and then invert the values, or first invert and then
rotate. These respectively correspond to making the first disjunct of the first disjunction and the
second disjunct of the second disjunction true, or the second and the first disjunct. |

3.6.4 Parallel application of operators

For states and setd” of operators we definappy(s) as the result of simultaneously applying all
operators € T': the preconditions of all operators Tnmust be true irs and the statappr(s) is
obtained froms by making the literals nU (pe) ET[e]4t true. Analogously to sequential plans we
can defineppr,;r,;...;1, (s) asappr, (- - - appr, (appr, (s)) - -).

Next we show how the translation of deterministic operators into the propositional logic in
Section 3.6.2 can be extended to the simultaneous application of operatoepas (i5).

Consider the formula4 (o) representing one operator= (c,).

¢\ ((EPGi(e) V (a A =EPCoy(e)) = a) A\ =(EPGy(e) A EPCou(e)).

a€A acA

This formula can be rewritten to the following logically equivalent formula that separately says
which state variables are changed by the operator and which state variables retain their values.

cN

Naca(EPGi(e) —a’)A
/\aEA(PC.u(e) ——a)A
Naeal(a A —a")—EPCq(e))A
Naca((ma Aa')—EPGy(e))

We use this formulation of 4 (o) as basis of obtaining encodings of planning that alkeveral
operators in parallel Every operator applied at a given time point causes its effects to be true
and requires its precondition to be true. This is expressed by the first three conjuncts. The last
two conjuncts say that, assuming the operator that is applied is the only one, certain state variables
retain their value. These formulae have to be modified to accommodate the possibility of executing
several operators in parallel.

We introduce propositional variablesor denoting the execution of operatarg O.

CHAPTER 3. DETERMINISTIC PLANNING 56

Definition 3.47 Let A be the set of state variables ari?l a set of operators. Let the formula
74(0O) denote the conjunction of formulae

(o—c)A

Naecalo NEPG,(e) —a’)A
Ngealo NEPC (&) = —a)

a

forall (c,e) € O and

Nacallan—a")—((o1 NEPCy(e1)) V- -+ V (0, NEPC 4 (en))A
Naea((mana')— ((o1 NEPGy(e1)) V --- V (on AEPG(ey)))

whereO = {o1,...,0,} andey, ..., e, are the respective effects.

The difference to the definition af4(0) in Section 3.6.2 is that above the formulae do not
assume that there is only one operator explaining the changes that take place.
The formular4 (O) matches the definition @fppr(s).

Lemma 3.48 Lets and s’ be states and) andT C O sets of operators. Let: AUA UO —
{0,1} be a valuation such that

1. foralloe€ O,v(0) =1iffo e T,
2. foralla € A, v(a) = s(a), and
3. foralla e A, v(a’) = §'(a).
Thenv |= 74(0O) if and only ifs’ = appr(s).

Proof: For the proof from right to left we assume thét= appr(s) and show that = 74(0O).

For the formulae — ¢ consider any = (c,e) € O. If o & T thenv [~ oandv = o —c.
So assume < T'. By assumptiors is a state such thaippr(s) is defined. Hence = ¢. Hence
v Eo—e.

For the formulae A EPG,(e) — o’ consider any = (c,e) € O. If o € T thenv (= o and
v = o ANEPG(e) — [for all literals!. So assume € T. Nowv = o A EPG(e) — [because
if s = EPG(e) thenl € [e]%! by Lemma 3.3 and’ |= [. Proof foro A EPC.,(e) — —ad’ is
analogous.

For the formulag(a A =a’) — ((o1 A EPCo4(e1)) V -+ V (on, A EPC.4(e;,)) consider any
a € A. According to the definition o’ = appr(s), a can be true ins and false ins’ only if
—a € [0]%* for someo € T. By Lemma 3.3-a € [0]% if and only if s | EPC_,(0). So if the
antecedent ofa A —a’) — ((01 AEPC.4(01)) V- -+ V (om A EPC.4(0,))) Is true, then one of the
disjuncts of the consequent is true, whére= {01, ...,om . The proof for the change from false
to true is analogous.

For the proof from left to right we assume= 74(O) and show that’ = appy(s).

The preconditior: of everyo € T is true ins because = o andv |= 0 — ¢, ands’ |= [e]9¢
for everyo = (c,e) € T because = o andv = o A EPG(e) — [for every literall. This also
means thafT'|¢¢* is consistent andppr(s) is defined.

For state variablesnot occurring iN7]%¢ we have to show that(a) = s'(a). Sincea does not
occur in[T]%, for everyo € {o1,...,0m} = O = {{c1,€1), ..., {Cm, em)} €ithero ¢ T or both

CHAPTER 3. DETERMINISTIC PLANNING 57

a & [e]4¢t and—a ¢ [e]?°t. Hence eithev [~ o or (by Lemma 3.3) = —(EPGC,(e)) A—EPC.q4(e).
This together with the assumptions that= (a A —a’) — ((01 A EPC.4(e1)) V -+ V (0 A
EPC..(em))) andv = (ma A a’) — ((01 A EPG(01)) V -+ V (om A EPGy(er,))) impliesv =
(a—a') A (~a— —a’). Therefore every € A not occurring in[7]%¢ remains unchanged. Hence
s’ = appr(s). O

Example 3.49 Leto; = (-LAMP1, LAM P1) andos = (-LAM P2, LAM P2). The applica-
tion of none, one or both of these operators is described by the following formula.

(=LAMP1 A LAMP1)— ((0y AT)V (02 A L)
(LAMP1AN-LAMP1)—((01 A L)V (02 A L)
(=LAMP2 A\ LAMP2')— ((oy A L)V (02 A T)
(LAMP2 N —-LAMP2")— ((01 A L)V (02 A L)
01— LAMP1

01— -LAMP1

09— LAM P2’

09— LAM P2

3.6.5 Partially-ordered plans

In this section we consider a more general notion of plans in which several operators can be applied
simultaneously. This kind of plans are formalized as sequences of sets of operators. In such a plan
the operators are partially ordered because there is no ordering on the operators taking place at the
same time point. This notion of plans is useful for two reasons.

First, consider a number of operators that affect and depend on disjoint state variables so that
they can be applied in any order. If there arsuch operators, there avéplans that are equivalent
in the sense that each leads to the same state. When a satisfiability algorithm shows that there is
no plan of lengtm consisting of these operators, it has to show that none aofltipdans reaches
the goals. This may be combinatorially very difficultifis high.

Second, when several operators can be applied simultaneously, it is not necessary to represent
all intermediate states of the corresponding sequential plans: partially-ordered plans require less
time points than the corresponding sequential plans. This reduces the number of propositional
variables that are needed for representing the planning problem, which may make testing the
satisfiability of these formulae much more efficient.

In Section 3.6.4 we have shown how to represent the parallel application of operators in the
propositional logic. However, this definition is too loose because it allows plans that cannot be
executed.

Example 3.50 The operatorga, —b) and (b, ~a) may be executed simultaneously resulting in a
state satisfyingra A —b, although this state is not reachable by the two operators sequeniilly.

A realistic way of interpreting parallelism in partially ordered plans is that any total ordering
of the simultaneous operators is executable and results in the same state in all cases. This is the
definition used in planning research so far.

CHAPTER 3. DETERMINISTIC PLANNING 58

Definition 3.51 (Step plans)For a set of operatorg) and an initial state/, a step plan folO

andI is a sequencd’ = (Ty,...,T;_1) of sets of operators for sonie> 0 such that there is a
sequence of states, . . ., s; (the execution of") such that
1. So — I,

2. foralli € {0,...,l—1} and every total ordering;, ..., 0, Of T}, app,,.....o, (si) is defined
and equalss; ;1.

Theorem 3.52 Testing whether a sequence of sets of operators is a step plan is co-NP-hard.

Proof: The proof is by reduction from the co-NP-complete validity problem TAUT. &bk any
propositional formula. Lel = {a4,...,ay} be the set of propositional variables occurringin
Our set of state variables i§. Leto, = (¢, T) andO = {(T,a1),...,(T,an),0,}. Lets ands’
be states such thatj= a ands’ |= a for all a € A. We show that) is a tautology if and only if
T = (0O) is a step plan fo© ands.

Assumeg is a tautology. Now for any total ordering, ..., o, of O the stateapp,,... .o, ()
is defined and equald because all preconditions are true in all states and the set of effects of all
operators isA (the set is consistent and making the effects trueyrelds s’.) HenceT is a step
plan.

AssumeT is a step plan. Let be any valuation. We show that= ¢. LetO, = {(T,a)|a €
A,v = a}. The operatorg) can be ordered tay, . . . , 0,, SO that the operato®, = {oy, ..., 0}
precede, andO\ (O, U {o.}) follow o.. SinceT is a step planapp,,......, (s) is defined. Since
alsoappy:....o.:0. () is defined, the precondition of o, is true inv = appy,.....o, (s). Hence
v = ¢. Since this holds for any valuatian ¢ is a tautology. O

To avoid intractability it is better to restrict to a class of step plans that are easy to recognize.
One such class is based on the notiomtdrference

Definition 3.53 (Affect) Let A be a set of state variables and= (c,e¢) ando’ = (¢, ¢’) opera-
tors overA. Theno affectso’ if there isa € A such that

1. a is an atomic effect im anda occurs in a formula ire’ or it occurs negatively ir’/, or

2. —a is an atomic effect im anda occurs in a formula ire’ or it occurs positively in’/.

Definition 3.54 (Interference) Operatorso ando’ interfereif o affectso’ or o affectso.

Testing for interference of two operators is easy polynomial time computation. Non-interference
not only guarantees that a set of operators is executable in any order, but it also guarantees that the
result equals to applying all the operators simultaneously.

Lemma 3.55 Let s be a state and’ a set of operators so that apps) is defined and no two
operators interfere. Then apfls) = app,......,, () for any total orderingoy, ..., 0, Of T'.

Proof: Letoy, ..., o0, be any total ordering df'. We prove by induction on the length of a prefix
of 01,...,0, the following statement for all € {0,...,n — 1} by induction oni: s = « if and
only if app,,......,(s) = a for all state variablea occurring in an antecedent of a conditional effect
or a precondition of operatotg, 1, . .., 0,.

CHAPTER 3. DETERMINISTIC PLANNING 59

Base case = 0: Trivial.
Inductive casé > 1: By the induction hypothesis the antecedents of conditional effecis of
have the same value inand inapp,,......,_, (s), from which follows[o;]%* = [o;]dc

o PPoq;...i0;_1(8)"
Sinceo; does not interfere with operatass, 1, . . ., 0, NO state variable occurring jn;]%* occurs
in an antecedent of a conditional effect or in the precondition; of, . . . , 0,,, that is, these state
variables do not change. Singg|%* = [o;]9c this also holds when; is applied in

aphoy;...;0;_1 (8)
app,....o,_, (s). This completes the induction proof.
Sinceappr(s) is defined, the precondition of evesyc T is true ins and[o]¢*! is consistent.
By the fact we established above, the precondition of evegy T" is true also inapp,,.....o, (5)

and [Oﬁﬁﬁol;m;ok(s) is consistent for any{oy,...,0r} € T\{o}. Hence any total ordering of

the operators is executable. By the fact we established ahg{®, = [o]4¢ for every
{o1,...,0,} € T\{o}. Hence every operator causes the same changes no matter what the total
ordering is. Sinceppr(s) is defined, no operator ifi' undoes the effects of another operator.
Hence the same staté= appy(s) is reached in every case. O

For finding plans by using the translation of parallel actions from Section 3.6.4 it remains to
encode the condition that no two parallel actions are allowed to interfere.

Definition 3.56 Define
Ra(A,A',0) = 74(0) A \{~(0 A d')[{0,0'} € 0,0 # o, 0 and?'interfere}

Definition 3.57 Let (A, I, O, G) be a deterministic succinct transition system. Define
P = 10 ARy (A%, AT, 0%) ARy (AT, A%, ON) A+ ARy (A A", 0") A G”

whereA? = {a‘|la € A} foralli € {0,...,n} andO! = {o’|o € O} forall i € {1,...,n} and
19 = A\{a’la € A, I(a) =1} U{=a"|a € A, I(a) = 0} andG™ is G with everya € A replaced
bya™.

If 7" is satisfiable and is a valuation such that = ®}*", then definel; = {0 € Olv |=
o'} for everyi € {1,...,n}. Then(Ty,...,T,) is a plan for the transition system, that is,
appry;..;, (1) = G-

It may be tempting to think that non-interference implies that the actions occurring in parallel
in a plan could always be executed simultaneously in the real world. This however is not the case.
For genuine temporal parallelism the formalization of problems as operators has to fulfill much
stronger criteria than when sequential execution is assumed.

Example 3.58 Consider the operators

transport-A-with-truck-1= (AinFreiburg AinStuttgartA —AinFreiburg
transport-B-with-truck-1= (BinFreiburg BinKarlsruheA —BinFreiburg

which formalize the transportation of two objects with one vehicle. The operators do not interfere,
and our notion of plans allows the simultaneous execution of these operators. However, these
actions cannot really be simultaneous because the corresponding real world actions involve the
same vehicle going to different destinations. |

CHAPTER 3. DETERMINISTIC PLANNING 60

3.7 Computational complexity

In this section we discuss the computational complexity of the main decision problems related to
deterministic planning.

The plan existence problem of deterministic planning is PSPACE-complete. The result was
proved by Bylandef1994. He proved the hardness part by giving a simulation of deterministic
polynomial-space Turing machines, and the membership part by giving an algorithm that solves
the problem in polynomial space. We later generalize his Turing machine simulation to alter-
nating Turing machines to obtain an EXP-hardness proof for nondeterministic planning with full
observability in Theorem 4.53.

Theorem 3.59 The problem of testing the existence of a plan is PSPACE-hard.

Proof: Let (X, @, d, g0, g) be any deterministic Turing machine with a polynomial space bound
p(zx). Leto be an input string of length.

We construct a deterministic succinct transition system for simulating the Turing machine. The
succinct transition system has a size that is polynomial in the size of the description of the Turing
machine and the input string.

The setA of state variables in the succinct transition system consists of

1. ¢ € Q for denoting the internal states of the TM,
2. s; for every symbok € ¥ U {|,d} and tape cell € {0,...,p(n)}, and
3. h; for the positions of the R/W headc {0, ...,p(n) + 1}.

The initial state of the succinct transition system represents the initial configuration of the TM.
The initial statef is as follows.

1.7

(
2. I(qg) =0forallg € Q\{qo}-
3. I(s;) = 1ifand only if ith input symbol iss € 3, forall i € {1,...,n}
4. I(s;) =0forallse ¥andi € {O,n+1,n+2,...,p(n)}
5 I(0;) =1forallie {n+1,...,p(n)}
6. I(0;) =0foralli € {0,...,n}
7. 1(|o) =1
8. I(|;) =0foralln e {1,...,p(n)}
9. I(h) =1
(

10. I(h;) =0foralli € {0,2,3,4,...,p(n) + 1}

The goal is the following formula.

G = \/{q € Qlg(q) = accep}

CHAPTER 3. DETERMINISTIC PLANNING 61

To define the operators, we first define effects corresponding to all possible transitions.
Forall(s,q) € (XU{],0})xQ,i € {0,...,p(n)}and(s’,¢',m) € (XU{|}) xQx{L, N, R}
define the effect, ,;(s, ¢, m) asa A k A 6 where the effects, ~ andf are defined as follows.
The effecta describes what happens to the tape symbol under the R/W head= i’ then
a = T as nothing on the tape changes. Otherwise; —s; A s, to denote that the new symbol in
theith tape cell iss’ and nots.
The effects describes the change to the internal state of the TM. Again, either the state changes
or does not, s& = —¢ A ¢ if ¢ # ¢’ and T otherwise. We define = —-¢ wheni = p(n) and
m = R so that when the space bound gets violated, no accepting state can be reached.
The effectd describes the movement of the R/W head. Either there is movement to the left, no
movement, or movement to the right. Hence

=h; Nh;—1 fm=1L
0= T ifm=N
=h; A hit1 ifm=R

By definition of TMs, movement at the left end of the tape is always to the right. Similarly, we
have state variable for R/W head positigm) + 1 and moving to that position is possible, but no
transitions from that position are possible, as the space bound has been violated.

Now, these effects that represent possible transitions are used in the operators that simulate the
Turing machine. Lets,q) € (XU {|,0}) x Q,i € {0,...,p(n)} andd(s,q) = {(s',¢’,m)}. If
g(q) = 3, then define the operator

05,0 = (hi Nsi Nq,Tsqi(s',¢',m)).

We claim that the succinct transition system has a plan if and only if the Turing machine accepts
without violating the space bound.

If the Turing machine violates the space bound, the state variaple, ; becomes true and an
accepting state cannot be reached because no further operator will be applicable.

So, because all deterministic Turing machines with a polynomial space bound can be in poly-
nomial time translated into a planning problem, all decision problems in PSPACE are polynomial
time many-one reducible to deterministic planning, and the plan existence problem is PSPACE-
hard. O

Theorem 3.60 The problem of testing the existence of a plan is in PSPACE.

Proof: A recursive algorithm for testingn-step reachability between two states wlith m mem-
ory consumption is given in Figure 3.4. The parameters of the algorithm are theo§eperators,
the starting state, the terminal state’, andm characterizing the maximum numht of opera-
tors needed for reaching from s.

We show that when the algorithm is called with the numbet |A| of state variables as the
last argument, it consumes a polynomial amount of memory ifhe recursion depth is. At the
recursive calls memory is needed for storing the intermediate statekhe memory needed for
this is polynomial inn. Hence at any point of time the space consumptiafi(is:?).

A succinct transition systerfy, I, O, G) with n = | A| state variables has a plan if and only
if reach(O,1,s',n) returnstrue for somes’ such thats’ = G. lteration over all states’ can be
performed in polynomial space and testisig= G can be performed in polynomial time in the

CHAPTER 3. DETERMINISTIC PLANNING 62

1: procedurereach(),s,s’,m)

2. if m =0then (* Plans of length 0 and 1 *)
3 if s=s’or there iso € O such that’ = app,(s) then return true

4: else returnfalse
5

6

7

8

else
begin (* Longer plans *)
for all statess” do (* Iteration over intermediate states *)
if reachQ,s,s”,m — 1) and reachQ,s”,s’,m — 1) then return true
;9 end
10: return false;
11: end

Figure 3.4: Algorithm for testing plan existence in polynomial space

size ofG. Hence the whole memory consumption is polynomial. 0

Part of the high complexity of planning is due to the fact that plans can be exponentially long.
If a polynomial upper bound for plan length exists, testing the existence of plans is still intractable
but much easier.

Theorem 3.61 The problem of whether a plan having a length bounded by a given polynomial
exists is NP-hard.

Proof: We reduce the satisfiability problem of the classical propositional logic to the plan existence
problem. The length of the plans, whenever they exist, is bounded by the number of propositional
variables and hence is polynomial.

Let ¢ be a formula over the propositional variablesdnLet N = (A, {(a,0)|a € A}, O, ¢)
whereO = {(T,a)|a € A} We show thatV has a plan if and only if the formulais satisfiable.

Assumep € SAT, that is, there is a valuation: A — {0, 1} such that = ¢. Now take the
operators{ (T, a)|v = a,a € A} in any order: these operators form a plan that reach the state
that satisfie.

AssumeN has a plaroy,...,o0,. The valuationv = {(a,1)|(T,a) € {o1,...,0m}} U
{(a,0)|a € A, (T,a) €{o1,...,0m}} of Ais the terminal state of the plan and satisfies [

Theorem 3.62 The problem of whether a plan having a length bounded by a given polynomial
exists is in NP.

Proof: Let p(m) be a polynomial. We give a nondeterministic algorithm that runs in polynomial
time and determines whether a plan of length) exists.
Let N = (A, 1,0, G) be a deterministic succinct transition system.

1. Nondeterministically guess a sequencd of p(m) operatorsy, ..., o; from the setO.
Sincel is bounded by the polynomialm), the time consumptio®(p(m)) is polynomial
in the size of V.

2. Computes = app,, (app,,_, (- - apm, (app, (1)) - -)). This takes polynomial time in the size
of the operators and the number of state variables.

CHAPTER 3. DETERMINISTIC PLANNING 63

3. Tests = G. This takes polynomial time in the size of the operators and the number of state
variables.

This nondeterministic algorithm correctly determines whether a plan of length apfmesexists
and it runs in nondeterministic polynomial time. Hence the problem is in NP. d

These theorems show the NP-completeness of the plan existence problem for polynomial-
length plans.

3.8 Literature

Progression and regression were used early in planning redé&osbnschein, 1931 Our defi-

nition of regression in Section 3.1.2 is related to the weakest precondition predicates for program
synthesi§de Bakker and de Roever, 1972; Dijkstra, 1p76stead of using the general definition

of regression we presented, earlier work on planning with regression and a definition of operators
that includes disjunctive preconditions and conditional effects has avoided all disjunctivity by pro-
ducing only goal formulae that are conjunctions of litefs#sdersonet al, 1999. Essentially,

these formulae are the disjunctsrefr,(¢) in DNF, although the formulagegr,(¢) are not gen-

erated. The search algorithm then produces a search tree with one branch for every disjunct of the
DNF formula. In comparison to the general definition, this approach often leads to a much higher
branching factor and an exponentially bigger search tree.

The use of algorithms for the satisfiability problem of the classical propositional logic in plan-
ning was pioneered by Kautz and Selman, originally as a way of testing satisfiability algorithms,
and later shown to be more efficient than other planning algorithms at thd kiengz and Sel-
man, 1992; 1996 In addition to Kautz and Selmd®994, parallel plans were used by Blum and
Furst in their Graphplan plannéBlum and Furst, 1997 Parallelism in this context serves the
same purpose as partial-order reducfiGodefroid, 1991; Valmari, 1991reducing the number
of orderings of independent actions to consider. There are also other notions of parallel plans
that may lead to much more efficient planniiRjntanenet al, 2004. Ernst et al.[1997 have
considered translations of planning into the propositional that utilize the regular structure of sets
of operators obtained from schematic operators. Planning by satisfiability has been extended to
model-checking for testing whether a finite or infinite execution satisfying a given Linear Tem-
poral Logic (LTL) formula exist§Biereet al,, 1999. This approach to model-checking is called
bounded model-checking

It is trickier to use a satisfiability algorithm for showing that no plans of any length exist than
for finding a plan of a given length. To show that no plans exist all plan lengths 2p to1
have to be considered when there arstate variables. In typical planning applicationss
often some hundreds or thousands, and generating and testing the satisfiability of all the required
formulae is practically impossible. That no plans of a given lemgth 214 do not exist does not
directly imply anything about the existence of longer plans. Some other approaches for solving
this problem based on satisfiability algorithms have been recently propbgeMdillan, 2003;
Mneimneh and Sakallah, 20p3

The use of general-purpose heuristic search algorithms has recently got a lot of attention. The
class of heuristics currently in the focus of interest was first proposed by McDdt96d and
Bonet and Geffnef2001. The distance estimaté§®{(¢) andd; (¢) in Section 3.4 are based on
the ones proposed by Bonet and Geff[@001]. Many other distance estimates similar to Bonet

CHAPTER 3. DETERMINISTIC PLANNING 64

and Geffner’s existHaslum and Geffner, 2000; Hoffmann and Nebel, 2001; Ngwte., 2004.
The 5™ (¢) estimate generalizes ideas proposed by Hoffmann and N@oed.

Other techniques for speeding up planning with heuristic state-space search include symmetry
reduction[Starke, 1991; Emerson and Sistla, 1P86Ad partial-order reductiofGodefroid, 1991;
Valmari, 1991; Aluret al, 1997, both originally introduced outside planning in the context of
reachability analysis and model-checking in computer-aided verification. Both of these techni-
gues address the main problem in heuristic state-space search, high branching factor (number of
applicable operators) and high number of states.

The algorithm for invariant computation was originally presented for simple operators with-
out conditional effect§Rintanen, 1998 The computation parallels the construction of planning
graphs in the Graphplan algoritiiBlum and Furst, 1997 and it would seem to us that the notion
of planning graph emerged when Blum and Furst noticed that the intermediate stages of invariant
computation are useful for backward search algorithms: if a depth-boundsamposed on the
search tree, then formulae obtained/hyregression steps (suffixes of possible plans of length
m) that do not satisfy claus&s, _,,, cannot lead to a plan, and the search tree can be pruned. A
different approach to find invariants has been proposed by Gerevini and Sciigest

Some researchers extensively use Graphplan’s planning dfaipins and Furst, 1997or var-
ious purposes but we do not and have not discussed them in more detail for certain reasons. First,
the graph character of planning graphs becomes inconvenient when preconditions of operators are
arbitrary formulae and effects are conditional. As a result, the basic construction steps of planning
graphs become unintuitive. Second, even when the operators have the simple form, the practi-
cally and theoretically important properties of planning graphs are not graph-theoretic. We can
equivalently represent the contents of planning graphs as sequences of sets of literals and 2-literal
clauses, as we have done in Section 3.5. In general it seems that the graph representation does
not provide advantages over more conventional logic-based and set-based representations and is
primarily useful for visualization purposes.

The algorithms presented in this section cannot in general be ordered in terms of efficiency.
The general-purpose search algorithms with distance heuristics are often very effective in solving
big problem instances with a sufficiently simple structure. This often entails better runtimes than
in the SAT/CSP approach because of the high overheads with handling big formulae or constraint
nets in the latter. Similarly, there are problems that are quickly solved by the SAT/CSP approach
but on which heuristic state-space search fails.

There are few empirical studies on the behavior of different algorithms on planning problems
in general or average. Bylandgi994 gives empirical results suggesting the existence of hard-
easy pattern and a phase transition behavior similar to those found in other NP-hard problems
like propositional satisfiabilitySelmanet al, 1994. Bylander also demonstrates that outside the
phase transition region plans can be found by a simple hill-climbing algorithm or the inexistence
of plans can be determined by using a simple syntactic test. Rin{@0844 complemented
Bylander’s work by analyzing the behavior of different types of planning algorithms on difficult
problems inside the phase transition region, suggesting that current planners based on heuristic
state space search are outperformed by satisfiability algorithms on difficult problems.

The PSPACE-completeness of the plan existence problem for deterministic planning is due to
Bylander[1994. The same result for another succinct representation of graphs had been estab-
lished earlier by Lozano and Balcada©9d.

Any computational problem that is NP-hard — not to mention PSPACE-hard — is considered too
difficult to be solved in general. As planning even in the deterministic case is PSPACE-hard there

CHAPTER 3. DETERMINISTIC PLANNING 65

has been interest in finding restricted special cases in which efficient (polynomial-time) planning
is always guaranteed. Syntactic restrictions have been investigated by several resEaytders

der, 1994; Bickstom and Nebel, 199%ut the restrictions are so strict that very few interesting
problems can be represented.

Schematic operators increase the conciseness of the representations of some problem instances
exponentially and lift the worst-case complexity accordingly. For example, deterministic planning
with schematic operators is EXPSPACE-compliEeol et al, 19995. If function symbols are
allowed, encoding arbitrary Turing machines becomes possible and the plan existence problem is
undecidabldErol et al., 1999.

3.9 Exercises

3.1 Show that regression for goals that are sets (conjunctions) of state variables and operators
with preconditionsp that are sets (conjunctions) of state variables and effects that consist of an
add lista (a set of state variables that become true) and a deleté(sset of state variables that
become false) can equivalently be defined@sa) U p whend N G = 0.

3.2Show that the problem in Lemma 3.9 is in NP and therefore NP-complete.

3.3 Satisfiability testing in the propositional logic is tractable in some special cases, like for sets
of clauses with at most 2 literals in each, and for Horn clauses, that is sets of clauses with at most
one positive literal in each clause.

Can you identify special cases in which existence ofnastep plan can be determined in
polynomial time (inn and the size of the problem instance), because the corresponding formula
transformed to CNF is a set of 2-literal clauses or a set of Horn clauses?

