
Chapter 2

Background

In this chapter we will define the formal machinery which is needed for describing different plan-
ning problems and algorithms. We will give the basic definitions related to the classical proposi-
tional logic and the transition system model which is the basis of most work on planning and which
is closely related to finite automata and transition systems in other areas of computer science.

2.1 Transition systems

We define transition systems in which states are atomic objects and actions are represented as
binary relations on the set of states.

Definition 2.1 A transition systemis a 5-tupleΠ = 〈S, I,O,G, P 〉 where

1. S is a finite set of states,

2. I ⊆ S is the set of initial states,

3. O is a finite set of actionso ⊆ S × S,

4. G ⊆ S is the set of goal states, and

5. P = (C1, . . . , Cn) is a partition ofS to non-empty classes of observationally indistin-
guishable states satisfying

⋃
{C1, . . . , Cn} = S andCi ∩ Cj = ∅ for all i, j such that

1 ≤ i < j ≤ n.

Making an observation tells which setCi the current state belongs to. Distinguishing states
within a givenCi is not possible by observations. If two states are observationally distinguishable
then plan execution can proceed differently for them.

The numbern of components in the partitionP determines different classes of planning prob-
lems with respect to observability restrictions. Ifn = |S| then every state is observationally
distinguishable from every other state. This is calledfull observability. If n = 1 then no observa-
tions are possible and the transition system isunobservable. The general casen ∈ {1, . . . , |S|} is
calledpartial observability.

An actiono is applicablein states for which it associates at least one successor state. We define
imagesof states asimgo(s) = {s′ ∈ S|sos′} and (weak)preimagesof states aspreimgo(s′) =
{s ∈ S|sos′}. Generalization to sets of states isimgo(T) =

⋃
s∈T imgo(s) andpreimgo(T) =

8

CHAPTER 2. BACKGROUND 9

⋃
s∈T preimgo(s). For sequenceso1, . . . , on of actionsimgo1;...;on(T) = imgon(· · · imgo1(T) · · ·)

andpreimgo1;...;on(T) = preimgo1(· · ·preimgon(T) · · ·). Thestrong preimageof a setT of states
is the set of states for which all successor states are inT , defined asspreimgo(T) = {s ∈ S|s′ ∈
T, sos′, imgo(s) ⊆ T}.

Lemma 2.2 Images, strong preimages and weak preimages of sets of states are related to each
other as follows. Leto be any action andS andS′ any sets of states.

1. spreimgo(T) ⊆ preimgo(T)

2. imgo(spreimgo(T)) ⊆ T

3. If T ⊆ T ′ then imgo(T) ⊆ imgo(T ′).

4. preimgo(T ∪ T ′) = preimgo(T) ∪ preimgo(T ′).

5. s′ ∈ imgo(s) if and only ifs ∈ preimgo(s).

Proof:

1. spreimgo(T) = {s ∈ S|s′ ∈ T, sos′, imgo(s) ⊆ T} ⊆ {s ∈ S|s′ ∈ T, sos′} =
⋃

s′∈T {s ∈
S|sos′} =

⋃
s′∈T preimgo(s′) = preimgo(T).

2. Take anys′ ∈ imgo(spreimgo(T)). Hence there iss ∈ spreimgo(T) so thatsos′. As
s ∈ spreimgo(T), imgo(s) ⊆ T . Sinces′ ∈ imgo(s), s′ ∈ T .

3. AssumeT ⊆ T ′ ands′ ∈ imgo(T). Hencesos′ for somes ∈ T by definition of images.
Hencesos′ for somes ∈ T ′ becauseT ⊆ T ′. Hences′ ∈ imgo(T ′) by definition of images.

4. preimgo(T ∪T ′) =
⋃

s′∈T∪T ′{s ∈ S|sos′} =
⋃

s′∈T {s ∈ S|sos′}∪
⋃

s′∈T ′{s ∈ S|sos′} =
preimgo(T) ∪ preimgo(T ′)

5. s′ ∈ imgo(s) iff sos′ iff s ∈ preimgo(s).

�

2.1.1 Deterministic transition systems

Transition systems which we use in Chapter 3 have only one initial state and deterministic actions.
For this subclass observability is irrelevant because the state of the transition system after a given
sequence of actions can be predicted exactly. We use a simpler formalization of them.

Definition 2.3 A deterministic transition systemis a 4-tupleΠ = 〈S, I,O,G〉 where

1. S is a finite set of states,

2. I ∈ S is the initial state,

3. O is a finite set of actionso ⊆ S × S that are partial functions, and

4. G ⊆ S is the set of goal states.

CHAPTER 2. BACKGROUND 10

A

B C

D

EF

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

Figure 2.1: The transition graph and the incidence matrix of a deterministic action

That the actions are partial functions means that for anys ∈ S ando ∈ O there is at most one
states′ such thatsos′. We denote the unique successor states′ of a states in which operatoro
is applicable bys′ = appo(s). For sequenceso1; . . . ; on of operators we defineappo1;...;on(s) as
appon(· · ·appo1(s) · · ·).

2.1.2 Incidence matrices

Actions and other binary relations can be represented in terms of incidence matricesM (adjacency
matrices) in which the element in rowi and columnj indicates whether a transition from statei
to j is possible.

Figure 2.1 depicts the transition graph of an action and the corresponding incidence matrix.
The action can be seen to be deterministic because for every state there is at most one arrow going
out of it, and each row of the matrix contains at most one non-zero element.

For matricesM1, . . . ,Mn which represent the transition relations of actionsa1, . . . , an the
combined transition relation isM = M1 +M2 + · · · +Mn. The matrixM now tells whether a
state can be reached from another state by at least one of the actions.

Here+ is the usual matrix addition that uses the Boolean addition for integers 0 and 1, which
is defined as0 + 0 = 0, andb + b′ = 1 if b = 1 or b′ = 1. Boolean addition is used because
in the presence of nondeterminism we could have 1 for both of two transitions from A to B and
from A to C. For probabilistic planning problems normal addition is used and matrix elements are
interpreted as probabilities of nondeterministic transitions.

The incidence matrix corresponding to first taking actiona1 and thena2 is M1M2. This is
illustrated by Figure 2.2 The inner product of two vectors in the definition of matrix product
corresponds to the reachability of a state from another state through all possible intermediate
states.

Now we can compute for all pairss, s′ of states whethers′ is reachable froms by a sequence
of actions. LetM be the matrix that is the (Boolean) sum of the matrices of the individual actions.
Then define

R0 = In×n

Ri = Ri−1 +MRi−1 for i ≥ 1.

Heren is the number of states andIn×n is the unit matrix of sizen. By Tarski’s fixpoint theorem
Ri = Rj for somei ≥ 0 and allj ≥ i because of the monotonicity property that every element
that is 1 for somei is 1 also for allj > i. MatrixRi = M0∪M1∪· · ·∪M i represents reachability

CHAPTER 2. BACKGROUND 11

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

×

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 1 0 0 0 0 0
D 0 0 0 1 0 0
E 0 0 0 0 1 0
F 0 0 0 1 0 0

=

A B C D E F

A 0 0 0 0 0 1
B 0 0 0 1 0 0
C 1 0 0 0 0 0
D 1 0 0 0 0 0
E 0 0 0 0 0 1
F 0 0 0 0 1 0

Figure 2.2: Matrix product corresponds to sequential composition.

A

B C

D

EF

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

Figure 2.3: A transition graph and the corresponding matrixM

by i actions or less.

2.2 Classical propositional logic

LetA be a set of propositional variables (atomic propositions). We define the set of propositional
formulae inductively as follows.

1. For alla ∈ A, a is a propositional formula.

2. If φ is a propositional formula, then so is¬φ.

3. If φ andφ′ are propositional formulae, then so isφ ∨ φ′.

4. If φ andφ′ are propositional formulae, then so isφ ∧ φ′.

5. The symbols⊥ and>, respectively denoting truth-values false and true, are propositional
formulae.

The symbols∧,∨ and¬ areconnectivesrespectively denoting theconjunction, disjunctionand
negation. We define the implicationφ→ φ′ as an abbreviation for¬φ ∨ φ′, and the equivalence
φ↔ φ′ as an abbreviation for(φ→φ′) ∧ (φ′→φ).

A valuation ofA is a functionv : A → {0, 1} where 0 denotes false and 1 denotes true.
Valuations are also known asassignmentsor models. For propositional variablesa ∈ A we define

CHAPTER 2. BACKGROUND 12

A

B C

D

EF

A B C D E F

A 0 1 0 0 0 1
B 0 0 0 0 1 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 1
F 0 1 0 0 1 0

Figure 2.4: A transition graph extended with composed paths of length 2 and the corresponding
matrixM +M2

A

B C

D

EF

A B C D E F

A 0 1 0 0 1 1
B 0 1 0 0 1 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 1 1
F 0 1 0 0 1 1

Figure 2.5: A transition graph extended with composed paths of length 3 and the corresponding
matrixM +M2 +M3

v |= a if and only if v(a) = 1. A valuation of the propositional variables inA can be extended to
a valuation of all propositional formulae overA as follows.

1. v |= ¬φ if and only if v 6|= φ

2. v |= φ ∨ φ′ if and only if v |= φ or v |= φ′

3. v |= φ ∧ φ′ if and only if v |= φ andv |= φ′

4. v |= >

5. v 6|= ⊥

Computing the truth-value of a formula under a given valuation of propositional variables is
polynomial time in the size of the formula by the obvious recursive procedure.

A propositional formulaφ is satisfiable(consistent) if there is at least one valuationv so that
v |= φ. Otherwise it isunsatisfiable(inconsistent). A finite setF of formulae is satisfiable if∧

φ∈F φ is. A propositional formulaφ is valid or a tautologyif v |= φ for all valuationsv. We
denote this by|= φ. A propositional formulaφ is a logical consequenceof a propositional formula
φ′, writtenφ′ |= φ, if v |= φ for all valuationsv such thatv |= φ′. A propositional formula that

CHAPTER 2. BACKGROUND 13

is a proposition variablea or a negated propositional variable¬a for somea ∈ A is a literal. A
formula that is a disjunction of literals isa clause.

A formula φ is in negation normal form(NNF) if all occurrences of negations are directly in
front of propositional variables. Any formula can be transformed to negation normal form by
applications of the De Morgan rules¬(φ∨φ′) ≡ ¬φ∧¬φ′ and¬(φ∧φ′) ≡ ¬φ∨¬φ′, the double
negation rule¬¬φ ≡ φ. A formulaφ is in conjunctive normal form(CNF) if it is a conjunction of
disjunctions of literals. A formulaφ is in disjunctive normal form(DNF) if it is a disjunction of
conjunctions of literals. Any formula in CNF or in DNF is also in NNF.

2.2.1 Quantified Boolean formulae

There is an extension of the satisfiability and validity problems of the classical propositional logic
with quantification over the truth-values of propositional variables.Quantified Boolean formulae
(QBF) are like propositional formulae but there are two new syntactic rules for the quantifiers.

6. If φ is a formula anda ∈ A, then∀aφ is a formula.

7. If φ is a formula anda ∈ A, then∃aφ is a formula.

Further, there is the requirement that every variable is quantified, that is, every occurrence of
a ∈ A in a QBF is in the scope of either∃a or ∀a.

Defineφ[ψ/x] as the formula obtained fromφ by replacing occurrences of the propositional
variablex byψ.

We define the truth-value of QBF by reducing them to ordinary propositional formulae without
occurrences of propositional variables. The atomic formulae in these formulae are the constants
> and⊥. The truth-value of these formulae is independent of the valuation, and is recursively
computed by the Boolean functions associated with the connectives∨, ∧ and¬.

Definition 2.4 (Truth of QBF) A formula∃xφ is true if and only ifφ[>/x] ∨ φ[⊥/x] is true.
(Equivalently, ifφ[>/x] is true orφ[⊥/x] is true.)

A formula∀xφ is true if and only ifφ[>/x] ∧ φ[⊥/x] is true. (Equivalently, ifφ[>/x] is true
andφ[⊥/x] is true.)

A formulaφ with an empty prefix (and consequently without occurrences of propositional vari-
ables) is true if and only ifφ is satisfiable (equivalently, valid: for formulae without propositional
variables validity coincides with satisfiability.)

Example 2.5 The formulae∀x∃y(x↔ y) and∃x∃y(x ∧ y) are true.
The formulae∃x∀y(x↔ y) and∀x∀y(x ∨ y) are false. �

Note that a QBF with only existential quantifiers is true if and only if the formula without the
quantifiers is satisfiable. Similarly, truth of QBF with only universal quantifiers coincides with the
validity of the corresponding formulae without quantifiers.

Changing the order of two consecutive variables quantified by the same quantifier does not
affect the truth-value of the formula. It is often useful to ignore the ordering in these cases and to
view each quantifier as quantifying a set of formulae, for example∃x1x2∀y1y2φ.

Quantified Boolean formulae are interesting because evaluating their truth-value is PSPACE-
complete[Meyer and Stockmeyer, 1972], and many computational problems that presumably can-
not be translated into the satisfiability problem of the propositional logic in polynomial time (as-
suming that NP6=PSPACE) can be efficiently translated into QBF.

CHAPTER 2. BACKGROUND 14

2.2.2 Binary decision diagrams

Propositional formulae can be transformed to different normal forms. The most well-known nor-
mal forms are the conjunctive normal form (CNF) and the disjunctive normal form (DNF). For-
mulae in conjunctive normal form are conjunctions of disjunctions of literals, and in disjunctive
normal form they are disjunctions of conjunctions of literals. For every propositional formula
there is a logically equivalent one in both of these normal forms. However, the formula in normal
form may be exponentially bigger.

Normal forms are useful for at least two reasons. First, certain types of algorithms are easier to
describe when assumptions of the syntactic form of the formulae can be made. For example, the
resolution rule which is the basis of many theorem-proving algorithms, is defined for formulae in
the conjunctive normal form only (the clausal form). Defining resolution for non-clausal formulae
is more difficult.

The second reason is that certain computational problems can be solved more efficiently for
formulae in normal form. For example, testing the validity of propositional formulae is in general
co-NP-hard, but if the formulae are in CNF then it is polynomial time: just check whether every
conjunct contains bothp and¬p for some propositionp.

Transformation into a normal form in general is not a good solution to any computationally
intractable problem like validity testing, because for example in the case of CNF, polynomial-time
validity testing became possible only by allowing a potentially exponential increase in the size of
the formula.

However, there are certain normal forms for propositional formulae that have proved very use-
ful in various types of reasoning needed in planning and other related areas, like model-checking
in computer-aided verification.

In this section we discuss (ordered) binary decision diagrams (BDDs)[Bryant, 1992]. Other
normal forms of propositional formulae that have found use in AI and could be applied to planning
include the decomposable negation normal form[Darwiche, 2001] which is less restricted than
binary decision diagrams (formulae in DNNF can be viewed as a superclass of BDDs) and are
sometimes much smaller. However, smaller size means that some of the logical operations that
can be performed in polynomial time for BDDs, like equivalence testing, are NP-hard for formulae
in DNNF.

The main reason for using BDDs is that the logical equivalence of BDDs coincides with syn-
tactic equivalence: two BDDs are logically equivalent if and only if they are the same BDD.
Propositional formulae in general, or formulae in CNF or in DNF do not have this property. Fur-
thermore, computing a BDD that represents the conjunction or disjunction of two BDDs or the
negation of a BDDs also takes only polynomial time.

However, like with other normal forms, a BDD can be exponentially bigger than a correspond-
ing unrestricted propositional formula. One example of such a propositional formulae is the binary
multiplier: Any BDD representation ofn-bit multipliers has a size exponential inn. Also, even
though many of the basic operations on BDDs can be computed in polynomial time in the size
of the component BDDs, iterating these operations may increase the size exponentially: some of
these operator may double the size of the BDD, and doublingn times is exponential inn and in
the size of the original BDD.

A main application of BDDs has been model-checking in computer-aided verification[Burch
et al., 1994; Clarkeet al., 1994], and in recent years these same techniques have been applied to
AI planning as well. We will discuss BDD-based planning algorithms in Chapter 4.

CHAPTER 2. BACKGROUND 15

BB

01

C

A

Figure 2.6: A BDD

BDDs are expressed in terms of the ternary Boolean operator if-then-elseite(p, φ1, φ2) defined
as(p∧φ1)∨(¬p∧φ2), wherep is a proposition. Any Boolean formula can be represented by using
this operator together with propositions and the constants> and⊥. Figure 2.6 depicts a BDD for
the formula(A ∨ B) ∧ (B ∨ C). The normal arrow coming from a node forP corresponds to
the case in whichP is true, and the dotted arrow to the case in whichP is false. Note that BDDs
are graphs, not trees like formulae, and this provides a further reduction in the BDD size as a
subformula never occurs more than once.

There is an ordering condition on BDDs: the occurrences of propositions on any path from the
root to a leaf node must obey a fixed ordering of the propositions. This ordering condition together
with the graph representation is required for the good computational properties of BDDs, like the
polynomial time equivalence test.

A BDD corresponding to a propositional formula can be obtained by repeated application of
an equivalence called the Shannon expansion.

φ ≡ (p ∧ φ[>/p]) ∨ (¬p ∧ φ[⊥/p]) ≡ ite(p, φ[>/p], φ[⊥/p])

Example 2.6 We show how the BDD for(A∨B)∧ (B ∨C) is produced by repeated application
of the Shannon expansion. We use the variable orderingA, B, C and use the Shannon expansion
to eliminate the variables in this order.

(A ∨B) ∧ (B ∨ C)
≡ ite(A, (> ∨B) ∧ (B ∨ C), (⊥ ∨B) ∧ (B ∨ C))
≡ ite(A,B ∨ C,B)
≡ ite(A, ite(B,> ∨ C,⊥ ∨ C), ite(B,>,⊥))
≡ ite(A, ite(B,>, C), ite(B,>,⊥))
≡ ite(A, ite(B,>, ite(C,>,⊥)), ite(B,>,⊥))

The simplifications in the intermediate steps are by the equivalences> ∨ φ ≡ > and⊥ ∨ φ ≡ φ
and> ∧ φ ≡ φ and⊥ ∧ φ ≡ ⊥. When

ite(A, ite(B,>, ite(C,>,⊥)), ite(B,>,⊥))

is first turned into a tree and then equivalent subtrees are identified, we get the BDD in Figure 2.6.
The terminal node 1 corresponds to> and the terminal node 0 to⊥. �

There are many operations on BDDs that are computable in polynomial time. These include
forming the conjunction∧ and the disjunction∨ of two BDDs, and forming the negation¬ of a

CHAPTER 2. BACKGROUND 16

BDD. However, conjunction and disjunction ofn BDDs may have a size that is exponential inn,
as adding a new disjunct or conjunct may double the size of the BDD.

An important operation in many applications of BDDs is the existential abstraction operation
∃p.φ, which is defined by

∃p.φ = φ[>/p] ∨ φ[⊥/p]

whereφ[ψ/p] means replacing all occurrences ofp in φ by ψ. Also this is computable in polyno-
mial time, and in contrast to repeated conjunction and disjunction, repeated existential abstraction
of several variables remains a polynomial time operation. Existential abstraction can of course be
used for any propositional formulae, not only for BDDs.

The formulaφ′ obtained fromφ by existentially abstractingp is in general not equivalent toφ,
but has many properties that make the abstraction operation useful.

Lemma 2.7 Letφ be a formula andp a proposition. Letφ′ = ∃p.φ = φ[>/p]∨φ[⊥/p]. Now the
following hold.

1. φ is satisfiable if and only ifφ′ is.

2. φ is valid if and only ifφ′ is.

3. If χ is a formula without occurrences ofp, thenφ |= χ if and only ifφ′ |= χ.

Example 2.8

∃B.((A→B) ∧ (B→C))
= ((A→>) ∧ (>→C)) ∨ ((A→⊥) ∧ (⊥→C))
≡ C ∨ ¬A ≡ A→C

∃AB.(A ∨B) = ∃B.(> ∨B) ∨ (⊥ ∨B) = ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))

�

2.2.3 Algebraic decision diagrams

Algebraic decision diagrams (ADDs)[Fujita et al., 1997; Baharet al., 1997] are a generalization
of binary decision diagrams that has been applied to many kinds of probabilistic extensions of
problems solved by BDDs. BDDs have only two terminal nodes, 1 and 0, and ADDs generalize
this to a finite number of real numbers.

While BDDs represent Boolean functions, ADDs represent mapping from valuations to real
numbers. The Boolean operations on BDDs, like taking the disjunction or conjunction of two
BDDs, generalize to the arithmetic operations to take the arithmetic sum or the arithmetic product
of two functions. There are further operations on ADDs that have no counterpart for BDDs, like
constructing a function that on any valuation equals the maximum of two functions.

Figure 2.7 depicts three ADDs, the first of which is also a BDD. The product of ADDs is a
generalization of conjunction of BDDs: if for some valuation/state ADDA assigns the valuer1
and ADDB assigns the valuer2, then the product ADDA · B assigns the valuer1 · r2 to the
valuation.

The following are some of the operations typically available in implementations of ADDs.
Here we denote ADDs byf andg and view them as functions from valuationsx to real numbers.

CHAPTER 2. BACKGROUND 17

BB

01

C

A

×
2 3

B

=

BB

0

C

A

2 3

(a) (b) (c)

Figure 2.7: Three ADDs, the first of which is also a BDD.

operation notation meaning
sum f + g (f + g)(x) = f(x) + g(x)
product f · g (f · g)(x) = f(x) · g(x)
maximization max(f, g) (max(f, g))(x) = max(f(x), g(x))

There is an operation for ADDs that corresponds to the existential abstraction operation on
BDDs, and that is used in multiplication of matrices represented as ADDs, just like existential
abstraction is used in multiplication of Boolean matrices represented as BDDs.

Let f be an ADD andp a proposition. Thenarithmetic existential abstractionof f , written
∃p.f , is an ADD that satisfies the following.

(∃p.f)(x) = (f [>/p])(x) + (f [⊥/p])(x)

2.3 Succinct transition systems

It is often more natural to represent the states of a transition system as valuations of state variables
instead of enumeratively as in Section 2.1. The binary relations that correspond to actions can
often be represented compactly in terms of the changes the actions cause to the values of state
variables.

We represent states in terms of a setA of Boolean state variables which take the valuestrueor
false. Eachstateis a valuation ofA (a functions : A→ {0, 1}.)

Since we identify states with valuations of state variables, we can now identify sets of states
with propositional formulae over the state variables. This allows us to perform set-theoretic opera-
tions on sets as logical operations and test relations between sets by inference in the propositional
logic as summarized in Table 2.1

The actions of a succinct transition system are described by operators. An operator has two
components. The precondition describes the set of states in which the action can be taken. The
effect describes the successor states of each state in terms of the changes made to the values of the
state variables.

Definition 2.9 LetA be a set of state variables. Anoperatoris a pair 〈c, e〉 wherec is a proposi-
tional formula overA (theprecondition), ande is aneffectoverA. Effects overA are recursively
defined as follows.

CHAPTER 2. BACKGROUND 18

set formula
T ∪ U T ∨ U
T ∩ U T ∧ U
T ¬T
T\U T ∧ ¬U
∅ ⊥
the universal set >
question about setsquestion about formulae
T ⊆ U? |= T→U?
T ⊂ U? |= T→U and 6|= U→T?
T = U? |= T ↔ U?

Table 2.1: Correspondence between set-theoretical and logical operations

1. a and¬a for state variablesa ∈ A are effects overA.

2. e1 ∧ · · · ∧ en is an effect overA if e1, . . . , en are effects overA (the special case withn = 0
is the empty effect>).

3. c B e is an effect overA if c is a formula overA ande is an effect overA.

4. e1| · · · |en is an effect overA if e1, . . . , en for n ≥ 2 are effects overA.

The compound effectse1 ∧ · · · ∧ en denote executing all the effectse1, . . . , en simultaneously.
In conditional effectsc B e the effecte is executed ifc is true in the current state. The effects
e1| · · · |en denote nondeterministic choice between the effectse1, . . . , en. Exactly one of these
effects is chosen randomly.

Operators describe a binary relation on the set of states as follows.

Definition 2.10 (Operator application) Let 〈c, e〉 be an operator overA. Let s be a state (a
valuation ofA). The operator isapplicable ins if s |= c and every setE ∈ [e]s is consistent. The
set[e]s is recursively defined as follows.

1. [a]s = {{a}} and[¬a]s = {{¬a}} for a ∈ A.

2. [e1 ∧ · · · ∧ en]s = {
⋃n

i=1Ei|E1 ∈ [e1]s, . . . , En ∈ [en]s}.

3. [c′ B e]s = [e]s if s |= c′ and[c′ B e]s = {∅} otherwise.

4. [e1| · · · |en]s = [e1]s ∪ · · · ∪ [en]s .

An operator〈c, e〉 induces a binary relationR〈c, e〉 on states as follows: statess ands′ are related
byR〈c, e〉 if s |= c and s′ is obtained froms by making the literals in someE ∈ [e]s true and
retaining the values of state variables not occurring inE.

We define images and preimages for operatorso in terms ofR(o), for instance bypreimgo(s) =
preimgR(o)(s).

Definition 2.11 A succinct transition systemis a 5-tupleΠ = 〈A, I,O,G, V 〉 where

CHAPTER 2. BACKGROUND 19

1. A is a finite set of state variables,

2. I is a formula overA describing the initial states,

3. O is a finite set of operators overA,

4. G is a formula overA describing the goal states, and

5. V ⊆ A is the set of observable state variables.

Succinct transition systems withV = A arefully observable, and succinct transition systems
with V = ∅ are unobservable. Without restrictions onV the succinct transition systems are
partially observable.

We can associate a transition system with every succinct transition system.

Definition 2.12 Given a succinct transition systemΠ = 〈A, I,O,G, V 〉, define the transition
systemF (Π) = 〈S, I ′, O′, G′, P 〉 where

1. S is the set of all Boolean valuations ofA,

2. I ′ = {s ∈ S|s |= I},

3. O′ = {R(o)|o ∈ O},

4. G′ = {s ∈ S|s |= G}, and

5. P = (C1, . . . , Cn) wherev1, . . . , vn for n = 2|V | are all the Boolean valuations ofV and
Ci = {s ∈ S|s(a) = vi(a) for all a ∈ V } for all i ∈ {1, . . . , n}.

The transition system may have a size that is exponential in the size of the succinct transition
system. However, the construction takes only polynomial time in the size of the transition system.

2.3.1 Deterministic succinct transition systems

A deterministic operator has no occurrences of| in the effect. Further, in this special case the
definition of operator application is slightly simpler.

Definition 2.13 (Operator application) Let 〈c, e〉 be a deterministic operator overA. Lets be a
state (a valuation ofA). The operator isapplicable ins if s |= c and the set[e]det

s is consistent.
The set[e]det

s is recursively defined as follows.

1. [a]det
s = {a} and[¬a]det

s = {¬a} for a ∈ A.

2. [e1 ∧ · · · ∧ en]det
s =

⋃n
i=1[ei]

det
s .

3. [c′ B e]det
s = [e]det

s if s |= c′ and[c′ B e]det
s = ∅ otherwise.

A deterministic operator〈c, e〉 induces a partial functionR〈c, e〉 on states as follows: two states
s ands′ are related byR〈c, e〉 if s |= c ands′ is obtained froms by making the literals in[e]det

s

true and retaining the truth-values of state variables not occurring in[e]det
s .

CHAPTER 2. BACKGROUND 20

We defineappo(s) = s′ by sR(o)s′ andappo1;...;on(s) = s′ by appon(. . .appo1(s) . . .), just
like for non-succinct transition systems.

We formally define deterministic succinct transition systems.

Definition 2.14 A deterministic succinct transition systemis a 4-tupleΠ = 〈A, I,O,G〉 where

1. A is a finite set of state variables,

2. I is an initial state,

3. O is a finite set of operators overA, and

4. G is a formula overA describing the goal states.

We can associate a deterministic transition system with every deterministic succinct transition
system.

Definition 2.15 Given a deterministic succinct transition systemΠ = 〈A, I,O,G〉, define the
deterministic transition systemF (Π) = 〈S, I,O′, G′〉 where

1. S is the set of all Boolean valuations ofA,

2. O′ = {R(o)|o ∈ O}, and

3. G′ = {s ∈ S|s |= G}.

A subclass of operators considered in many early and recent works restrict toSTRIPSoperators.
An operator〈c, e〉 is a STRIPS operator ifc is a conjunction of state variables ande is a conjunction
of literals. STRIPS operators do not allow disjunctivity in formulae nor conditional effects. This
class of operators is sufficient in the sense that any transition system can be expressed in terms of
STRIPS operators only if the identities of operators are not important: when expressing a transition
system in terms of STRIPS operators only some operators correspond to an exponential number
of STRIPS operators.

Example 2.16 LetA = {a1, . . . , an} be the set of state variables. Leto = 〈>, e〉 where

e = (a1 B ¬a1) ∧ (¬a1 B a1) ∧ · · · ∧ (an B ¬an) ∧ (¬an B an)〉.

This operator reverses the values of all state variables. As its set of active effects[e]det
s is different

in every one of2n states, this operator corresponds to2n STRIPS operators.

o0 = 〈¬a1 ∧ ¬a2 ∧ · · · ∧ ¬an, a1 ∧ a2 ∧ · · · ∧ an〉
o1 = 〈a1 ∧ ¬a2 ∧ · · · ∧ ¬an,¬a1 ∧ a2 ∧ · · · ∧ an〉
o2 = 〈¬a1 ∧ a2 ∧ · · · ∧ ¬an, a1 ∧ ¬a2 ∧ · · · ∧ an〉
o3 = 〈a1 ∧ a2 ∧ · · · ∧ ¬an,¬a1 ∧ ¬a2 ∧ · · · ∧ an〉

...
o2n−1 = 〈a1 ∧ a2 ∧ · · · ∧ an,¬a1 ∧ ¬a2 · · · ∧ ¬an〉

�

CHAPTER 2. BACKGROUND 21

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (2.1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2.2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (2.3)

e ∧ (c B e) ≡ e (2.4)

e ≡ > B e (2.5)

e1 ∧ (e2 ∧ e3) ≡ (e1 ∧ e2) ∧ e3 (2.6)

e1 ∧ e2 ≡ e2 ∧ e1 (2.7)

c B > ≡ > (2.8)

e ∧ > ≡ e (2.9)

Table 2.2: Equivalences on effects

2.3.2 Extensions

The basic language for effects could be extended with further constructs. A natural construct is
sequential compositionof effects. Ife ande′ are effects, then alsoe; e′ is an effect that corresponds
to first executinge and thene′. Definition 3.11 and Theorem 3.12 show how effects with sequential
composition can be reduced to effects without sequential composition.

2.3.3 Normal form for deterministic operators

Deterministic operators can be transformed to a particularly simple form without nesting of con-
ditionality B and with only atomic effectse as antecedents of conditionalsφ B e. Normal forms
are useful as they allow concentrating on a particularly simple form of effects.

Table 2.2 lists a number of equivalences on effects. Their proofs of correctness with Definition
2.13 are straightforward. An effecte is equivalent to> ∧ e, and conjunctions of effects can be
arbitrarily reordered without affecting the meaning of the operator. These trivial equivalences will
later be used without explicitly mentioning them, for example in the definitions of the normal
forms and when applying equivalences.

The normal form corresponds to moving all occurrences ofB inside∧ so that the consequents
of B are atomic effects.

Definition 2.17 A deterministic effecte is in normal formif it is > or a conjunction of one or
more effectsc B a and c B ¬a with at most one occurrence of atomic effecta and¬a for any
a ∈ A. An operator〈c, e〉 is in normal form ife is in normal form.

Theorem 2.18 For every deterministic operator there is an equivalent one in normal form. There
is one that has a size that is polynomial in the size of the operator.

Proof: We can transform any deterministic operator into normal form by using the equivalences
in Table 2.2. The proof is by structural induction on the effecte of the operator〈c, e〉.

Induction hypothesis: the effecte can be transformed to normal form.
Base case 1,e = >: This is already in normal form.

CHAPTER 2. BACKGROUND 22

Base case 2,e = a or e = ¬a: An equivalent effect in normal form is> B e by Equivalence
2.5.

Inductive case 1,e = e1 ∧ e2: By the induction hypothesise1 ande2 can be transformed into
normal form, so assume that they already are. If one ofe1 ande2 is>, by Equivalence 2.9 we can
eliminate it.

Assumee1 containsc1 B l for some literall ande2 containsc2 B l. We can reordere1∧e2 with
Equivalences 2.6 and 2.7 so that one of the conjuncts is(c1 B l) ∧ (c2 B l). Then by Equivalence
2.3 it can be replaced by(c1 ∨ c2) B l. Since this can be done repeatedly for every literall, we
can transforme1 ∧ e2 into normal form.

Inductive case 2,e = z B e1: By the induction hypothesise1 can be transformed to normal
form, so assume that it already is.

If e1 is>, e can be replaced by> which is in normal form.
If e1 = z′ B e2 for somez′ ande2, thene can be replaced by the equivalent (by Equivalence

2.2) effect(z ∧ z′) B e2 in normal form.
Otherwise,e1 is a conjunction of effectsz B l. By Equivalence 2.1 we can movez inside the

conjunction. Applications of Equivalences 2.2 transform the effect into normal form.
In this transformation the conditionsc in c B e are copied into front of the atomic effects.

Let m be the sum of the sizes of all the conditionsc, and letn be the number of occurrences of
atomic effectsa and¬a in the effect. An upper bound on size of the new effect isO(nm) which
is polynomial in the size of the original effect. �

2.3.4 Normal forms for nondeterministic operators

We can generalize the normal form defined in Section 2.3.3 to nondeterministic effects and opera-
tors. In the normal form nondeterministic choices and conjunctions are the outermost constructs,
and consequentse of conditional effectsc B e are atomic effects.

Definition 2.19 (Normal form for nondeterministic operators) A deterministic effect is in nor-
mal form if it is> or a conjunction of one or more effectsc B a and c B ¬a with at most one
occurrence ofa and¬a for anya ∈ A.

A nondeterministic effect is in normal form if it ise1| · · · |en or e1 ∧ · · · ∧ en for effectsei that
are in normal form.

A nondeterministic operator〈c, e〉 is in normal form ife is in normal form.

For showing that every nondeterministic effect can be transformed into normal form we use
further equivalences that are given in Table 2.3.

Theorem 2.20 For every operator there is an equivalent one in normal form. There is one that
has a size that is polynomial in the size of the former.

Proof: Transformation to normal form is like in the proof of Theorem 2.18. Additional equiva-
lences needed for nondeterministic choices are 2.10 and 2.11. �

Example 2.21 The effect

a B (b|(c ∧ f)) ∧ ((d ∧ e)|(b B e))

CHAPTER 2. BACKGROUND 23

c B (e1| · · · |en) ≡ (c B e1)| · · · |(c B en) (2.10)

e ∧ (e1| · · · |en) ≡ (e ∧ e1)| · · · |(e ∧ en) (2.11)

(e′1| · · · |e′n′)|e2| · · · |en ≡ e′1| · · · |e′n′ |e2| · · · |en (2.12)

(e′ ∧ (c B e1))|e2| · · · |en ≡ (c B ((e′ ∧ e1)|e2| · · · |en)) ∧ (¬c B (e′|e2| · · · |en)) (2.13)

Table 2.3: Equivalences on nondeterministic effects

in normal form is

((a B b)|((a B c) ∧ (a B f))) ∧ (((> B d) ∧ (> B e))|(b B e)).

�

For some applications a still simpler form of operators is useful. In the second normal form
for nondeterministic operators nondeterminism may appear only at the outermost structure in the
effect.

Definition 2.22 (Normal form II for nondeterministic operators) A deterministic effect is in nor-
mal formal II if it is> or a conjunction of one or more effectsc B a andc B ¬a with at most one
occurrence ofa and¬a for anya ∈ A.

A nondeterministic effect is in normal form II if it is of forme1| · · · |en whereei are determin-
istic effects in normal form II.

A nondeterministic operator〈c, e〉 is in normal form II ife is in normal form II.

Theorem 2.23 For every operator there is an equivalent one in normal form II.

Proof: By Theorem 2.20 there is an equivalent operator in normal form. The transformation
further into normal form II requires equivalences 2.11 and 2.12. �

2.4 Computational complexity

In this section we discuss deterministic, nondeterministic and alternating Turing machines (DTMs,
NDTMs and ATMs) and define several complexity classes in terms of them. For a detailed intro-
duction to computational complexity see any of the standard textbooks[Balcázaret al., 1988;
1990; Papadimitriou, 1994].

The definition of ATMs we use is like that of Balcázar et al.[1990] but without a separate input
tape. Deterministic and nondeterministic Turing machines (DTMs, NDTMs) are a special case of
alternating Turing machines.

Definition 2.24 Analternating Turing machineis a tuple〈Σ, Q, δ, q0, g〉 where

• Σ is a finite alphabet (the contents of tape cells),

• Q is a finite set of states (the internal states of the ATM),

CHAPTER 2. BACKGROUND 24

• δ is a transition functionδ : Q× (Σ ∪ {|,�}) → 2(Σ∪{|})×Q×{L,N,R},

• q0 is the initial state, and

• g : Q→ {∀,∃,accept, reject} is a labeling of the states.

The symbols| and�, the end-of-tape symbol and the blank symbol, in the definition ofδ
respectively refer to the beginning of the tape and to the end of the tape. It is required thats = |
andm = R for all 〈s, q′,m〉 ∈ δ(q, |) for any q ∈ Q, that is, at the left end of the tape the
movement is always to the right and the end-of-tape symbol| may not be changed. Fors ∈ Σ we
restricts′ in 〈s′, q′,m〉 ∈ δ(q, s) to s′ ∈ Σ, that is,| gets written onto the tape only in the special
case when the R/W head is on the end-of-tape symbol. Note that the transition function is a total
function, and the ATM computation terminated upon reaching an accepting or a rejecting state.

A configuration of an ATM is〈q, σ, σ′〉whereq is the current state,σ is the tape contents left of
the R/W head with the rightmost symbol under the R/W head, andσ′ is the tape contents strictly
right of the R/W head. This is a finite representation of the finite non-blank segment of the tape of
the ATM. The configuration is universal (∀) if g(q) = ∀, and existential (∃) if g(q) = ∃.

The computation of an ATM starts from the initial configuration〈q0, |a, σ〉 whereaσ is the
input string of the Turing machine. Belowε denotes the empty string.

Successor configurations are defined as follows.

1. A successor of〈q, σa, σ′〉 is 〈q′, σ, a′σ′〉 if 〈a′, q′, L〉 ∈ δ(q, a).

2. A successor of〈q, σa, σ′〉 is 〈q′, σa′, σ′〉 if 〈a′, q′, N〉 ∈ δ(q, a).

3. A successor of〈q, σa, bσ′〉 is 〈q′, σa′b, σ′〉 if 〈a′, q′, R〉 ∈ δ(q, a).

4. A successor of〈q, σa, ε〉 is 〈q′, σa′�, ε〉 if 〈a′, q′, R〉 ∈ δ(q, a).

We write〈q, σ〉 ` 〈q′, σ′〉 if the latter is a successor configuration of the former. A configuration
〈q, σ, σ′〉 of an ATM isfinal if g(q) = accept org(q) = reject.

The acceptance of an input string by an ATM is defined recursively starting from final configu-
rations. A final configuration is 0-accepting ifg(q) = accept. A non-final universal configuration
is n-accepting forn ≥ 1 if its every successor configuration ism-accepting for somem < n
and one of its successor configurations isn− 1-accepting. A non-final existential configuration is
n-accepting forn ≥ 1 if at least one of its successor configurations isn − 1-accepting and it has
nom-accepting successor configurations for anym < n − 1. Finally, an ATM accepts a given
input string if its initial configuration isn-accepting for somen ≥ 0. A configuration isaccepting
if it is n-accepting for somen ≥ 0.

If an ATM accepts a given input string, then we can definean accepting computation subtree
of the ATM and the input string as a setT of accepting configurations such that

1. the initial configuration is inT ,

2. if c ∈ T is a∀-configuration thenc′ ∈ T for all configurationsc′ such thatc ` c′,

3. if c ∈ T is ann-accepting∃-configuration thenc′ ∈ T for at least onec′ such thatc ` c′

andc′ ism-accepting for somem < n.

CHAPTER 2. BACKGROUND 25

A nondeterministic Turing machine is an ATM without universal states. A deterministic Turing
machine is an ATM with|δ(q, s)| = 1 for all q ∈ Q ands ∈ Σ.

The complexity classes used in this lecture are the following. PSPACE is the class of decision
problems solvable by deterministic Turing machines that use a number of tape cells bounded by a
polynomial on the input lengthn. Formally,

PSPACE=
⋃
k≥0

DSPACE(nk).

Other complexity classes are similarly defined in terms of the time consumption on a determin-
istic Turing machine (DTIME(f(n)), time consumption on a nondeterministic Turing machine
(NTIME(f(n)), or time or space consumption on alternating Turing machines (ATIME(f(n)) or
ASPACE(f(n))) [Balcázaret al., 1988; 1990].

P =
⋃

k≥0 DTIME(nk)
NP =

⋃
k≥0 NTIME(nk)

EXP =
⋃

k≥0 DTIME(2nk
)

NEXP =
⋃

k≥0 NTIME(2nk
)

EXPSPACE=
⋃

k≥0 DSPACE(2nk
)

2-EXP =
⋃

k≥0 DTIME(22nk

)

2-NEXP =
⋃

k≥0 NTIME(22nk

)

APSPACE=
⋃

k≥0 ASPACE(nk)
AEXPSPACE=

⋃
k≥0 ASPACE(2nk

)

There are many useful connections between complexity classes defined in terms of deterministic
and alternating Turing machines[Chandraet al., 1981], for example

EXP = APSPACE
2-EXP = AEXPSPACE.

Roughly, an exponential deterministic time bound corresponds to a polynomial alternating space
bound.

We have defined all the complexity classes in terms of Turing machines. However, for all
purposes of this lecture, we can equivalently use conventional programming languages (like C
or Java) or simplified variants of them for describing computation. The main difference between
conventional programming languages and Turing machines is that the former use random-access
memory whereas memory access in Turing machines is local and only the current tape cell can
be directly accessed. However, these two computational models can be simulated with each other
with a polynomial overhead and are therefore for our purposes equivalent. The differences show up
in complexity classes with very strict (subpolynomial) restrictions on time and space consumption.

Later in this lecture, the proofs of membership of a given computational problem in a certain
complexity class are usually given in terms of a program in a simple programming language com-
parable to a small subset of C or Java, instead of giving a formal description of a Turing machine
because the latter would usually be very complicated and difficult to understand.

A problemL is C-hard(where C is any of the complexity classes) if all problems in the class C
are polynomial timemany-one reducibleto it; that is, for all problemsL′ ∈ C there is a function

CHAPTER 2. BACKGROUND 26

fL′ that can be computed in polynomial time on the size of its input andfL′(x) ∈ L if and only if
x ∈ L′ for all inputsx. We say that the functionfL′ is a translation fromL′ to L. A problem is
C-completeif it belongs to the class C and is C-hard.

In complexity theory the most important distinction between computational problems is that
betweentractableand intractableproblems. A problem is considered to be tractable, efficiently
solvable, if it can be solved in polynomial time. Otherwise it is intractable. Most planning prob-
lems are highly intractable, but for many algorithmic approaches to planning it is important that
certain basic steps in these algorithms can be guaranteed to be tractable.

In this lecture we analyze the complexity of many computational problems, showing them to
be complete problems for some of the classes mentioned above. The proofs consist of two parts.
We show that the problem belongs to the class. This is typically by giving an algorithm for the
problem, possibly a nondeterministic one, and then showing that the algorithm obeys the resource
bounds on time or memory consumption as required by the complexity class. Then we show
the hardness of the problem for the class, that is, we can reduce any problem in the class to the
problem in polynomial time. This can be either by simulating all Turing machines that represent
computation in the class, or by reducing a complete problem in the class to the problem in question
in polynomial time (a many-one reduction).

For almost all commonly used complexity classes there are more or less natural complete prob-
lems that often have a central role in proving the completeness of other problems for the class in
question. Some complete problems for the complexity classes mentioned above are the following.1

class complete problem
P truth-value of formulae in the propositional logic in a given valuation
NP satisfiability of formulae in the propositional logic (SAT)
PSPACE truth-value of quantified Boolean formulae

Complete problems for classes like EXP and NEXP can be obtained from the P-complete and
NP-problems by representing propositional formulae succinctly in terms of other propositional
formulae[Papadimitriou and Yannakakis, 1986].

2.5 Exercises

2.1 Show that any transition system in which the states are valuations of a setA of propositional
variables can be translated into an equivalent succinct transition system.

2.2Show that conditional effects withB are necessary, that is, find a transition system where states
are valuations of a set of state variables and the actions cannot be represented as operators without
conditional effects withB. Hint: There is an example with two states and one state variable.

1For definition of P-hard problems we have to use more restricted many-one reductions that use only logarithmic
space instead of polynomial time. Otherwise all non-trivial problems in P would be P-hard and P-complete.

