Chapter 2

Background

In this chapter we will define the formal machinery which is needed for describing different plan-
ning problems and algorithms. We will give the basic definitions related to the classical proposi-
tional logic and the transition system model which is the basis of most work on planning and which
is closely related to finite automata and transition systems in other areas of computer science.

2.1 Transition systems

We define transition systems in which states are atomic objects and actions are represented as
binary relations on the set of states.

Definition 2.1 A transition systenis a 5-tuplell = (S, I, O, G, P) where
1. Sis afinite set of states,
. I C S isthe set of initial states,
. O is afinite set of actions C S x 5,

2
3
4. G C Sis the set of goal states, and
5

. P = (Cy,...,Cy) is a partition of S to non-empty classes of observationally indistin-
guishable states satisfying{C1,...,C,} = S andC; N C; = 0 for all 4, such that
1<i<y<n.

Making an observation tells which sé€t} the current state belongs to. Distinguishing states
within a givenC; is not possible by observations. If two states are observationally distinguishable
then plan execution can proceed differently for them.

The numbemn of components in the partitioR determines different classes of planning prob-
lems with respect to observability restrictions. nlf= |S| then every state is observationally
distinguishable from every other state. This is cafidtobservability If n = 1 then no observa-
tions are possible and the transition systemriebservableThe general case € {1,...,|S|}is
calledpartial observability

An actiono is applicablein states for which it associates at least one successor state. We define
imagesof states asmg,(s) = {s’ € S|sos’} and (weak)preimagesof states apreimg,(s’) =
{s € S|sos’}. Generalization to sets of statesinisg, (1) = U, img,(s) andpreimg,(T) =

8



CHAPTER 2. BACKGROUND 9

User Preimg,(s). For sequences, ..., o, of actionsimg,,. ..., (T') = img,,, (- --img,, (T) - - -)
andpreimg,, ... .., (T") = preimg, (- - -preimg,, (T) - - -). Thestrong preimagef a setl’ of states
is the set of states for which all successor states afg defined aspreimg(7) = {s € S|s' €
T, sos',img,(s) C T}.

Lemma 2.2 Images, strong preimages and weak preimages of sets of states are related to each
other as follows. Leb be any action and' and S’ any sets of states.

1. spreimg(7") C preimg,(T")

2. img,(spreimg (7)) C T

3. f T C T'thenimg(T) C img,(T").

4. preimg,(T'UT") = preimg,(T") U preimg,(7”).

5. s’ €img,(s) if and only ifs € preimg,(s).
Proof:

1. spreimg(T) = {s € S|s' € T, sos',imgy(s) CT} C {s € S|s'" € T,s05'} = Uyep{s €
S|sos'} = Uy er Preimg,(s’) = preimg, (7).

2. Take anys’ € img,(spreimg(7’)). Hence there is € spreimg(7) so thatsos’. As
s € spreimg(T), img,(s) C T'. Sinces’ € img,(s), s’ € T.

3. AssumeT C T" ands’ € img,(T). Hencesos’ for somes € T by definition of images.
Hencesos’ for somes € T" becausd’ C T". Hences’ € img,(7") by definition of images.

4. preimg,(TUT") = Uyerur s € Slsos’} = Ugep{s € Slsos'}UUy e {s € Slsos'} =
preimg,(7") U preimg,(T")

5. s €img,(s) iff sos’iff s € preimg,(s).

2.1.1 Deterministic transition systems

Transition systems which we use in Chapter 3 have only one initial state and deterministic actions.
For this subclass observability is irrelevant because the state of the transition system after a given
sequence of actions can be predicted exactly. We use a simpler formalization of them.

Definition 2.3 A deterministic transition system a 4-tuplell = (S, I, O, G) where
1. Sis afinite set of states,
2. I € Sisthe initial state,
3. O is afinite set of actions C S x S that are partial functions, and

4. G C Sisthe set of goal states.



CHAPTER 2. BACKGROUND 10

/—VB ABCDEF
A \ Al01T 0000
Bl00OO0OOO 1

D Ccloo1000

DI001000

F E E[01 0000
~_ 7 FlO0OO0OO0T10

Figure 2.1: The transition graph and the incidence matrix of a deterministic action

That the actions are partial functions means that forsaayS ando € O there is at most one
states’ such thatsos’. We denote the unique successor statef a states in which operaton
is applicable by’ = app,(s). For sequences;;. .. ; o, of operators we definapp,, ... .o, (s) as

apmy,, (- - appy, (s) - - ).

2.1.2 Incidence matrices

Actions and other binary relations can be represented in terms of incidence mafr{egacency
matrices) in which the element in roinand column;j indicates whether a transition from state
to j is possible.

Figure 2.1 depicts the transition graph of an action and the corresponding incidence matrix.
The action can be seen to be deterministic because for every state there is at most one arrow going
out of it, and each row of the matrix contains at most one non-zero element.

For matricesM, ..., M, which represent the transition relations of actiens. .., a, the
combined transition relation 8/ = M; + My 4+ --- + M,,. The matrixM/ now tells whether a
state can be reached from another state by at least one of the actions.

Here+ is the usual matrix addition that uses the Boolean addition for integers 0 and 1, which
is defined a®) + 0 = 0, andb + b = 1if b = 1 or¥ = 1. Boolean addition is used because
in the presence of nondeterminism we could have 1 for both of two transitions from A to B and
from A to C. For probabilistic planning problems normal addition is used and matrix elements are
interpreted as probabilities of nondeterministic transitions.

The incidence matrix corresponding to first taking actignand thenas is M7 Ms. This is
illustrated by Figure 2.2 The inner product of two vectors in the definition of matrix product
corresponds to the reachability of a state from another state through all possible intermediate
states.

Now we can compute for all pairs s’ of states whethes' is reachable froms by a sequence
of actions. LetM be the matrix that is the (Boolean) sum of the matrices of the individual actions.

Then define
RO = Inxn
Ri=R; 1+ MR;_;fori>1.

Heren is the number of states arigy,, is the unit matrix of sizex. By Tarski's fixpoint theorem
R; = R; for some: > 0 and allj > i because of the monotonicity property that every element
that is 1 for somé is 1 also for allj > i. Matrix R; = M°UM'U---UM? represents reachability



CHAPTER 2. BACKGROUND 11

O O O ofloo

o o ool
— o o ollollolm
o o o ool
X
oo~ OO
coc oo o~
coc oo o o0
— oo ooy
= N eNeNoNolles|
oo oo ol
Il
OO R MR, OO
oo oo ool
c oo oo o0
coc oo oy
— oo oo ol
O R OO O~

o~ o ool
o o o ollo|lolly

RESESES! IS
MmO QW
RISESES IS

Figure 2.2: Matrix product corresponds to sequential composition.

—8 C\ ABCDEF
A Al01 0000
Bl00O0OOO1

D Cloo1000

DI001000O

F E El01 0000
~_ 7 FIOOO0DO0OT10

Figure 2.3: A transition graph and the corresponding maltfix
by i actions or less.

2.2 Classical propositional logic

Let A be a set of propositional variables (atomic propositions). We define the set of propositional
formulae inductively as follows.

1. Foralla € A, a is a propositional formula.
2. If ¢ is a propositional formula, then so-igb.
3. If ¢ and¢’ are propositional formulae, then sodis/ ¢'.
4. If $ and¢’ are propositional formulae, then sodis\ ¢'.
5.

The symbolsl and T, respectively denoting truth-values false and true, are propositional
formulae.

The symbols\, vV and— areconnectivesespectively denoting theonjunction disjunctionand
negation We define the implicatiop — ¢’ as an abbreviation for¢ \V ¢’, and the equivalence
¢ < ¢ as an abbreviation fdip — ¢') A (¢' — ).

A valuation of A is a functionv : A — {0,1} where 0 denotes false and 1 denotes true.
Valuations are also known assignmentsr models For propositional variables € A we define



CHAPTER 2. BACKGROUND 12

e ¢ ABCDEF
A A0 10001
\\ b Bl000O0T11
Ccloo1000

2 E Dloo 1000
\Q:jff El01 0001
Fl010010

Figure 2.4: A transition graph extended with composed paths of length 2 and the corresponding
matrix M + M?

e c ABCDEF
A \\ A010011
\\ D Blo10011
cloo1000

F E:) D00 1000
<3\§ij71 El010011
Flo10011

Figure 2.5: A transition graph extended with composed paths of length 3 and the corresponding
matrix M + M? + M3

v E aifand only if v(a) = 1. A valuation of the propositional variables ihcan be extended to
a valuation of all propositional formulae ovdras follows.

1. v = —¢ifandonly ifv = ¢
2.vEg¢V¢ifandonlyifv = ¢orv = ¢
.vE¢A@ ifandonlyifv = ¢ andv = ¢
4. 0T

5. v L

Computing the truth-value of a formula under a given valuation of propositional variables is
polynomial time in the size of the formula by the obvious recursive procedure.

A propositional formulap is satisfiable(consistentif there is at least one valuatianso that
v | ¢. Otherwise it isunsatisfiablg(inconsistent A finite set /' of formulae is satisfiable if
/\¢€F ¢ is. A propositional formulap is valid or atautologyif v = ¢ for all valuationsv. We
denote this by= ¢. A propositional formulap is a logical consequenaeaf a propositional formula
¢, written ¢’ = ¢, if v = ¢ for all valuationsv such thaty = ¢’. A propositional formula that



CHAPTER 2. BACKGROUND 13

is a proposition variable or a negated propositional variabte for somea € A is a literal. A
formula that is a disjunction of literals &sclause

A formula ¢ is in negation normal fornr{NNF) if all occurrences of negations are directly in
front of propositional variables. Any formula can be transformed to negation normal form by
applications of the De Morgan ruleg¢ V ¢') = =p A ¢’ and—(p A ¢') = ¢V =¢/, the double
negation rule-—¢ = ¢. A formula¢ is in conjunctive normal forndCNF) if it is a conjunction of
disjunctions of literals. A formula is in disjunctive normal forn{iDNF) if it is a disjunction of
conjunctions of literals. Any formula in CNF or in DNF is also in NNF.

2.2.1 Quantified Boolean formulae

There is an extension of the satisfiability and validity problems of the classical propositional logic
with quantification over the truth-values of propositional variabf@gantified Boolean formulae
(QBF) are like propositional formulae but there are two new syntactic rules for the quantifiers.

6. If ¢ is aformula andi € A, thenVa¢ is a formula.
7. If pisaformula and € A, thendag is a formula.

Further, there is the requirement that every variable is quantified, that is, every occurrence of
a € AinaQBF is in the scope of eithér or Va.

Define ¢[y /x| as the formula obtained from by replacing occurrences of the propositional
variablez by .

We define the truth-value of QBF by reducing them to ordinary propositional formulae without
occurrences of propositional variables. The atomic formulae in these formulae are the constants
T and_L. The truth-value of these formulae is independent of the valuation, and is recursively
computed by the Boolean functions associated with the connectjivesnd —.

Definition 2.4 (Truth of QBF) A formula3z¢ is true if and only if¢[T /z] V ¢[L/x] is true.
(Equivalently, if¢[T /z] is true or¢[ L /x] is true.)

A formulavz¢ is true if and only if¢[ T /x] A ¢[L/x] is true. (Equivalently, ifp[T /z] is true
and¢[ L /x] is true.)

A formulag with an empty prefix (and consequently without occurrences of propositional vari-
ables) is true if and only i is satisfiable (equivalently, valid: for formulae without propositional
variables validity coincides with satisfiability.)

Example 2.5 The formulae/z3y(x < y) and3xTJy(x A y) are true.
The formulaedaVy(z < y) andVzVy(x Vv y) are false. [ |

Note that a QBF with only existential quantifiers is true if and only if the formula without the
quantifiers is satisfiable. Similarly, truth of QBF with only universal quantifiers coincides with the
validity of the corresponding formulae without quantifiers.

Changing the order of two consecutive variables quantified by the same quantifier does not
affect the truth-value of the formula. It is often useful to ignore the ordering in these cases and to
view each quantifier as quantifying a set of formulae, for exarple: vy, y2¢.

Quantified Boolean formulae are interesting because evaluating their truth-value is PSPACE-
completd Meyer and Stockmeyer, 19¥,2nd many computational problems that presumably can-
not be translated into the satisfiability problem of the propositional logic in polynomial time (as-
suming that NEEPSPACE) can be efficiently translated into QBF.



CHAPTER 2. BACKGROUND 14

2.2.2 Binary decision diagrams

Propositional formulae can be transformed to different normal forms. The most well-known nor-
mal forms are the conjunctive normal form (CNF) and the disjunctive normal form (DNF). For-
mulae in conjunctive normal form are conjunctions of disjunctions of literals, and in disjunctive
normal form they are disjunctions of conjunctions of literals. For every propositional formula
there is a logically equivalent one in both of these normal forms. However, the formula in normal
form may be exponentially bigger.

Normal forms are useful for at least two reasons. First, certain types of algorithms are easier to
describe when assumptions of the syntactic form of the formulae can be made. For example, the
resolution rule which is the basis of many theorem-proving algorithms, is defined for formulae in
the conjunctive normal form only (the clausal form). Defining resolution for non-clausal formulae
is more difficult.

The second reason is that certain computational problems can be solved more efficiently for
formulae in normal form. For example, testing the validity of propositional formulae is in general
co-NP-hard, but if the formulae are in CNF then it is polynomial time: just check whether every
conjunct contains both and—p for some propositiop.

Transformation into a normal form in general is not a good solution to any computationally
intractable problem like validity testing, because for example in the case of CNF, polynomial-time
validity testing became possible only by allowing a potentially exponential increase in the size of
the formula.

However, there are certain normal forms for propositional formulae that have proved very use-
ful in various types of reasoning needed in planning and other related areas, like model-checking
in computer-aided verification.

In this section we discuss (ordered) binary decision diagrams (B[Egant, 1992. Other
normal forms of propositional formulae that have found use in Al and could be applied to planning
include the decomposable negation normal f¢Barwiche, 2001 which is less restricted than
binary decision diagrams (formulae in DNNF can be viewed as a superclass of BDDs) and are
sometimes much smaller. However, smaller size means that some of the logical operations that
can be performed in polynomial time for BDDs, like equivalence testing, are NP-hard for formulae
in DNNF.

The main reason for using BDDs is that the logical equivalence of BDDs coincides with syn-
tactic equivalence: two BDDs are logically equivalent if and only if they are the same BDD.
Propositional formulae in general, or formulae in CNF or in DNF do not have this property. Fur-
thermore, computing a BDD that represents the conjunction or disjunction of two BDDs or the
negation of a BDDs also takes only polynomial time.

However, like with other normal forms, a BDD can be exponentially bigger than a correspond-
ing unrestricted propositional formula. One example of such a propositional formulae is the binary
multiplier: Any BDD representation af-bit multipliers has a size exponential in Also, even
though many of the basic operations on BDDs can be computed in polynomial time in the size
of the component BDDs, iterating these operations may increase the size exponentially: some of
these operator may double the size of the BDD, and doublitimes is exponential im and in
the size of the original BDD.

A main application of BDDs has been model-checking in computer-aided verifid&imeh
et al, 1994, Clarkeet al, 1994, and in recent years these same techniques have been applied to
Al planning as well. We will discuss BDD-based planning algorithms in Chapter 4.



CHAPTER 2. BACKGROUND 15

Figure 2.6: A BDD

BDDs are expressed in terms of the ternary Boolean operator if-theitelsep, , ¢2) defined
as(pA¢1)V (—pAg2), wherep is a proposition. Any Boolean formula can be represented by using
this operator together with propositions and the constaraad_L. Figure 2.6 depicts a BDD for
the formula(A v B) A (B v C). The normal arrow coming from a node fér corresponds to
the case in whiclP is true, and the dotted arrow to the case in whitts false. Note that BDDs
are graphs, not trees like formulae, and this provides a further reduction in the BDD size as a
subformula never occurs more than once.

There is an ordering condition on BDDs: the occurrences of propositions on any path from the
root to a leaf node must obey a fixed ordering of the propositions. This ordering condition together
with the graph representation is required for the good computational properties of BDDs, like the
polynomial time equivalence test.

A BDD corresponding to a propositional formula can be obtained by repeated application of
an equivalence called the Shannon expansion.

¢ = (pAQ[T/p))V (=0 A @[L/p]) = ite(p, ¢[T/pl, o[ /p])

Example 2.6 We show how the BDD fofA Vv B) A (B Vv C) is produced by repeated application
of the Shannon expansion. We use the variable ordeting, C and use the Shannon expansion
to eliminate the variables in this order.

(AVB)AN(BVC(C)
ite(A,(TVB)A(BVC),(LVB)A(BV())
ite(A, BV C, B)

ite(A,ite(B, TV C,LVvC),ite(B, T,1))
ite(A,ite(B, T,C),ite(B, T, 1))
ite(A,ite(B, T,ite(C, T, L)), ite(B, T, 1))

The simplifications in the intermediate steps are by the equivalehces = T and L V ¢ = ¢
andT A¢g=¢andl A ¢ = 1. When

ite(A,ite(B, T,ite(C, T, 1)),ite(B, T, 1))

is first turned into a tree and then equivalent subtrees are identified, we get the BDD in Figure 2.6.
The terminal node 1 correspondsTaand the terminal node O to. |

There are many operations on BDDs that are computable in polynomial time. These include
forming the conjunctiom and the disjunctiory of two BDDs, and forming the negation of a



CHAPTER 2. BACKGROUND 16

BDD. However, conjunction and disjunction @fBDDs may have a size that is exponentiahin
as adding a new disjunct or conjunct may double the size of the BDD.
An important operation in many applications of BDDs is the existential abstraction operation
Jp.¢, which is defined by
Ip.¢ = o[T/p] V ¢[L/p]

whereg|[y)/p] means replacing all occurrencespah ¢ by . Also this is computable in polyno-
mial time, and in contrast to repeated conjunction and disjunction, repeated existential abstraction
of several variables remains a polynomial time operation. Existential abstraction can of course be
used for any propositional formulae, not only for BDDs.

The formulag’ obtained fromyp by existentially abstracting is in general not equivalent 0,
but has many properties that make the abstraction operation useful.

Lemma 2.7 Let¢ be a formula ang a proposition. Lety = Ip.¢p = ¢[T /p] vV ¢[L/p]. Now the
following hold.

1. ¢ is satisfiable if and only i’ is.
2. ¢isvalid if and only if¢’ is.
3. If x is a formula without occurrences pf theng = x if and only if¢’ = x.

Example 2.8

dB.((A—B) AN (B—C))
= ((A=T)AN(T=C)V(A—=L)A(L=0C))
=CV-A=A-C

JAB.(AVB)=3B(TVB)V(LVB)=(TVT)V(LVT)V{(TVvLV(LVL))

2.2.3 Algebraic decision diagrams

Algebraic decision diagrams (ADD§fujita et al,, 1997; Bahaet al, 1997 are a generalization

of binary decision diagrams that has been applied to many kinds of probabilistic extensions of
problems solved by BDDs. BDDs have only two terminal nodes, 1 and 0, and ADDs generalize
this to a finite number of real numbers.

While BDDs represent Boolean functions, ADDs represent mapping from valuations to real
numbers. The Boolean operations on BDDs, like taking the disjunction or conjunction of two
BDDs, generalize to the arithmetic operations to take the arithmetic sum or the arithmetic product
of two functions. There are further operations on ADDs that have no counterpart for BDDs, like
constructing a function that on any valuation equals the maximum of two functions.

Figure 2.7 depicts three ADDs, the first of which is also a BDD. The product of ADDs is a
generalization of conjunction of BDDs: if for some valuation/state ABssigns the value,
and ADD B assigns the value,, then the product ADA - B assigns the value; - 5 to the
valuation.

The following are some of the operations typically available in implementations of ADDs.
Here we denote ADDs by andg and view them as functions from valuationso real numbers.



CHAPTER 2. BACKGROUND 17

(b)
Figure 2.7: Three ADDs, the first of which is also a BDD.

operation notation meaning
sum f+g (f +9)(x) = fz) + g(x)
product fg (f-9)(x) = f(x) - g(z)

maximization max(f,g) (max(f,g))(x)=max(f(x),g(zx))

There is an operation for ADDs that corresponds to the existential abstraction operation on
BDDs, and that is used in multiplication of matrices represented as ADDs, just like existential
abstraction is used in multiplication of Boolean matrices represented as BDDs.

Let f be an ADD andp a proposition. Themrithmetic existential abstractioaf f, written
dp. f, is an ADD that satisfies the following.

Gp-N(x) = (FIT/pD) (@) + (FIL/p)(2)

2.3 Succinct transition systems

It is often more natural to represent the states of a transition system as valuations of state variables
instead of enumeratively as in Section 2.1. The binary relations that correspond to actions can
often be represented compactly in terms of the changes the actions cause to the values of state
variables.

We represent states in terms of a detf Boolean state variables which take the valtras or
false Eachstateis a valuation ofA (a functions : A — {0, 1}.)

Since we identify states with valuations of state variables, we can now identify sets of states
with propositional formulae over the state variables. This allows us to perform set-theoretic opera-
tions on sets as logical operations and test relations between sets by inference in the propositional
logic as summarized in Table 2.1

The actions of a succinct transition system are described by operators. An operator has two
components. The precondition describes the set of states in which the action can be taken. The
effect describes the successor states of each state in terms of the changes made to the values of the
state variables.

Definition 2.9 Let A be a set of state variables. Aperatoiis a pair (c, ¢) wherec is a proposi-
tional formula overA (the precondition, ande is aneffectover A. Effects over are recursively
defined as follows.



CHAPTER 2. BACKGROUND 18

set formula
TUU TVU
TnU TANU
T -T
U TN-U
0 1

the universal set T

guestion about setbquestion about formulae

TCU? ET0U7?
TCcU? ET—UandEU—T?
T=U? =T o U?

Table 2.1: Correspondence between set-theoretical and logical operations

1. a and—a for state variables: € A are effects oveH.

2. e1 AN+ ANeyisaneffectover if eq, . .., e, are effects over (the special case with = 0
is the empty effect).

3. ¢ > eis an effect oveH if cis a formula overd ande is an effect over.
4. eq|---|ey is an effect overl if ey, ..., e, for n > 2 are effects oveH.

The compound effectg A - - - A e, denote executing all the effeats, . . ., e,, simultaneously.
In conditional effects: > e the effecte is executed ifc is true in the current state. The effects
e1|-- - |en, denote nondeterministic choice between the effects. ., e,. Exactly one of these
effects is chosen randomly.

Operators describe a binary relation on the set of states as follows.

Definition 2.10 (Operator application) Let (c,e) be an operator overd. Lets be a state (a
valuation ofA). The operator ispplicable ins if s |= ¢ and every seEl € [¢], is consistent. The
set[e]s is recursively defined as follows.

1. [a]s = {{a}} and[—a]s = {{—a}} fora € A.

2. [61 VANERRIA €n}s = {U?:l E1|E1 € [61]3, ..., By e [en]s}.
3. [ >e]ls = [e]sif s = and[d > ¢]s = {0} otherwise.
4. [e1]| - len]s = [e1]s U - Ulen]s -

An operator{c, ¢) induces a binary relatiom(c, e) on states as follows: statesands’ are related
by R{c,e) if s = c and s’ is obtained froms by making the literals in somg' € [e], true and
retaining the values of state variables not occurringfin

We define images and preimages for operatangerms ofR(o), for instance byreimg,(s) =
preimggz o) (s)-

Definition 2.11 A succinct transition systei a 5-tuplell = (A, I,0, G, V) where



CHAPTER 2. BACKGROUND 19

1. Ais afinite set of state variables,

2. I is aformula overA describing the initial states,

3. O s afinite set of operators ovet,

4. G is a formula overA describing the goal states, and
5. V C Aisthe set of observable state variables.

Succinct transition systems wilh = A arefully observableand succinct transition systems
with V' = () are unobservable Without restrictions orl/ the succinct transition systems are
partially observable

We can associate a transition system with every succinct transition system.

Definition 2.12 Given a succinct transition systeth = (A, 7,0, G, V), define the transition
systen¥ (IT) = (S, I’,0’, G', P) where

1. Sis the set of all Boolean valuations df
2. I'={s e S|s =1},

3. 0’ ={R(0)|o € O},

4. G'={se S|s G}, and

5

. P=(Cy,...,Cp) whereuvy, ..., v, for n = 2/VI are all the Boolean valuations af and
C; ={s € S|s(a) =wvi(a) foralla € V}foralli € {1,...,n}.

The transition system may have a size that is exponential in the size of the succinct transition
system. However, the construction takes only polynomial time in the size of the transition system.

2.3.1 Deterministic succinct transition systems

A deterministic operator has no occurrenceg of the effect. Further, in this special case the
definition of operator application is slightly simpler.

Definition 2.13 (Operator application) Let (c, e) be a deterministic operator ovet. Lets be a
state (a valuation ofd). The operator isapplicable ins if s |= ¢ and the sefe]?! is consistent.
The sefe]?! is recursively defined as follows.

1. [a]9¢t = {a} and[-a]9*! = {-a} for a € A.
2. [er Aeo Aen] 3 = Uiy les]d.

3. [¢ > e]det = [e]%tif s |= ¢ and [ > €]% = () otherwise.

A deterministic operatofc, e) induces a partial functiorR(c, e) on states as follows: two states
s and s’ are related byR(c, e) if s = c and s’ is obtained froms by making the literals irje] %
true and retaining the truth-values of state variables not occurring]iff’.



CHAPTER 2. BACKGROUND 20

We defineapp,(s) = s’ by sR(0)s’ andapp,,....o,(s) = s’ by app,,,(...apm,(s)...), just
like for non-succinct transition systems.
We formally define deterministic succinct transition systems.

Definition 2.14 A deterministic succinct transition systesma 4-tuplell = (A, I, O, G) where
1. Ais afinite set of state variables,
2. I'is aninitial state,
3. O s afinite set of operators ovet, and
4. G is a formula overA describing the goal states.

We can associate a deterministic transition system with every deterministic succinct transition
system.

Definition 2.15 Given a deterministic succinct transition systéim= (A, I, O, G), define the
deterministic transition syste(IT) = (S, I,O’, G') where

1. S is the set of all Boolean valuations df
2. O' ={R(o0)|o € O}, and
3. G'={seS|s=G}.

A subclass of operators considered in many early and recent works resBTdRI® Dperators.
An operator(c, e) is a STRIPS operator ifis a conjunction of state variables anid a conjunction
of literals. STRIPS operators do not allow disjunctivity in formulae nor conditional effects. This
class of operators is sufficient in the sense that any transition system can be expressed in terms of
STRIPS operators only if the identities of operators are not important: when expressing a transition
system in terms of STRIPS operators only some operators correspond to an exponential number
of STRIPS operators.

Example 2.16 Let A = {a4, ..., a,} be the set of state variables. let (T, e) where
e= (a1 > —-a1) A(may > ap) A A(ap > —ap) A (—ay > ay)).

This operator reverses the values of all state variables. As its set of active gff¢étis different
in every one ob" states, this operator correspond2tcSTRIPS operators.

(may A—ag Ao AN Sap,ar Aag A A ay,
01 = (ag AN—ag A+ N —ap,mar Aag A -+ Aay,
(may Nag A -+ N =ap, a1 A—ag A A ay
(ag Nag A\ -+ A =ap,—a; A—ag A - A ay

)
)
)
)



CHAPTER 2. BACKGROUND 21
>(er A Nep) = (c>er) AN A(cD> ep) (2.1)

> (ca>e) = (g Neg) > (2.2)

(c1 > e) (ca>e)=(c1Ver)>e (2.3)

ANc>e)=e (2.4)

e=TD>e (2.5)

e1 N\ (ea Nes) = (e1 Nea) ANes (2.6)

e1 Ney = eg A e (2.7)

c>T =T (2.8)

eNT =e (2.9)

Table 2.2: Equivalences on effects

2.3.2 Extensions

The basic language for effects could be extended with further constructs. A natural construct is
sequential compositioof effects. Ife ande’ are effects, then alsg ¢’ is an effect that corresponds

to first executing: and there’. Definition 3.11 and Theorem 3.12 show how effects with sequential
composition can be reduced to effects without sequential composition.

2.3.3 Normal form for deterministic operators

Deterministic operators can be transformed to a particularly simple form without nesting of con-
ditionality > and with only atomic effects as antecedents of conditionals> . Normal forms
are useful as they allow concentrating on a particularly simple form of effects.

Table 2.2 lists a number of equivalences on effects. Their proofs of correctness with Definition
2.13 are straightforward. An effeetis equivalent toT A e, and conjunctions of effects can be
arbitrarily reordered without affecting the meaning of the operator. These trivial equivalences will
later be used without explicitly mentioning them, for example in the definitions of the normal
forms and when applying equivalences.

The normal form corresponds to moving all occurrences afsideA so that the consequents
of > are atomic effects.

Definition 2.17 A deterministic effect is in normal formif it is T or a conjunction of one or
more effects: > a andc > —a with at most one occurrence of atomic effecind —a for any
a € A. An operator{c, ) is in normal form ife is in normal form.

Theorem 2.18 For every deterministic operator there is an equivalent one in normal form. There
is one that has a size that is polynomial in the size of the operator.

Proof. We can transform any deterministic operator into normal form by using the equivalences
in Table 2.2. The proof is by structural induction on the effeof the operatokc, e).

Induction hypothesis: the effeetcan be transformed to normal form.

Base case k = T: This is already in normal form.



CHAPTER 2. BACKGROUND 22

Base case & = a ore = —a: An equivalent effect in normal form i$ > e by Equivalence
2.5.

Inductive case le = ey A ey: By the induction hypothesis; andes can be transformed into
normal form, so assume that they already are. If ong @inde, is T, by Equivalence 2.9 we can
eliminate it.

Assumee; containse; > [ for some literal andes containsey > . We can reorded; Aes with
Equivalences 2.6 and 2.7 so that one of the conjundts is- I) A (c2 > ). Then by Equivalence
2.3 it can be replaced bl Vv ¢2) > . Since this can be done repeatedly for every litérale
can transforne; A eg into normal form.

Inductive case 2¢ = z > e;: By the induction hypothesis; can be transformed to normal
form, so assume that it already is.

If e1is T, e can be replaced by which is in normal form.

If e; = 2’ > ey for somez’ andes, thene can be replaced by the equivalent (by Equivalence
2.2) effect(z A ') > e2 in normal form.

Otherwise e, is a conjunction of effects > [. By Equivalence 2.1 we can moweanside the
conjunction. Applications of Equivalences 2.2 transform the effect into normal form.

In this transformation the conditionsin ¢ > e are copied into front of the atomic effects.
Let m be the sum of the sizes of all the conditiansand letrn. be the number of occurrences of
atomic effects: and—a in the effect. An upper bound on size of the new effedigm) which
is polynomial in the size of the original effect. 0

2.3.4 Normal forms for nondeterministic operators

We can generalize the normal form defined in Section 2.3.3 to hondeterministic effects and opera-
tors. In the normal form nondeterministic choices and conjunctions are the outermost constructs,
and consequentsof conditional effects: > e are atomic effects.

Definition 2.19 (Normal form for nondeterministic operators) A deterministic effect is in nor-
mal form if it is T or a conjunction of one or more effects> a andc¢ > —a with at most one
occurrence ofi and—a for anya € A.

A nondeterministic effect is in normal form if itég| - - - |e,, or e; A - - - A e, for effectse; that
are in normal form.

A nondeterministic operatafe, e) is in normal form ife is in normal form.

For showing that every nondeterministic effect can be transformed into normal form we use
further equivalences that are given in Table 2.3.

Theorem 2.20 For every operator there is an equivalent one in normal form. There is one that
has a size that is polynomial in the size of the former.

Proof: Transformation to normal form is like in the proof of Theorem 2.18. Additional equiva-
lences needed for nondeterministic choices are 2.10 and 2.11. O

Example 2.21 The effect
at> (bl(c A f)) A ((dNe)|(br>e))



CHAPTER 2. BACKGROUND 23

c> (e1]-len) = (e>er)] - |(c>ep) (2.10)
eN(er]---len) = (eNer)| (e Nep) (2.11)

(eh] -~ lep)leal -+ len = €] -~ lelea] - len (2.12)
(€ A(c>er))lea] - len = (e> ((e' Aer)lea] -+ |en)) A (e > (ea] - len)) (2.13)

Table 2.3: Equivalences on nondeterministic effects

in normal form is

((a>d)[((a>c)Alar> ) AT >d)A(T > e)|(b > e)).

For some applications a still simpler form of operators is useful. In the second normal form
for nondeterministic operators nondeterminism may appear only at the outermost structure in the
effect.

Definition 2.22 (Normal form Il for nondeterministic operators) A deterministic effectis in nor-
mal formal Il if it is T or a conjunction of one or more effect$> a andc > —a with at most one
occurrence of; and—a for anya € A.

A nondeterministic effect is in normal form Il if it is of foreq| - - - |e,, wheree; are determin-
istic effects in normal form 11

A nondeterministic operatafe, e) is in normal form Il ife is in normal form II.

Theorem 2.23 For every operator there is an equivalent one in normal form II.

Proof: By Theorem 2.20 there is an equivalent operator in normal form. The transformation
further into normal form Il requires equivalences 2.11 and 2.12. O

2.4 Computational complexity

In this section we discuss deterministic, nondeterministic and alternating Turing machines (DTMs,
NDTMs and ATMs) and define several complexity classes in terms of them. For a detailed intro-
duction to computational complexity see any of the standard textbl®disazaret al, 1988;
1990; Papadimitriou, 1994

The definition of ATMs we use is like that of Balezar et al[1990 but without a separate input
tape. Deterministic and nondeterministic Turing machines (DTMs, NDTMs) are a special case of
alternating Turing machines.

Definition 2.24 Analternating Turing machinis a tuple(>, @, d, qo, g) Where

e Y is afinite alphabet (the contents of tape cells),

e () is afinite set of states (the internal states of the ATM),



CHAPTER 2. BACKGROUND 24

e §is atransition functiord : Q x (X U {|,0}) — 20N x@x{LN.R}
e ¢ is the initial state, and
e g:@Q — {V,3,acceptreject} is a labeling of the states.

The symbols| and[J, the end-of-tape symbol and the blank symbol, in the definition of
respectively refer to the beginning of the tape and to the end of the tape. It is required-that
andm = R for all (s,q’,m) € d(q,|) for anyq € Q, that is, at the left end of the tape the
movement is always to the right and the end-of-tape syrmbay not be changed. Fere ¥ we
restricts’ in (s, ¢',m) € §(q,s) to s’ € X, that is,| gets written onto the tape only in the special
case when the R/W head is on the end-of-tape symbol. Note that the transition function is a total
function, and the ATM computation terminated upon reaching an accepting or a rejecting state.

A configuration of an ATM idq, o, o’) whereq is the current state;, is the tape contents left of
the R/W head with the rightmost symbol under the R/W head ddnsithe tape contents strictly
right of the R/W head. This is a finite representation of the finite non-blank segment of the tape of
the ATM. The configuration is universat)if g(q) = ¥, and existentialy) if g(¢) = 3.

The computation of an ATM starts from the initial configuratip, |a, o) whereao is the
input string of the Turing machine. Belowndenotes the empty string.

Successor configurations are defined as follows.

1. A successor ofq,oa,c’)is (¢',o,d'd’) if (d',¢', L) € §(q,a).
2. A successor ofq,ca,0’) is (¢',cd’, o'} if (d',q',N) € 6(q,a).
3. Asuccessor ofq, oa,bo’) is (¢',oad’b, o’} if (d',q¢', R) € §(q,a).
4. A successor ofq, oa, €) is (¢/,od'0, €) if (d’,q', R) € d(q,a).

We write(q, o) I (¢’, ¢’} if the latter is a successor configuration of the former. A configuration
(q,0,0") of an ATM isfinal if g(q) = accept ory(q) = reject.

The acceptance of an input string by an ATM is defined recursively starting from final configu-
rations. A final configuration is 0-acceptinggfq) = accept. A non-final universal configuration
is n-accepting forn > 1 if its every successor configurationsis-accepting for somen < n
and one of its successor configurations is 1-accepting. A non-final existential configuration is
n-accepting fom > 1 if at least one of its successor configurations is 1-accepting and it has
no m-accepting successor configurations for amy< n — 1. Finally, an ATM accepts a given
input string if its initial configuration i&-accepting for some > 0. A configuration isaccepting
if it is n-accepting for some > 0.

If an ATM accepts a given input string, then we can defineaccepting computation subtree
of the ATM and the input string as a sEtof accepting configurations such that

1. the initial configuration is iff’",
2. if ¢ € T is aV-configuration ther’ € T for all configurations’ such that - ¢/,

3. if ¢ € T is ann-acceptingd-configuration ther/ € T for at least one’ such that: - ¢/
andc’ is m-accepting for some: < n.



CHAPTER 2. BACKGROUND 25

A nondeterministic Turing machine is an ATM without universal states. A deterministic Turing
machine is an ATM withd (g, s)| = 1 forall ¢ € Q ands € X.

The complexity classes used in this lecture are the following. PSPACE is the class of decision
problems solvable by deterministic Turing machines that use a number of tape cells bounded by a
polynomial on the input length. Formally,

PSPACE= |_J DSPACHn").
k>0

Other complexity classes are similarly defined in terms of the time consumption on a determin-
istic Turing machine (DTIMEf(n)), time consumption on a nondeterministic Turing machine
(NTIME(f(n)), or time or space consumption on alternating Turing machines (ATVB( or
ASPACE(f(n))) [Balcazaret al., 1988; 1990.

P = U>o DTIME(n%)

NP = ;o NTIME (n¥)

EXP = (J,, DTIME (2"")
NEXP = [J,-o NTIME(2"")
EXPSPACE= | J,., DSPACH2"")
2-EXP = U~ DTIME(22"k)
2-NEXP = U, NTIME(22"k)

k

APSPACE= |, ASPACEn")
AEXPSPACE= |-, ASPACE2"")

There are many useful connections between complexity classes defined in terms of deterministic
and alternating Turing machiné§handrzet al., 1981, for example

EXP = APSPACE
2-EXP = AEXPSPACE

Roughly, an exponential deterministic time bound corresponds to a polynomial alternating space
bound.

We have defined all the complexity classes in terms of Turing machines. However, for all
purposes of this lecture, we can equivalently use conventional programming languages (like C
or Java) or simplified variants of them for describing computation. The main difference between
conventional programming languages and Turing machines is that the former use random-access
memory whereas memory access in Turing machines is local and only the current tape cell can
be directly accessed. However, these two computational models can be simulated with each other
with a polynomial overhead and are therefore for our purposes equivalent. The differences show up
in complexity classes with very strict (subpolynomial) restrictions on time and space consumption.

Later in this lecture, the proofs of membership of a given computational problem in a certain
complexity class are usually given in terms of a program in a simple programming language com-
parable to a small subset of C or Java, instead of giving a formal description of a Turing machine
because the latter would usually be very complicated and difficult to understand.

A problemL is C-hard(where C is any of the complexity classes) if all problems in the class C
are polynomial timenany-one reduciblé it; that is, for all problemd.” € C there is a function



CHAPTER 2. BACKGROUND 26

fr that can be computed in polynomial time on the size of its inputfan@:) € L if and only if
x € L' for all inputsz. We say that the functiorf; is a translation fronZ.’ to L. A problem is
C-completdf it belongs to the class C and is C-hard.

In complexity theory the most important distinction between computational problems is that
betweentractableandintractableproblems. A problem is considered to be tractable, efficiently
solvable, if it can be solved in polynomial time. Otherwise it is intractable. Most planning prob-
lems are highly intractable, but for many algorithmic approaches to planning it is important that
certain basic steps in these algorithms can be guaranteed to be tractable.

In this lecture we analyze the complexity of many computational problems, showing them to
be complete problems for some of the classes mentioned above. The proofs consist of two parts.
We show that the problem belongs to the class. This is typically by giving an algorithm for the
problem, possibly a nondeterministic one, and then showing that the algorithm obeys the resource
bounds on time or memory consumption as required by the complexity class. Then we show
the hardness of the problem for the class, that is, we can reduce any problem in the class to the
problem in polynomial time. This can be either by simulating all Turing machines that represent
computation in the class, or by reducing a complete problem in the class to the problem in question
in polynomial time (a many-one reduction).

For almost all commonly used complexity classes there are more or less natural complete prob-
lems that often have a central role in proving the completeness of other problems for the class in
question. Some complete problems for the complexity classes mentioned above are the fallowing.

class \ complete problem
P truth-value of formulae in the propositional logic in a given valuation
NP satisfiability of formulae in the propositional logic (SAT)

PSPACE| truth-value of quantified Boolean formulae
Complete problems for classes like EXP and NEXP can be obtained from the P-complete and
NP-problems by representing propositional formulae succinctly in terms of other propositional
formulae[Papadimitriou and Yannakakis, 1986

2.5 Exercises

2.1 Show that any transition system in which the states are valuations ofAaafgiropositional
variables can be translated into an equivalent succinct transition system.

2.2 Show that conditional effects with are necessary, that is, find a transition system where states
are valuations of a set of state variables and the actions cannot be represented as operators without
conditional effects with>. Hint: There is an example with two states and one state variable.

For definition of P-hard problems we have to use more restricted many-one reductions that use only logarithmic
space instead of polynomial time. Otherwise all non-trivial problems in P would be P-hard and P-complete.



