▶ Basic scheduling problems: open shop, job shop, flow job

▶ The disjunctive graph representation

Algorithms for solving the job shop problem

Computational complexity of the job shop problem

Scheduling (July 11, 2005)

Motivation

Formalization

Algorithms

Disjunctive graph Branch & bound Local search

Complexity

Approximability

(Albert-Ludwigs-Universität Freiburg)

1 / 24

(Albert-Ludwigs-Universität Freiburg)

Problem types

Al Planning

July 11, 2005 2 / 24

Open shop, job shop, flow shop scheduling

- 1. Open shop: no ordering constraints on operations
- 2. Job shop: Operations of a job totally ordered
- 3. Flow shop: in each job exactly one operation for every machine, all jobs go through all the machines in the same order

Preemptive scheduling: no operation may be interrupted when it has already been started.

(Albert-Ludwigs-Universität Freiburg)

operation at a time.

Al Planning

Motivation

Each operation can be performed on one of machines. Operations

have a duration (an integer). Each machine can handle one

Open shop, job shop, flow shop scheduling

▶ Perform certain jobs, each consisting of operations.

1. time consumption is $\leq T$ for some constant T, or 2. time consumption is smallest possible.

▶ Objective: schedule operations so that

July 11, 2005 3 / 24

(Albert-Ludwigs-Universität Freiburg)

ightharpoonup a set M of machines,

occurrence.)

Al Planning

A problem instance $P = \langle M, O, J \rangle$ in job shop scheduling consists of

▶ a set O of operations o, each associated with a machine

▶ a set J of jobs $\langle o_1, \dots, o_n \rangle$ (each operation has exactly one

 $m(o) \in M$ and having a duration $d(o) \in \mathcal{N}$, and

July 11, 2005 4 / 24

Formalization

Formalization of job shop scheduling

Related problems

- Planning.
- Others:
 - ▶ Course scheduling for schools (lecture halls, lecturers)
 - Timetabling for railways
 - Crew scheduling for airlines/railways etc.
 - ▶ Flight timetabling for airlines
 - ▶ Fleet assignment for airlines

(Albert-Ludwigs-Universität Freiburg)

Al Planning

July 11, 2005

5 / 24

(Albert-Ludwigs-Universität Freiburg)

Al Planning

July 11, 2005 6 / 24

Formalization of job shop scheduling

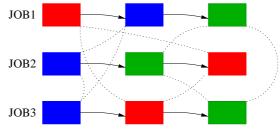
Definition

A schedule S for P assigns to every operation o a time b(o):

- 1. $b(o) \ge 0$ for all $o \in O$
- 2. $b(o) \ge b(o') + d(o')$ for operations o' preceding o in the same job
- 3. $b(o) \ge b(o') + d(o')$ or $b(o') \ge b(o) + d(o)$ for all $o' \in O$ with m(o') = m(o) and $o \neq o'$

Schedule S has cost T if $b(o) + d(o) \le T$ for all $o \in O$.

The ("disjunctive") graph representation



The dotted edges indicate that two operations are on the same machine, and one of the operations has to precede the other.

(Albert-Ludwigs-Universität Freiburg) Al Planning July 11, 2005 7 / 24 (Albert-Ludwigs-Universität Freiburg) Al Planning

July 11, 2005 8 / 24

Algorithms Disjunctive graph

The ("disjunctive") graph representation

Finding a schedule proceeds as follows.

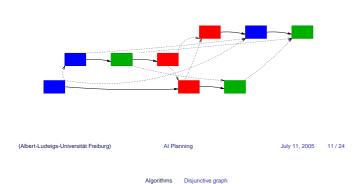
- 1. Assign a direction to every edge without introducing cycles.
- 2. Topologically sort the graph (total order.)
- 3. Assign starting and ending times to the operations.

The topologically sorted graph determines the earliest possible starting and ending times of all operations uniquely.

(Albert-Ludwigs-Universität Freiburg) July 11, 2005

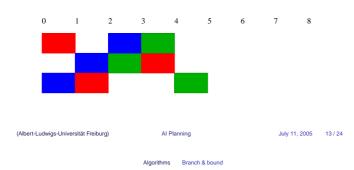
The ordering in the schedule

We draw the graph so that all edges go from left to right:



Assignment of time points to the schedule

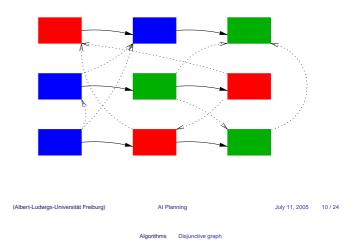
Obviously, the preceding schedule is not the best possible. E.g. the following is much better.



Algorithms for scheduling: branch and bound

- \blacktriangleright Labels of search tree nodes are $x_1x_2\dots x_n$, with $x_i\in\{0,1,?\}$ representing the undirected edges. $(\rightarrow, \leftarrow, \text{undecided.})$
- ▶ One child assigns 0 to x_i and the other assigns 1.
- ▶ Search tree is pruned by computing lower bounds on the cost.
- ▶ If the graph becomes cyclic or lower bound exceeds cost of the best schedule so far, prune the subtree.
- \blacktriangleright When all x_i have value 0 or 1, we have found a schedule.

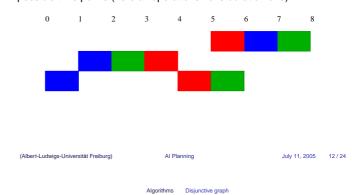
One schedule for the problem instance



Algorithms Disjunctive graph

Assignment of time points to the schedule

Given the ordering of operations, assign all the operations the earliest possible time points (here all operations have duration one):



Algorithms for scheduling

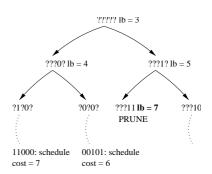
There are two main approaches to finding schedules:

- 1. branch and bound: systematic binary search in the space of all schedules,
- 2. local search: schedule is gradually improved.

Both can be used with different schedule representations:

- 1. the disjunctive graphs, or
- 2. assignments of time points/intervals to operations.

Branch and bound: an example



(Albert-Ludwigs-Universität Freiburg) Al Planning July 11, 2005 15 / 24 (Albert-Ludwigs-Universität Freiburg) Al Planning July 11, 2005 16 / 24

Algorithms Branch & bound

Lower bounds of schedule cost

Given a disjunctive graph, define for an operation o

- ▶ head(o): time necessarily needed before processing o Highest duration of a directed path that ends in o
- ▶ tail(o): time necessarily needed after processing o Highest duration of a directed path that starts from o

Define for a set S of operations

▶ the shortest head $H(S) = \min_{o \in S} \text{head}(o)$

Lower bounds of schedule cost (cont'd)

- the shortest tail $T(S) = \min_{o \in S} \text{tail}(o)$
- ▶ the sum of processing times $P(S) = \sum_{o \in S} d(o)$

(Albert-Ludwigs-Universität Freiburg)

Al Planning

July 11, 2005 17 / 24

(Albert-Ludwigs-Universität Freiburg)

Al Planning

July 11, 2005 18 / 24

Lower bounds of schedule cost (cont'd)

Given a set of operations S on one machine, H(S) + P(S) + T(S) is a lower bound on the cost of the schedule:

- ▶ Operations S cannot overlap because they are on the same machine: at least time P(S) is needed for processing S.
- If from operations in S the one with the shortest head is performed first, at least time H(S) is needed before S.
- lacktriangleright If from operations in S the one with the shortest tail is performed last, at least time T(S) is needed after S.

Lower bounds of schedule cost (cont'd)

Let O_m be the set of operations on machine m. Now a lower bound on the cost of schedule is

$$\max_{m \in M} \left(\max_{S \subseteq O_m} H(S) + P(S) + T(S) \right)$$

In other words, we compute the lower bounds on all sets \boldsymbol{S} of operations that are computed on one machine.

(Albert-Ludwigs-Universität Freiburg)

Al Planning

Algorithms Local search

July 11, 2005 19 / 24 (Albert-Ludwigs-Universität Freiburg)

Al Planning

July 11, 2005 20 / 24

Algorithms Local search

Algorithms for scheduling: local search

Algorithms for scheduling: local search

Idea: two schedules are neighbors if one can be obtained from the other by a small modification (to its graph).

Modifications:

- reverse an arrow, or
- reorder consecutive operations in the graph (preserving their locations in their respective jobs.)

Modifications must preserve acyclicity.

Finding good schedules proceeds as follows:

- 1. Start from a randomly chosen schedule.
- 2. Go from the current schedule to a neighboring schedule (if the neighboring schedule is sufficiently good.)
- 3. Algorithms: simulated annealing, tabu search, ...

(Albert-Ludwigs-Universität Freiburg)

Al Planning

July 11, 2005 21 / 24

(Albert-Ludwigs-Universität Freiburg)

Al Planning

July 11, 2005 22 / 24

July 11, 2005 24 / 24

Complexity Approximability

Computational intractability of scheduling

Optimal solutions for job shop scheduling can be found polynomial time if

- ▶ number of jobs is 2,
- number of machines is 2, all jobs have 1 or 2 operations, or
- number of machines is 2, all operations have duration 1.

In all cases the problem obtained by incrementing the number of machines, jobs, operations or durations by 1, is NP-hard.

Approximability of job shop scheduling

Theorem (Williamson et al. 1993)

Deciding if there is a schedule of length 4 is NP-complete.

Corollary

There is no polynomial-time algorithm that finds schedules of length $< \frac{5}{4}$ from optimal (unless P=NP.)

(Albert-Ludwigs-Universität Freiburg)

A schedule of length 4 exists if and only if p-approximation algorithm with $p < \frac{5}{4}$ finds a schedule of length 4. (Schedule of length 5 would be more than p from the optimal.)

Al Planning

Theorem (Shmoys et al. 1994)

There is a poly-time algorithm that produces schedules of length $\frac{\log^2 m}{\log \log m}$ times the optimal.

(Albert-Ludwigs-Universität Freiburg) Al Planning July 11, 2005 23 / 24