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Problem types

Basic scheduling problems: open shop, job shop, flow
job

The disjunctive graph representation

Algorithms for solving the job shop problem

Computational complexity of the job shop problem
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Open shop, job shop, flow shop scheduling

Perform certain jobs, each consisting of operations.

Each operation can be performed on one of machines.
Operations have a duration (an integer). Each machine
can handle one operation at a time.
Objective: schedule operations so that

1 time consumption is ≤ T for some constant T , or
2 time consumption is smallest possible.
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Open shop, job shop, flow shop scheduling

1 Open shop: no ordering constraints on operations
2 Job shop: Operations of a job totally ordered
3 Flow shop: in each job exactly one operation for every

machine, all jobs go through all the machines in the
same order

Preemptive scheduling: no operation may be interrupted
when it has already been started.
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Related problems

Planning.
Others:

Course scheduling for schools (lecture halls, lecturers)
Timetabling for railways
Crew scheduling for airlines/railways etc.
Flight timetabling for airlines
Fleet assignment for airlines
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Formalization of job shop scheduling

Definition

A problem instance P = 〈M,O, J〉 in job shop scheduling
consists of

a set M of machines,

a set O of operations o, each associated with a machine
m(o) ∈M and having a duration d(o) ∈ N , and

a set J of jobs 〈o1, . . . , on〉 (each operation has exactly
one occurrence.)
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Formalization of job shop scheduling

Definition

A schedule S for P assigns to every operation o a time b(o):
1 b(o) ≥ 0 for all o ∈ O

2 b(o) ≥ b(o′) + d(o′) for operations o′ preceding o in the
same job

3 b(o) ≥ b(o′) + d(o′) or b(o′) ≥ b(o) + d(o) for all o′ ∈ O
with m(o′) = m(o) and o 6= o′

Schedule S has cost T if b(o) + d(o) ≤ T for all o ∈ O.
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The (“disjunctive”) graph representation

JOB2

JOB3

JOB1

The dotted edges indicate that two operations are on the
same machine, and one of the operations has to precede
the other.
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The (“disjunctive”) graph representation

Finding a schedule proceeds as follows.

1 Assign a direction to every edge without introducing
cycles.

2 Topologically sort the graph (total order.)
3 Assign starting and ending times to the operations.

The topologically sorted graph determines the earliest
possible starting and ending times of all operations uniquely.
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One schedule for the problem instance
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The ordering in the schedule

We draw the graph so that all edges go from left to right:
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Assignment of time points to the schedule

Given the ordering of operations, assign all the operations
the earliest possible time points (here all operations have
duration one):

60 1 2 3 4 5 7 8
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Assignment of time points to the schedule

Obviously, the preceding schedule is not the best possible.
E.g. the following is much better.

60 1 2 3 4 5 7 8
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Algorithms for scheduling

There are two main approaches to finding schedules:
1 branch and bound: systematic binary search in the

space of all schedules,
2 local search: schedule is gradually improved.

Both can be used with different schedule representations:
1 the disjunctive graphs, or
2 assignments of time points/intervals to operations.
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Algorithms for scheduling: branch and bound

Labels of search tree nodes are x1x2 . . . xn, with
xi ∈ {0, 1, ?} representing the undirected edges. (→,
←, undecided.)

One child assigns 0 to xi and the other assigns 1.

Search tree is pruned by computing lower bounds on
the cost.

If the graph becomes cyclic or lower bound exceeds
cost of the best schedule so far, prune the subtree.

When all xi have value 0 or 1, we have found a
schedule.
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Branch and bound: an example

????? lb = 3

???0? lb = 4 ???1? lb = 5

?1?0? ?0?0? ???11 lb = 7 ???10
PRUNE

11000: schedule 00101: schedule
cost = 6cost = 7
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Lower bounds of schedule cost

Given a disjunctive graph, define for an operation o

head(o): time necessarily needed before processing o
Highest duration of a directed path that ends in o

tail(o): time necessarily needed after processing o
Highest duration of a directed path that starts from o
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Lower bounds of schedule cost (cont’d)

Define for a set S of operations

the shortest head H(S) = mino∈S head(o)

the shortest tail T (S) = mino∈S tail(o)

the sum of processing times P (S) =
∑

o∈S d(o)
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Lower bounds of schedule cost (cont’d)

Given a set of operations S on one machine,
H(S) + P (S) + T (S) is a lower bound on the cost of the
schedule:

Operations S cannot overlap because they are on the
same machine: at least time P (S) is needed for
processing S.

If from operations in S the one with the shortest head is
performed first, at least time H(S) is needed before S.

If from operations in S the one with the shortest tail is
performed last, at least time T (S) is needed after S.
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Lower bounds of schedule cost (cont’d)

Let Om be the set of operations on machine m.
Now a lower bound on the cost of schedule is

max
m∈M

(
max

S⊆Om

H(S) + P (S) + T (S)

)
In other words, we compute the lower bounds on all sets S
of operations that are computed on one machine.
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Algorithms for scheduling: local search

Idea: two schedules are neighbors if one can be
obtained from the other by a small
modification (to its graph).

Modifications:
reverse an arrow, or
reorder consecutive operations in the
graph (preserving their locations in their
respective jobs.)

Modifications must preserve acyclicity.
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Algorithms for scheduling: local search

Finding good schedules proceeds as follows:
1 Start from a randomly chosen schedule.
2 Go from the current schedule to a neighboring schedule

(if the neighboring schedule is sufficiently good.)
3 Algorithms: simulated annealing, tabu search, ...
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Computational intractability of scheduling

Optimal solutions for job shop scheduling can be found
polynomial time if

number of jobs is 2,

number of machines is 2, all jobs have 1 or 2
operations, or

number of machines is 2, all operations have duration
1.

In all cases the problem obtained by incrementing the
number of machines, jobs, operations or durations by 1, is
NP-hard.
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Approximability of job shop scheduling

Theorem (Williamson et al. 1993)

Deciding if there is a schedule of length 4 is NP-complete.

Corollary

There is no polynomial-time algorithm that finds schedules
of length < 5

4 from optimal (unless P=NP.)

Proof sketch.

A schedule of length 4 exists if and only if p-approximation
algorithm with p < 5

4 finds a schedule of length 4. (Schedule
of length 5 would be more than p from the optimal.)

Theorem (Shmoys et al. 1994)

There is a poly-time algorithm that produces schedules of
length log2 m

log log m times the optimal.
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