Motivation

Formalization
Heuristic search
Distances

- Robot can see and hear only the immediate surroundings.
- Poker player cannot see the opponents' cards.
- Formalization: only a subset of the state variables are observable.

Planning by QBF
QBF
Operators in CPC

Formalization

Problem definition

A succinct transition system is a 5-tuple $\langle A, I, O, G, V\rangle$ consisting of

- a set A of state variables,
- a propositional formula I over A,
- a set O of operators,
- a propositional formula G over A, and
- a set $V \subseteq A$ of observable state variables.

Let $\langle A, I, O, G, V\rangle$ be a problem instance in conditional planning.

1. If $A=V$, the problem instance is fully observable.
2. If $V=\emptyset$, the problem instance is unobservable.
3. If there are no restrictions on V then the problem instance is partially observable.
(Albert-Ludwigs-Universität Freiburg) Al Planning June 20, 2005 $\quad 3 / 48$

Formalization

Observational classes

- When variables in $V=\left\{a_{1}, \ldots, a_{m}\right\}$ are observable and others are not then it is not possible to distinguish between states s and s^{\prime} such that $s(a)=s^{\prime}(a)$ for all $a \in V$.
- Let S be the set of all states (valuations of A). Observability partitions S to classes $S_{1}, S_{2}, \ldots, S_{n}$ of observationally indistinguishable states so that

1. $S=S_{1} \cup S_{2} \cup \cdots \cup S_{n}$,
2. $S_{i} \cap S_{j}=\emptyset$ for any $\{i, j\} \subset\{1, \ldots, n\}$ such that $i \neq j$.

Full observability: $S=\left\{s_{1}, \ldots, s_{n}\right\}$ is partitioned to singleton classes $S_{1}=\left\{s_{1}\right\}, S_{2}=\left\{s_{2}\right\}, \ldots, S_{n}=\left\{s_{n}\right\}$.
Unobservability: The partition has only one class $S_{1}=S$ consisting of all the n states.
Partial observability: The number of partitions and the cardinalities of S_{i} may be anywhere between 1 and n.

- Current state is not in general known during plan execution. Instead, the a set of possible current states is known.
- A set of possible current states is a belief state.
- The set of all belief states is the belief space.
- If there are n states and none of them can be observationally distinguished from another, then there are $2^{n}-1$ belief states.
- First we consider the second special case of planning with partial observability: planning without observability.
- Plans are sequences of actions because observations are not possible, actions cannot depend on the nondeterministic events, and hence the same actions have to be taken no matter what happens.
- Techniques needed for planning without observability can often be generalized to the general partially observable case.

The belief space
Example

1. Let B be a belief state (a set of states).
2. Operator o is executable in B if it is executable in every $s \in B$.
3. When o is executed, possible next states are $T=i m g_{o}(B)$.
4. Observations correspond to one of the observational class, S_{j}.
5. New belief state is $B^{\prime}=i m g_{o}(B) \cap S_{j}$.

Formalization

The belief space
Example

Formalization
Example: after WWW

Example: after WWWWWWNNN

The belief space
Example 7×8. East, West step.

Example (Next slide)

Belief space generated by states over two Boolean state variables.
$n=2$ state variables, $2^{n}=4$ states, $2^{2^{n}}=16$ belief states red action: complement the value of the first state variable blue action: assign a random value to the second state variable

Albert-Ludwigs-Universität Freiburg)

Formalization

- A robot without any sensors, anywhere in a room of size
- Actions: go North, South,
- Plan for getting out: $6 \times$ West, $7 \times$ North, $1 \times$ East, $1 \times$ North
- On the next slides we depict one possible location of the robot (•) and the change in the belief state at every execution

(Albert-Ludwigs-Universität Freiburg)
Al Planning

Formalization
Example: after WWWWWW

Albert-Ludwigs-Universität Freiburg)
AI Planning
June 20, $2005 \quad 19$ /48

Example: after WWWWWWNNNNNNNE

The belief space

Sorting networks

Sorting networks consist of comparator-swapper elements that compare the values of two inputs and output them sorted: if first input is bigger than the second, then they are swapped, otherwise the outputs are the inputs.
A sorting network for n inputs should sort any input sequence.

Formalization
The belief space
Sorting networks

A plan for the 3-input sorting network is o_{12}, o_{02}, o_{01}.
The initial states are $000,001,010,011,100,101,110,111$.
The goal states are 000, 001, 011, 111
The belief state evolves as follows.

$000,001,010,011,100,101,110,111$	initially
$000,001,010,011,100,101,110,111$	after o_{12}
$000,001,010,011,100,101,110,111$	after o_{02}
$000,001,010,011,100,101,110,111$	after o_{01}

Algorithms for unobservable problems

- Algorithms for deterministic planning can be lifted to the level of belief states.
- We can do forward search in the belief space with $\operatorname{img}_{o}(B)$, backward search with spreimg $_{o}(B)$.
- We have already introduced implementation techniques that allow representing belief states B as formulae ϕ and computing images and preimages respectively as $\operatorname{img}_{o}(\phi)$ and $\operatorname{spreimg}_{o}(\phi)$.
- Size of belief space is exponentially bigger than the size of the corresponding state space.
For n states there are 2^{n} belief states.

Algorithms for unobservable problems
 Distance heuristics

Use backward distances of states as a heuristic:

$$
\begin{aligned}
D_{0} & =G \\
D_{i+1} & =D_{i} \cup \bigcup_{o \in O} \operatorname{spreimg}_{o}\left(D_{i}\right) \text { for all } i \geq 1
\end{aligned}
$$

A lower bound on plan length for belief state B is j if $B \subseteq D_{j}$ and $B \nsubseteq D_{j-1}$ for $j \geq 1$.
This is an admissible heuristic (does not overestimate the distance).

The belief space

Sorting networks

Theorem
If a sorting network correctly sorts any sequence of binary digits 0 and 1, then it correctly sorts any input sequence.
3-input sorting networks can be formalized as a succinct transition system $\langle A, I, O, G, V\rangle$ where

$$
\begin{aligned}
A & =\left\{a_{0}, a_{1}, a_{2}\right\} \\
I & =\mathrm{T} \\
O & =\left\{o_{01}, o_{02}, o_{12}\right\} \\
G & =\left(a_{0} \rightarrow a_{1}\right) \wedge\left(a_{1} \rightarrow a_{2}\right) \\
o_{01} & =\left\langle\top,\left(a_{0} \wedge \neg a_{1}\right) \triangleright\left(\neg a_{0} \wedge a_{1}\right)\right\rangle \\
o_{02} & =\left\langle\mathrm{T},\left(a_{0} \wedge \neg a_{2}\right) \triangleright\left(\neg a_{0} \wedge a_{2}\right)\right\rangle \\
o_{12} & =\left\langle\top,\left(a_{1} \wedge \neg a_{2}\right) \triangleright\left(\neg a_{1} \wedge a_{2}\right)\right\rangle
\end{aligned}
$$

Algorithms for unobservable problems

1. Find an operator sequence o_{1}, \ldots, o_{n} that reaches a state satisfying G starting from any state satisfying I.
2. o o must be applicable in all states $B_{0}=\{s \in S \mid s \models I\}$ satisfying I. o_{2} must be applicable in all states in $B_{1}=i m g_{o_{1}}\left(B_{0}\right)$.
o_{i} must be applicable in all states in $B_{i}=i m g_{o_{i}}\left(B_{i-1}\right)$ for all
$i \in\{1, \ldots, n\}$.
Terminal states must be goal states: $B_{n} \subseteq\{s \in S \mid s \models G\}$.

Algorithms for unobservable problems

Heuristic search
progression/regression + heuristic search (A*, IDA*, simulated annealing, ...)
Heuristics:

- heuristic 1: backward distances (for forward search)
- heuristic 2 : cardinality of belief state (for both forward and backward search)

Algorithms for unobservable problems Cardinality heuristics

- Backward search: Prefer operators that increase the size of the belief state, i.e. find a plan suffix that reaches a goal state from more starting states.
- Forward search: Prefer operators that decrease the size of the belief state, i.e. reduce the uncertainty about the current state and make reaching goals easier.
For the room navigation example this heuristic works very well until the size of the belief state is 1 .
- This heuristic is not admissible.
- Computing the cardinality of a belief state from its BDD representation takes polynomial time. (Propositional logic in general: problem is NP-hard.)

Translation into quantified Boolean formulae (QBF)
Why not translation into propositional logic?

- We need to say that there is a plan such that ... This is like the satisfiability problem in CPC: there is a valuation...
- We need to say that for all executions ..

This is like the validity problem in CPC: for all valuations..

- Consequence: the problem does not seem to be in NP nor in co-NP.

Quantified Boolean formulae
Definition

The evaluation problem of QBF generalizes both the satisfiability and validity/tautology problems of the propositional logic. The latter are respectively NP-complete and co-NP-complete whereas the former is PSPACE-complete.
Example
The formulae $\forall x \exists y(x \leftrightarrow y)$ and $\exists x \exists y(x \wedge y)$ are true.
The formulae $\exists x \forall y(x \leftrightarrow y)$ and $\forall x \forall y(x \vee y)$ are false.

(Albert-Ludwigs-Universität Freiburg)

June 20, $2005 \quad 39 / 48$

Planning by QBF Operators in CPC

Nondeterministic operators in CPC

-We replace nondeterministic choice by dependence of the effects on values of "hidden" state variables x.

- Nondeterministic effect $e_{1}\left|e_{2}\right| \cdots \mid e_{n}$ roughly corresponds to a number of conditional effects:

$$
\left(\phi_{1} \triangleright e_{1}\right) \wedge\left(\phi_{2} \triangleright e_{2}\right) \wedge \cdots \wedge\left(\phi_{n} \triangleright e_{n}\right) .
$$

Formulae ϕ_{i} refer to valuations of a some unknown "hidden" state variables x_{1}, \ldots, x_{m} (different at every time point). For n choices we have $m=\left\lceil\log _{2} n\right\rceil$ variables x_{j}.

Nondeterministic operators in CPC

- We consider binary nondeterminism only so that every nondeterministic choice corresponds to the values of one propositional variable.
Effects $a|b| c \mid d$ can always be equivalently represented as $(a \mid b) \mid(c \mid d)$.
- For n nondeterministic choices we need $\left\lceil\log _{2} n\right\rceil$ auxiliary variables.
- For $(a \mid b) \mid(c \mid d)$ the variable x_{1} chooses between $a \mid b$ and $c \mid d$. After $a \mid b$ or $c \mid d$ has been chosen, the respective choices between a and b, and c and d are represented by a second variable x_{11}.

Quantified Boolean formulae
Definition

- If ϕ is a propositional formula and σ is a sequence of $\exists p$ and $\forall p$, one for every $p \in A$, then $\sigma \phi$ is a QBF.
- A formula $\exists x \phi$ is true if and only if $\phi[\top / x] \vee \phi[\perp / x]$ is true. (Equivalently, $\phi[T / x]$ is true or $\phi[\perp / x]$ is true.)
- A formula $\forall x \phi$ is true if and only if $\phi[\top / x] \wedge \phi[\perp / x]$ is true. (Equivalently, $\phi[\top / x]$ is true and $\phi[\perp / x]$ is true.)
The most important algorithms for evaluating QBF are based on AND/OR tree search, \forall-variables correspond to AND-nodes and \exists-variables to OR-nodes.

```
Albert-Ludwigs-Universität Freiburg) Al Planning June 20, 2005 38/48
Planning by QBF QBF
```


Algorithms for unobservable problems
 Quantified Boolean formulas

There is a sequence of operators so that for all initial states and nondeterministic choices there is an execution that reaches a goal state

$$
\begin{aligned}
& \exists o_{1}^{0} \cdots o_{m}^{0} \cdots o_{1}^{t-1} \cdots o_{n}^{t-1} \\
& \forall a_{1}^{0} \cdots a_{n}^{0} x_{1}^{0} \cdots x_{k}^{0} \cdots x_{1}^{t-1} \cdots x_{k}^{t-1} \\
& \exists a_{1}^{1} \cdots a_{n}^{1} \cdots a_{1}^{t} \cdots a_{n}^{t} \\
& I^{0} \rightarrow\left(\mathcal{R}_{3}\left(A^{0}, A^{1}, O^{0}, X^{0}\right) \wedge \cdots \wedge \mathcal{R}_{3}\left(A^{t-1}, A^{t}, O^{t-1}, X^{t-1}\right) \wedge G^{t}\right)
\end{aligned}
$$

| (Albert-Ludwigs-Universität Freiburg) | Al Planning | June 20, 2005 | $40 / 48$ |
| :--- | :---: | :---: | :---: | :---: |
| | | | |
| | Planning by QBF | Operators in CPC | |

Nondeterministic operators in CPC

- The translation $\tau_{A}^{n d}(o)$ of individual operators and the formulae $\tau_{a}^{n d}(o) \vee \cdots \vee \tau_{a}^{n d}(o)$ do not allow to distinguish between controllable and uncontrollable choices. Choice of operator is controllable, but the choice between nondeterministic alternatives is not.
- We give a new translation that distinguishes between controllability and uncontrollability.
- This translation also allows parallel operator application.

Let e be an effect and σ a sequence of integers. Sequences σ identify nondeterministic choice inside an operator
Define $E P C_{l}^{n d}(e, \sigma)$ as follows.

```
\(E P C_{l}^{n d}(e, \sigma) \quad=E P C_{l}(e)\) if \(e\) is deterministic
\(E P C_{l}^{n d}\left(e_{1} \mid e_{2}, \sigma\right) \quad=\left(x_{\sigma} \wedge E P C_{l}^{n d}\left(e_{1}, \sigma 1\right)\right)\)
    \(\vee\left(\neg x_{\sigma} \wedge E P C_{l}^{n d}\left(e_{2}, \sigma 1\right)\right)\)
\(E P C_{l}^{n d}\left(e_{1} \wedge \cdots \wedge e_{n}, \sigma\right)=E P C_{l}^{n d}\left(e_{1}, \sigma 1\right) \vee \cdots \vee E P C_{l}^{n d}\left(e_{n}, \sigma n\right)\)
```

Nondeterministic operators in CPC Example

Example

$$
\begin{aligned}
E P C_{a}^{n d}((a \mid b) \mid(c \mid d), 1) & =\left(x_{1} \wedge E P C_{a}^{n d}((a \mid b), 1)\right) \\
& \vee\left(\neg x_{1} \wedge E P C_{a}^{n d}((c \mid d), 1)\right) \\
& \equiv\left(x_{1} \wedge E P C_{a}^{n d}((a \mid b), 1)\right) \\
& \equiv\left(x_{1} \wedge\left(\left(x_{11} \wedge E P C_{a}^{n d}(a, 1)\right)\right)\right) \\
& \vee\left(\neg x_{11} \wedge E P C_{a}^{n d}(b, 1)\right) \\
& \equiv x_{1} \wedge x_{11} \\
E P C_{b}^{n d}((a \mid b) \mid(c \mid d), 1) & =\left(x_{1} \wedge E P C_{b}^{n d}((a \mid b), 1)\right) \\
& \vee\left(\neg x_{1} \wedge E P C_{b}^{n d}((c \mid d), 1)\right) \\
& \equiv\left(x_{1} \wedge E P C_{b}^{n d}((a \mid b), 1)\right) \\
& \equiv\left(x_{1} \wedge\left(\left(x_{11} \wedge E P C_{b}^{n d}(a, 1)\right)\right)\right) \\
& \vee\left(\neg x_{11} \wedge E P C_{b}^{n d}(b, 1)\right) \\
& \equiv x_{1} \wedge \neg x_{11}
\end{aligned}
$$

Nondeterministic operators in CPC Example

Frame axioms
Let e_{1}, \ldots, e_{n} be the effects of o_{1}, \ldots, o_{n} respectively.

$$
\begin{gathered}
\left(a \wedge \neg a^{\prime}\right) \rightarrow\left(\left(o_{1} \wedge E P C_{\neg a}^{n d}\left(e_{1}, 1\right)\right) \vee \cdots \vee\left(o_{n} \wedge E P C_{\neg a}^{n d}\left(e_{n}, n\right)\right)\right) \\
\left(\neg a \wedge a^{\prime}\right) \rightarrow\left(\left(o_{1} \wedge E P C_{a}^{n d}\left(e_{1}, 1\right)\right) \vee \cdots \vee\left(o_{n} \wedge E P C_{a}^{n d}\left(e_{n}, n\right)\right)\right)
\end{gathered}
$$

Precondition and effect axioms
Let i be the index of operator $o=\langle c, e\rangle \in O$. The formula that describes this operator are

$$
\begin{aligned}
& (o \rightarrow c) \wedge \\
& \bigwedge_{a \in A}\left(o \wedge E P C_{a}^{n d}(e, i) \rightarrow a^{\prime}\right) \wedge \\
& \bigwedge_{a \in A}\left(o \wedge E P C_{\neg a}^{n d}(e, i) \rightarrow \neg a^{\prime}\right)
\end{aligned}
$$

$\begin{array}{llll}\text { (Albert-Ludwigs-Universität Freiburg) } & \text { Al Planning } & \text { June 20, 2005 } & \text { 46/48 }\end{array}$

Nondeterministic operators in CPC Example

Consider the operators

$$
\begin{aligned}
& o_{1}=\langle\neg a,(\overbrace{b}^{x_{11}} \mid \overbrace{(c \triangleright d)}^{\neg x_{11}}) \wedge(\overbrace{a}^{x_{12}}|\overbrace{c}^{\neg x_{12}}\rangle \\
& o_{2}=\langle\neg b,(\overbrace{((d \triangleright b) \mid}^{x_{21}} \mid \overbrace{c}^{x_{2}}) \mid \overbrace{a}^{x_{21}}\rangle
\end{aligned}
$$

Nondeterministic operators in CPC

Example
Now $\mathcal{R}_{3}\left(\{a, b, c, d\},\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right\},\left\{o_{1}, o_{2}\right\},\left\{x_{11}, x_{12}, x_{2}, x_{21}\right\}\right)$ is the conjunction of the following formulae.

$\neg\left(a \wedge \neg a^{\prime}\right)$	$\left(\neg a \wedge a^{\prime}\right) \rightarrow\left(\left(o_{1} \wedge x_{12}\right) \vee\left(o_{2} \wedge \neg x_{2}\right)\right)$
$\neg\left(b \wedge \neg b^{\prime}\right)$	$\left(\neg b \wedge b^{\prime}\right) \rightarrow\left(\left(o_{1} \wedge x_{11}\right) \vee\left(o_{2} \wedge x_{2} \wedge x_{21} \wedge d\right)\right)$
$\neg\left(c \wedge \neg c^{\prime}\right)$	$\left(\neg c \wedge c^{\prime}\right) \rightarrow\left(\left(o_{1} \wedge \neg x_{12}\right) \vee\left(o_{2} \wedge x_{2} \wedge \neg x_{21}\right)\right)$
$\neg\left(d \wedge \neg d^{\prime}\right)$	$\left(\neg d \wedge d^{\prime}\right) \rightarrow\left(o_{1} \wedge \neg x_{11} \wedge c\right)$
$o_{1} \rightarrow \neg a$	
$\left(o_{1} \wedge x_{12}\right) \rightarrow a^{\prime}$	$\left(o_{1} \wedge x_{11}\right) \rightarrow b^{\prime}$
$\left(o_{1} \wedge \neg x_{12}\right) \rightarrow c^{\prime}$	$\left(o_{1} \wedge \neg x_{11} \wedge c\right) \rightarrow d^{\prime}$
$o_{2} \rightarrow \neg b$	
$\left(o_{2} \wedge \neg x_{2}\right) \rightarrow a^{\prime}$	$\left(o_{2} \wedge x_{2} \wedge x_{21} \wedge d\right) \rightarrow b^{\prime}$
$\left(o_{2} \wedge x_{2} \wedge \neg x_{21}\right) \rightarrow c^{\prime}$	

