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Motivation

Observability

I Robot can see and hear only the immediate surroundings.
I Poker player cannot see the opponents’ cards.
I Formalization: only a subset of the state variables are observable.
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Formalization

Problem definition

A succinct transition system is a 5-tuple 〈A, I, O, G, V 〉 consisting of

I a set A of state variables,
I a propositional formula I over A,
I a set O of operators,
I a propositional formula G over A, and
I a set V ⊆ A of observable state variables.
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Formalization

Restrictions on observability

Let 〈A, I, O, G, V 〉 be a problem instance in conditional planning.

1. If A = V , the problem instance is fully observable.

2. If V = ∅, the problem instance is unobservable.

3. If there are no restrictions on V then the problem instance is
partially observable.
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Formalization

Observational classes

I When variables in V = {a1, . . . , am} are observable and others
are not then it is not possible to distinguish between states s and
s′ such that s(a) = s′(a) for all a ∈ V .

I Let S be the set of all states (valuations of A).
Observability partitions S to classes S1, S2, . . . , Sn of
observationally indistinguishable states so that

1. S = S1 ∪ S2 ∪ · · · ∪ Sn,
2. Si ∩ Sj = ∅ for any {i, j} ⊂ {1, . . . , n} such that i 6= j.
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Formalization

Observational classes: cardinality

Full observability: S = {s1, . . . , sn} is partitioned to singleton
classes S1 = {s1}, S2 = {s2}, . . . , Sn = {sn}.

Unobservability: The partition has only one class S1 = S
consisting of all the n states.

Partial observability: The number of partitions and the cardinalities of
Si may be anywhere between 1 and n.
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Formalization

Belief states and the belief space

I Current state is not in general known during plan execution.
Instead, the a set of possible current states is known.

I A set of possible current states is a belief state.
I The set of all belief states is the belief space.
I If there are n states and none of them can be observationally

distinguished from another, then there are 2n − 1 belief states.
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Formalization

Planning without observability

I First we consider the second special case of planning with partial
observability: planning without observability.

I Plans are sequences of actions because observations are not
possible, actions cannot depend on the nondeterministic events,
and hence the same actions have to be taken no matter what
happens.

I Techniques needed for planning without observability can often be
generalized to the general partially observable case.
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Formalization

The belief space

1. Let B be a belief state (a set of states).

2. Operator o is executable in B if it is executable in every s ∈ B.

3. When o is executed, possible next states are T = imgo(B).

4. Observations correspond to one of the observational class, Sj .

5. New belief state is B′ = imgo(B) ∩ Sj .
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Formalization

The belief space
Example

Example (Next slide)
Belief space generated by states over two Boolean state variables.
n = 2 state variables, 2n = 4 states, 22n

= 16 belief states
red action: complement the value of the first state variable
blue action: assign a random value to the second state variable
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Formalization

The belief space
Example
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Formalization

The belief space
Example

I A robot without any sensors,
anywhere in a room of size
7 × 8.

I Actions: go North, South,
East, West

I Plan for getting out: 6 × West,
7 × North, 1 × East, 1 × North

I On the next slides we depict
one possible location of the
robot (•) and the change in the
belief state at every execution
step.

door
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Formalization

Example: after WWW

door
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Formalization

Example: after WWWWWW

door
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Formalization

Example: after WWWWWWNNN

door
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Formalization

Example: after WWWWWWNNNNNNNE

door
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Formalization

The belief space
Sorting networks

Sorting networks consist of
comparator-swapper
elements that compare the
values of two inputs and
output them sorted: if first
input is bigger than the
second, then they are
swapped, otherwise the
outputs are the inputs.
A sorting network for n inputs
should sort any input
sequence.
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Formalization

The belief space
Sorting networks

Theorem
If a sorting network correctly sorts any sequence of binary digits 0 and
1, then it correctly sorts any input sequence.

3-input sorting networks can be formalized as a succinct transition
system 〈A, I, O, G, V 〉 where

A = {a0, a1, a2}
I = >
O = {o01, o02, o12}
G = (a0→a1) ∧ (a1→a2)

o01 = 〈>, (a0 ∧ ¬a1) B (¬a0 ∧ a1)〉
o02 = 〈>, (a0 ∧ ¬a2) B (¬a0 ∧ a2)〉
o12 = 〈>, (a1 ∧ ¬a2) B (¬a1 ∧ a2)〉
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Formalization

The belief space
Sorting networks

A plan for the 3-input sorting network is o12, o02, o01.
The initial states are 000, 001, 010, 011, 100, 101, 110, 111.
The goal states are 000, 001, 011, 111
The belief state evolves as follows.

000, 001, 010, 011, 100, 101, 110, 111 initially
000, 001, 010,011, 100, 101, 110,111 after o12

000, 001, 010,011, 100,101, 110,111 after o02

000, 001, 010,011, 100, 101, 110,111 after o01
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Heuristic search

Algorithms for unobservable problems

1. Find an operator sequence o1, . . . , on that reaches a state
satisfying G starting from any state satisfying I.

2. o1 must be applicable in all states B0 = {s ∈ S|s |= I} satisfying I.
o2 must be applicable in all states in B1 = imgo1

(B0).
oi must be applicable in all states in Bi = imgoi

(Bi−1) for all
i ∈ {1, . . . , n}.
Terminal states must be goal states: Bn ⊆ {s ∈ S|s |= G}.
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Heuristic search

Algorithms for unobservable problems

I Algorithms for deterministic planning can be lifted to the level of
belief states.

I We can do forward search in the belief space with imgo(B),
backward search with spreimgo(B).

I We have already introduced implementation techniques that allow
representing belief states B as formulae φ and computing images
and preimages respectively as imgo(φ) and spreimgo(φ).

I Size of belief space is exponentially bigger than the size of the
corresponding state space.
For n states there are 2n belief states.
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Heuristic search

Algorithms for unobservable problems
Heuristic search

progression/regression + heuristic search (A∗, IDA∗, simulated
annealing, ...)
Heuristics:

I heuristic 1: backward distances (for forward search)
I heuristic 2: cardinality of belief state (for both forward and

backward search)
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Heuristic search Distances

Algorithms for unobservable problems
Distance heuristics

Use backward distances of states as a heuristic:

D0 = G
Di+1 = Di ∪

⋃

o∈O spreimgo(Di) for all i ≥ 1

A lower bound on plan length for belief state B is j if B ⊆ Dj and
B 6⊆ Dj−1 for j ≥ 1.
This is an admissible heuristic (does not overestimate the distance).
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Heuristic search Cardinality

Algorithms for unobservable problems
Cardinality heuristics

I Backward search: Prefer operators that increase the size of the
belief state, i.e. find a plan suffix that reaches a goal state from
more starting states.

I Forward search: Prefer operators that decrease the size of the
belief state, i.e. reduce the uncertainty about the current state and
make reaching goals easier.
For the room navigation example this heuristic works very well
until the size of the belief state is 1.

I This heuristic is not admissible.
I Computing the cardinality of a belief state from its BDD

representation takes polynomial time. (Propositional logic in
general: problem is NP-hard.)

(Albert-Ludwigs-Universität Freiburg) AI Planning June 20, 2005 36 / 48



Planning by QBF

Algorithms for unobservable problems
Quantified Boolean formulas

Translation into quantified Boolean formulae (QBF)
Why not translation into propositional logic?

I We need to say that there is a plan such that ...
This is like the satisfiability problem in CPC: there is a valuation...

I We need to say that for all executions ...
This is like the validity problem in CPC: for all valuations...

I Consequence: the problem does not seem to be in NP nor in
co-NP.
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Planning by QBF QBF

Quantified Boolean formulae
Definition

I If φ is a propositional formula and σ is a sequence of ∃p and ∀p,
one for every p ∈ A, then σφ is a QBF.

I A formula ∃xφ is true if and only if φ[>/x] ∨ φ[⊥/x] is true.
(Equivalently, φ[>/x] is true or φ[⊥/x] is true.)

I A formula ∀xφ is true if and only if φ[>/x] ∧ φ[⊥/x] is true.
(Equivalently, φ[>/x] is true and φ[⊥/x] is true.)

The most important algorithms for evaluating QBF are based on
AND/OR tree search, ∀-variables correspond to AND-nodes and
∃-variables to OR-nodes.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 20, 2005 38 / 48

Planning by QBF QBF

Quantified Boolean formulae
Definition

The evaluation problem of QBF generalizes both the satisfiability and
validity/tautology problems of the propositional logic. The latter are
respectively NP-complete and co-NP-complete whereas the former is
PSPACE-complete.

Example
The formulae ∀x∃y(x ↔ y) and ∃x∃y(x ∧ y) are true.
The formulae ∃x∀y(x ↔ y) and ∀x∀y(x ∨ y) are false.
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Planning by QBF QBF

Algorithms for unobservable problems
Quantified Boolean formulas

There is a sequence of operators so that
for all initial states and nondeterministic choices
there is an execution that reaches a goal state.

∃o0
1 · · · o

0
m · · · ot−1

1
· · · ot−1

n

∀a0
1 · · · a

0
nx0

1 · · ·x
0
k · · ·x

t−1

1
· · ·xt−1

k

∃a1
1 · · · a

1
n · · · a

t
1 · · · a

t
n

I0→(R3(A
0, A1, O0, X0) ∧ · · · ∧ R3(A

t−1, At, Ot−1, Xt−1) ∧ Gt)
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Planning by QBF Operators in CPC

Nondeterministic operators in CPC

I We replace nondeterministic choice by dependence of the effects
on values of “hidden” state variables x.

I Nondeterministic effect e1|e2| · · · |en roughly corresponds to a
number of conditional effects:

(φ1 B e1) ∧ (φ2 B e2) ∧ · · · ∧ (φn B en).

Formulae φi refer to valuations of a some unknown “hidden” state
variables x1, . . . , xm (different at every time point).
For n choices we have m = dlog2 ne variables xj .
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Planning by QBF Operators in CPC

Nondeterministic operators in CPC

I The translation τnd
A (o) of individual operators and the formulae

τnd
a (o) ∨ · · · ∨ τnd

a (o) do not allow to distinguish between
controllable and uncontrollable choices.
Choice of operator is controllable, but the choice between
nondeterministic alternatives is not.

I We give a new translation that distinguishes between
controllability and uncontrollability.

I This translation also allows parallel operator application.
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Planning by QBF Operators in CPC

Nondeterministic operators in CPC

I We consider binary nondeterminism only so that every
nondeterministic choice corresponds to the values of one
propositional variable.
Effects a|b|c|d can always be equivalently represented as
(a|b)|(c|d).

I For n nondeterministic choices we need dlog2 ne auxiliary
variables.

I For (a|b)|(c|d) the variable x1 chooses between a|b and c|d.
After a|b or c|d has been chosen, the respective choices between
a and b, and c and d are represented by a second variable x11.
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Planning by QBF Operators in CPC

Nondeterministic operators in CPC

Let e be an effect and σ a sequence of integers. Sequences σ identify
nondeterministic choice inside an operator.
Define EPCnd

l (e, σ) as follows.

EPCnd
l (e, σ) = EPCl(e) if e is deterministic

EPCnd
l (e1|e2, σ) = (xσ ∧ EPCnd

l (e1, σ1))
∨(¬xσ ∧ EPCnd

l (e2, σ1))
EPCnd

l (e1 ∧ · · · ∧ en, σ) = EPCnd
l (e1, σ1) ∨ · · · ∨ EPCnd

l (en, σn)
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Planning by QBF Operators in CPC

Nondeterministic operators in CPC
Example

Example

EPCnd
a ((a|b)|(c|d), 1) = (x1 ∧ EPCnd

a ((a|b), 1))
∨(¬x1 ∧ EPCnd

a ((c|d), 1))
≡ (x1 ∧ EPCnd

a ((a|b), 1))
≡ (x1 ∧ ((x11 ∧ EPCnd

a (a, 1))))
∨(¬x11 ∧ EPCnd

a (b, 1))
≡ x1 ∧ x11

EPCnd
b ((a|b)|(c|d), 1) = (x1 ∧ EPCnd

b ((a|b), 1))
∨(¬x1 ∧ EPCnd

b ((c|d), 1))
≡ (x1 ∧ EPCnd

b ((a|b), 1))
≡ (x1 ∧ ((x11 ∧ EPCnd

b (a, 1))))
∨(¬x11 ∧ EPCnd

b (b, 1))
≡ x1 ∧ ¬x11
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Planning by QBF Operators in CPC

Nondeterministic operators in CPC
Example

Frame axioms
Let e1, . . . , en be the effects of o1, . . . , on respectively.

(a ∧ ¬a′)→((o1 ∧ EPCnd
¬a(e1, 1)) ∨ · · · ∨ (on ∧ EPCnd

¬a(en, n)))
(¬a ∧ a′)→((o1 ∧ EPCnd

a (e1, 1)) ∨ · · · ∨ (on ∧ EPCnd
a (en, n)))

Precondition and effect axioms
Let i be the index of operator o = 〈c, e〉 ∈ O. The formula that
describes this operator are

(o→c)∧
∧

a∈A(o ∧ EPCnd
a (e, i)→a′)∧

∧

a∈A(o ∧ EPCnd
¬a(e, i)→¬a′).
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Planning by QBF Operators in CPC

Nondeterministic operators in CPC
Example

Consider the operators

o1 = 〈¬a, (

x11
︷︸︸︷

b |

¬x11
︷ ︸︸ ︷

(c B d)) ∧ (

x12
︷︸︸︷
a |

¬x12
︷︸︸︷

c 〉

o2 = 〈¬b,

x2
︷ ︸︸ ︷

(

x21
︷ ︸︸ ︷

(d B b) |

¬x21
︷︸︸︷

c ) |

¬x2
︷︸︸︷
a 〉

made true made true
var by o1 if by o2 if
a x12 ¬x2

b x11 x2 ∧ x21 ∧ d
c ¬x12 x2 ∧ ¬x21

d ¬x11 ∧ c
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Planning by QBF Operators in CPC

Nondeterministic operators in CPC
Example

Now R3({a, b, c, d}, {a′, b′, c′, d′}, {o1, o2}, {x11, x12, x2, x21}) is the
conjunction of the following formulae.

¬(a ∧ ¬a′) (¬a ∧ a′)→((o1 ∧ x12) ∨ (o2 ∧ ¬x2))
¬(b ∧ ¬b′) (¬b ∧ b′)→((o1 ∧ x11) ∨ (o2 ∧ x2 ∧ x21 ∧ d))
¬(c ∧ ¬c′) (¬c ∧ c′)→((o1 ∧ ¬x12) ∨ (o2 ∧ x2 ∧ ¬x21))
¬(d ∧ ¬d′) (¬d ∧ d′)→(o1 ∧ ¬x11 ∧ c)
o1→¬a
(o1 ∧ x12)→a′ (o1 ∧ x11)→b′

(o1 ∧ ¬x12)→c′ (o1 ∧ ¬x11 ∧ c)→d′

o2→¬b
(o2 ∧ ¬x2)→a′ (o2 ∧ x2 ∧ x21 ∧ d)→b′

(o2 ∧ x2 ∧ ¬x21)→c′
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