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Motivation

Motivation for introducing probabilities

I Reaching the goals is often not sufficient: it is important that the
expected costs do not outweigh the benefit of reaching the goals.

1. Objective: maximize benefits - costs.
2. Measuring expected costs requires considering the probabilities of

effects.

I Plans that guarantee achieving goals often do not exist.
Then it is important to find a plan that maximizes success
probability.
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Motivation

Probabilistic planning: Quality criteria for plans

The purpose of a plan may vary.

1. Reach goals with probability 1.

2. Reach goals with the highest possible probability.

3. Reach goals with the smallest possible expected cost.

4. Gain highest possible expected rewards (over a finite or an infinite
execution).

For each objective a different algorithm is needed.
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Probabilistic transition systems Example

Probabilities for nondeterministic actions
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A B C D E F

A 0 0.5 0 0 0 0.5
B 0 0 0 0 0 1.0
C 0 0 0.1 0.9 0 0
D 0 0 0.7 0 0.3 0
E 0 1.0 0 0 0 0
F 0 0 0 0 0 0
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Probabilistic transition systems Definition

Probabilistic transition system

Definition
A probabilistic transition system is 〈S, I, O, G, R〉 where

1. S is a finite set of states,

2. I is a probability distribution over S,

3. O is a finite set of actions = partial functions that map each state
to a probability distribution over S,

4. G ⊆ S is the set of goal states, and

5. R : O × S → R is a function from actions and states to real
numbers, indicating the reward associated with an action in a
given state.
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Probabilistic transition systems Definition

Probabilistic transition system
Notation

Notation: Applicable actions
O(s) denotes the set of actions that are applicable in s.

Notation: Probabilities of successor states
p(s′|s, o) denotes the probability o assigns to s′ as a successor state of
s.
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Probabilistic transition systems Definition

Probabilistic operators
Example

Let o = 〈¬a, (0.2a|0.8b) ∧ (0.4c|0.6>)〉. Compute the successors of
s |= ¬a ∧ ¬b ∧ ¬c with respect to o.
Active effects:

[0.2a|0.8b]s = {〈0.2, {a}〉, 〈0.8, {b}〉}
[0.4c|0.6>]s = {〈0.4, {c}〉, 〈0.6, ∅〉}

[(0.2a|0.8b) ∧ (0.4c|0.6>)]s = {〈0.08, {a, c}〉, 〈0.32, {b, c}〉,
〈0.12, {a}〉, 〈0.48, {b}〉}

Successor states of s with respect to o are

s1 |= a ∧ ¬b ∧ c, (probability 0.08)
s2 |= ¬a ∧ b ∧ c, (probability 0.32)
s3 |= a ∧ ¬b ∧ ¬c, (probability 0.12)
s4 |= ¬a ∧ b ∧ ¬c(probability 0.48).
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Probabilistic transition systems Definition

Probabilistic operators
Definition

Definition
An operator is a pair 〈c, e〉 where c is a propositional formula (the
precondition), and e is an effect. Effects are recursively defined as
follows.

1. a and ¬a for state variables a ∈ A are effects.

2. e1 ∧ · · · ∧ en is an effect if e1, . . . , en are effects (the special case
with n = 0 is the empty effect >.)

3. c B e is an effect if c is a formula and e is an effect.

4. p1e1| · · · |pnen is an effect if n ≥ 2 and e1, . . . , en for n ≥ 2 are
effects and p1, . . . , pn are real numbers such that p1 + · · · + pn = 1
and 0 ≤ pi ≤ 1 for all i ∈ {1, . . . , n}.

Operators map states to probability distributions over their successor
states.
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Probabilistic transition systems Definition

Probabilistic operators
Semantics

Definition (Active effects)
Assign effects e a set of pairs of numbers and literal sets.

1. [a]s = {〈1, {a}〉} and [¬a]s = {〈1, {¬a}〉} for a ∈ A.

2. [e1 ∧ · · · ∧ en]s
= {〈

∏n
i=1 pi,

⋃n
i=1 Mi〉|〈p1, M1〉 ∈ [e1]s, . . . , 〈pn, Mn〉 ∈ [en]s}.

3. [z B e]s = [e]s if s |= z and otherwise [z B e]s = {〈1, ∅〉}.

4. [p1e1| · · · |pnen]s =
⋃

i∈{1,...,n}{〈pi · p, e〉|〈p, e〉 ∈ [ei]s}

Remark
In (4) the union of sets is defined so that for example
{〈0.2, {a}〉} ∪ {〈0.2, {a}〉} = {〈0.4, {a}〉}: same sets of changes are
combined by summing their probabilities.
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Probabilistic transition systems Definition

Probabilistic operators
Semantics

Definition
Let 〈c, e〉 be an operator and s a state.

I o is applicable in s if s |= c and for every E ∈ [e]s the set
⋃

{M |〈p, M〉 ∈ E, p > 0} is consistent.
I The successor states of s under operator with effect e are ones

that are obtained from s by making the literals in M for some
〈p, M〉 ∈ [e]s true and retaining the truth-values of state variables
not occurring in M .

I The probability of a successor state is the sum of the probabilities
p for 〈p, M〉 ∈ [e]s that lead to it.
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Probabilistic transition systems Definition

Probabilistic succinct transition systems

Definition
A succinct probabilistic transition system is 〈A, I, O, G, W 〉 where

1. A is a finite set of state variables,

2. I = {〈p1, φ1〉, . . . , 〈pn, φn〉} where 0 ≤ pi ≤ 1 and φi is a formula
over A for every i ∈ {1, . . . , n} and
(
∑

s∈S,s|=φ1
p1) + · · · + (

∑

s∈S,s|=φn
pn) = 1 describes the initial

probability distribution over the states,

3. O is a finite set of operators over A,

4. G is a formula over A describing the goal states, and

5. W is a function from operators to sets of pairs 〈φ, r〉 where φ is a
formula and r is a real number: reward of executing o ∈ O in s is r
if there is 〈φ, r〉 ∈ W (o) such that s |= φ and otherwise the reward
is 0.
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Probabilistic transition systems Probability distribution of states under a plan

Stationary probabilities under a plan

I To measure the performance of a plan it is necessary to compute
the probabilities of different executions.

I If there is an infinite number of infinite-length executions then
infinitely many of them have probability 0.

I Probability of execution s0, s1, s2, . . . , sn is obtained as the product
of the initial probability of s0 multiplied by the probabilities of
reaching si from si−1 with π(si−1) for all i ∈ {1, . . . , n}.

I It is often possible to associate a unique probability with each
state: the stationary probability of the state after a sufficiently high
number of execution steps = probability that at any time point the
current state is that state.

I Some cases there is no unique stationary probability, in which
case the plan executions are periodic.
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Probabilistic transition systems Probability distribution of states under a plan

Stationary probabilities under a plan
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J = (0.9, 0.1, 0, 0, 0)

A B C D E

A 0 1.0 0 0 0
B 0.6 0 0.4 0 0
C 0 0 0 0.2 0.8
D 0 0 0 0 1.0
E 0 0 1.0 0 0
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Probabilistic transition systems Probability distribution of states under a plan

Stationary probabilities under a plan

The probability of the transition system being in given states can be
computed by matrix multiplication from the probability distribution for
the initial states and the transition probabilities of the plan.

J probability distribution initially
JM after 1 action

JMM after 2 actions
JMMM after 3 actions

...
JM i after i actions

A probability distribution P over states s1, . . . , sn is represented as an
n-element row vector (P (s1), . . . , P (sn)).
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Probabilistic transition systems Probability distribution of states under a plan

Stationary probabilities under a plan
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t A B C D E
0 0.900 0.100 0.000 0.000 0.000
1 0.060 0.900 0.040 0.000 0.000
2 0.540 0.060 0.360 0.008 0.032
3 0.036 0.540 0.056 0.072 0.296
4 0.324 0.036 0.512 0.011 0.117
5 0.022 0.324 0.131 0.102 0.421
6 0.194 0.022 0.550 0.026 0.207
7 0.013 0.194 0.216 0.110 0.467
8 0.117 0.013 0.544 0.043 0.283
9 0.008 0.117 0.288 0.109 0.479

10 0.070 0.008 0.525 0.058 0.339
...

0.000 0.000 0.455 0.091 0.455
0.000 0.000 0.455 0.091 0.455
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Probabilistic transition systems Probability distribution of states under a plan

Probabilities of states under a plan (periodic)

0.6
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1.0
A
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t A B C D E
0 0.900 0.100 0.000 0.000 0.000
1 0.060 0.900 0.040 0.000 0.000
2 0.540 0.060 0.360 0.008 0.032
3 0.036 0.540 0.064 0.072 0.288
4 0.324 0.036 0.576 0.013 0.051
5 0.022 0.324 0.078 0.115 0.461
6 0.194 0.022 0.706 0.016 0.063
7 0.013 0.194 0.087 0.141 0.564
...

0.000 0.000 0.900 0.020 0.080
0.000 0.000 0.100 0.180 0.720
0.000 0.000 0.900 0.020 0.080
0.000 0.000 0.100 0.180 0.720
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Evaluation of performance Examples

Evaluation of performance
Average rewards

I A waiter/waitress robot
I induces costs: cost of food and beverages brought to customers,

broken plates and glasses, ...
I brings rewards: collects money from customers.

I This can be viewed as an infinite sequence of rewards -6.0, 3.1,
6.9, -0.80, -1.2, 2.6, 12.8, -1.1, 2.1, -10.0,...

I Owner’s objective: the plan the robot follows must maximize the
average reward.
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Evaluation of performance Examples

Evaluation of performance
Discounted rewards

I A company decides every month the pricing of its products and
performs other actions affecting its costs and profits.

I Since there is a lot of uncertainty about distant future, the
company’s short-term performance (next 1-4 years) is more
important than long-term performance (after 5 years) and distant
future (after 10 years) is almost completely left out of all
calculations.

I This can be similarly viewed as an infinite sequence -1.1, 2.1,
-10.0, 4.5, -0.6, -1.0, 3.6, 18.4, ... but the reward at time point i + 1
is discounted by a factor λ ∈]0..1[ in comparison to reward at i to
reflect the importance of short-term performance.
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Evaluation of performance Definition

Rewards/costs produced by a plan

An infinite sequence of expected rewards r1, r2, r3, . . . can be
evaluated in alternative ways:

1. total rewards: sum of all rewards r1 + r2 + · · ·

2. average rewards limN→∞

P

N

i=1 ri

N

3. discounted rewards r1 + λr2 + λ2r3 + . . . + λk−1rk + · · ·

For infinite executions the sums
∑

i≥0 ri are typically infinite and
discounting is necessary to make them finite. The geometric series
has a finite sum

∑

i≥0 λic = c
1−λ

for every λ < 1 and c.
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Algorithms

Probabilistic planning with full observability

I Several algorithms:
1. dynamic programming (finite executions)
2. value iteration (discounted rewards, infinite execution)
3. policy iteration (discounted rewards, infinite execution)

I Some of these algorithms can be easily implemented without
explicitly representing the state space (e.g. by using algebraic
decision diagrams ADDs).
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Algorithms Finite executions

Optimal rewards over a finite execution

I Objective: obtain highest possible rewards over a finite execution
of length N (goals are ignored).

I Solution by dynamic programming:

1. Value of a state at last stage N is the best immediate reward.
2. Value of a state at stage i is obtained from values of states at stage

i + 1.

I Since the executions are finite, it is possible to sum all rewards
and no discounting is needed.

I Since efficiency degrades with long executions, this algorithm is
not practical for very high N .

(Albert-Ludwigs-Universität Freiburg) AI Planning June 13, 2005 21 / 57

Algorithms Finite executions

Optimal rewards over a finite execution
Example

R=5
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p=0.9

A

B D

E
C













0 0 1.0 0 0
0.1 0 0 0.9 0
1.0 0 0 0 0
0 0 0 0 1.0

1.0 0 0 0 0

























0 1.0 0 0 0
1.0 0 0 0 0
0 0 0 0 1.0
0 0 1.0 0 0
0 0 1.0 0 0
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Algorithms Finite executions

Optimal rewards over a finite execution
Example

R=5

R=1

p=0.1

p=0.9

A

B D

E
C

i vi(A) vi(B) vi(C) vi(D) vi(E)

9 1.00 0.00 0.00 5.00 0.00
8 1.00 4.60 1.00 5.00 1.00
7 4.60 4.60 1.00 6.00 1.00
6 4.60 5.86 4.60 6.00 4.60
5 5.86 5.86 4.60 9.60 4.60
4 5.86 9.23 5.86 9.60 5.86
3 9.23 9.23 5.86 10.86 5.86
2 9.23 10.70 9.23 10.86 9.23
1 10.70 10.70 9.23 14.23 9.23
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Algorithms Finite executions

Optimal rewards over a finite execution
Algorithm

The optimum values vt(s) for states s ∈ S at time t ∈ {1, . . . , N} fulfill
the following equations.

vN (s) = maxo∈O(s) R(s, o)

vi(s) = maxo∈O(s)

(

R(s, o) +
∑

s′∈S p(s′|s, o)vi+1(s
′)
)

for i ∈ {1, . . . , N − 1}
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Algorithms Finite executions

Optimal plans over a finite execution
Algorithm

Actions for states s ∈ S at times t ∈ {1, . . . , N} are:

π(s, N) = arg maxo∈O(s) R(s, o)

π(s, i) = arg maxo∈O(s)

(

R(s, o) +
∑

s′∈S p(s′|s, o)vi+1(s
′)
)

for i ∈ {1, . . . , N − 1}

Receding-horizon control
Finite-horizon policies can be applied to infinite-execution problems as
well: always take action π(s, 1). This is known as receding-horizon
control.
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Algorithms Finite executions

Optimality / Bellman equations
Infinite executions

Values v(s) of states s ∈ S are the discounted sum of the expected
rewards obtained by choosing the best possible actions in s and in its
successors.

v(s) = maxo∈O(s)

(

R(s, o) +
∑

s′∈S λp(s′|s, o)v(s′)
)

λ is the discount constant: 0 < λ < 1.
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Algorithms Value iteration

The value iteration algorithm

I Value iteration is the simplest algorithm for finding close-to-optimal
plans for infinite executions and discounted rewards.

I Idea:
1. Start with an arbitrary value function.
2. Compute better and better approximations of the optimal value

function by using Bellman’s equation.
3. From a good approximation construct a plan.

I Plans extracted from a very-close-to-optimal value function are
typically optimal.

I Parameter ε: Algorithm terminates when value function changes
less than ε(1−λ)

2λ
: difference to optimal value function is < ε.
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Algorithms Value iteration

The value iteration algorithm
Definition

1. n := 0

2. Choose any value function v0.

3. For every s ∈ S

vn+1(s) = max
o∈O(s)

(

R(s, o) +
∑

s′∈S

λp(s′|s, o)vn(s′)

)

.

Go to step 4 if |vn+1(s) − vn(s)| < ε(1−λ)
2λ

for all s ∈ S.
Otherwise set n := n + 1 and go to step 3.

4. Construct a plan: for every s ∈ S

π(s) = arg max
o∈O(s)

(

R(s, o) +
∑

s′∈S

λp(s′|s, o)vn+1(s
′)

)

.
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Algorithms Value iteration

The value iteration algorithm
Properties

Theorem
Let vπ be the value function of the plan produced by the value iteration
algorithm, and let v∗ be the value function of the optimal plan(s). Then
|v∗(s) − vπ(s)| ≤ ε for all s ∈ S.

Under full observability there is never a trade-off between the values of
two states: if the optimal value for state s1 is r1 and the optimal value
for state s2 is r2, then there is one plan that achieves these both.
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Algorithms Value iteration

Value iteration
Example

Let λ = 0.6.
i vi(A) vi(B) vi(C) vi(D) vi(E)

0 0.000 0.000 0.000 0.000 0.000
1 1.000 0.000 0.000 5.000 0.000
2 1.000 2.760 0.600 5.000 0.600
3 1.656 2.760 0.600 5.360 0.600
4 1.656 2.994 0.994 5.360 0.994
5 1.796 2.994 0.994 5.596 0.994
6 1.796 3.130 1.078 5.596 1.078
7 1.878 3.130 1.078 5.647 1.078
8 1.878 3.162 1.127 5.647 1.127
...
19 1.912 3.186 1.147 5.688 1.147
20 1.912 3.186 1.147 5.688 1.147

R=5

R=1

p=0.1

p=0.9

A

B D

E
C
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Algorithms Policy iteration

The policy iteration algorithm

I The policy iteration algorithm finds optimal plans.
I Slightly more complicated to implement than value iteration: on

each iteration
I the value of the current plan is evaluated, and
I the current plan is improved if possible.

I Number of iterations is smaller than with value iteration.
I Value iteration is usually in practice more efficient.
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Algorithms Policy iteration

Plan evaluation by solving linear equations

Given a plan π, its value vπ under discounted rewards with discount
constant λ satisfies the following equation. for every s ∈ S

vπ(s) = R(s, π(s)) +
∑

s′∈S λp(s′|s, π(s))vπ(s′)

This yields a system of |S| linear equations and |S| unknowns. The
solution of these equations gives the value of the plan in each state.
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Algorithms Policy iteration

Plan evaluation by solving linear equations
Example

Consider the plan

π(A) = R, π(B) = R, π(C) = B, π(D) = R, π(E) = B

vπ(A) = R(A, R) + 0λvπ(A) + 0λvπ(B) + 1λvπ(C) + 0λvπ(D) + 0λvπ(E)
vπ(B) = R(B, R) + 0.1λvπ(A) + 0λvπ(B) + 0λvπ(C) + 0.9λvπ(D) + 0λvπ(E)
vπ(C) = R(C, B) + 0λvπ(A) + 0λvπ(B) + 0λvπ(C) + 0λvπ(D) + 1λvπ(E)
vπ(D) = R(D, R) + 0λvπ(A) + 0λvπ(B) + 0λvπ(C) + 0λvπ(D) + 1λvπ(E)
vπ(E) = R(E, B) + 0λvπ(A) + 0λvπ(B) + 1λvπ(C) + 0λvπ(D) + 0λvπ(E)

vπ(A) = 1 +λvπ(C)
vπ(B) = 0 + 0.1λvπ(A) +0.9λvπ(D)
vπ(C) = 0 +λvπ(E)
vπ(D) = 5 +λvπ(E)
vπ(E) = 0 +λvπ(C)
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Algorithms Policy iteration

Plan evaluation by solving linear equations
Example

vπ(A) −λvπ(C) = 1
−0.1λvπ(A) +vπ(B) −0.9λvπ(D) = 0

vπ(C) −λvπ(E) = 0
vπ(D) −λvπ(E) = 5

−λvπ(C) +vπ(E) = 0

Solving with λ = 0.5 we get

vπ(A) = 1
vπ(B) = 2.3

vπ(C) = 0
vπ(D) = 5

vπ(E) = 0

This is the value function of the plan.
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Algorithms Policy iteration

The policy iteration algorithm
Definition

1. n := 0

2. Let π0 be any mapping from states s ∈ S to actions in O(s).

3. Compute vπn
(s) for all s ∈ S.

4. For all s ∈ S

πn+1(s) = arg max
o∈O(s)

(

R(s, o) +
∑

s′∈S

λp(s′|s, o)vπn
(s′)

)

5. n := n + 1

6. If n = 1 or vπn
6= vπn−1 then go to 3.
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Algorithms Policy iteration

The policy iteration algorithm
Properties

Theorem
The policy iteration algorithm terminates after a finite number of steps
and returns an optimal plan.

Proof idea.
There is only a finite number of different plans, and at each step a
properly better plan is found or the algorithm terminates.
The number of iterations needed for finding an ε-optimal plan by policy
iteration is never higher than the number of iterations needed by value
iteration.
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Algorithms Policy iteration

The policy iteration algorithm
Example

itr. π(A) π(B) π(C) π(D) π(E) vπ(A) vπ(B) vπ(C) vπ(D) vπ(E)
1 R R R R R 1.56 3.09 0.93 5.56 0.93
2 B R R R R 1.91 3.18 1.14 5.68 1.14

R=5

R=1

p=0.1

p=0.9

A

B D

E
C
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Algorithms Goal-directed problems

I The previous three algorithms ignored the set of goal states and
attempted to maximize the rewards.

I Reaching the goal states is an objective that may be combined
with rewards and probabilities.

I Goal reachability with minimum costs and probability 1: Find a
plan that guarantees reaching the goals with the minimum
expected costs.

I Goal reachability with maximum probability: Find a plan that
maximizes the probability that a goal state is reached.
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Algorithms Goal-directed problems

Bounded goal reachability with minimum cost

Define for all i ≥ 0 the following value functions for the expected cost of
reaching a goal state.

v0(s) = −∞ for s ∈ S\G
v0(s) = 0 for s ∈ G

vi+1(s) = maxo∈O(s)

(

R(s, o) +
∑

s′∈S p(s′|s, o)vi(s
′)
)

for s ∈ S\G

This computation converges if for every ε there is i such that
|vi(s) − vi+1(s)| < ε.

Notice
The above algorithm is guaranteed to converge only if all rewards are
< 0. If some rewards are positive, the most rewarding behavior may be
to loop without ever reaching the goals.
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Algorithms Goal-directed problems

Goal reachability with highest probability

Define for all i ≥ 0 the following value functions expressing the
probability of eventually reaching a goal.

v0(s) = 0 for s ∈ S\G
v0(s) = 1 for s ∈ G

vi+1(s) = mino∈O(s)

∑

s′∈S p(s′|s, o)vi(s
′) for s ∈ S\G

Notice
The above algorithm converges to v such that v(s) = 1 iff s ∈ L ∪ G
where L is the set returned by prune.
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Implementation

Implementation for big state spaces

Fact The most trivial way of implementing the previous algorithms
is feasible only for state space sizes of up to 106 or 107.

Problem Every state in the state space has to be considered explicitly,
even when it is not needed for the solution.

Solution
1. Use algorithms that restrict to the relevant part of the

state space: Real-Time Dynamic Programming RTDP, ...
2. Use data structures that represent sets of states and

probability distributions compactly: size of the data
structure is not necessarily linear in the number of
states, but could be logarithmic or less.
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Implementation

Implementation for big state spaces

Like binary decision diagrams (BDDs) can be used in implementing
algorithms that use strong/weak preimages, there are data structures
that can be used for implementing probabilistic algorithms for big state
spaces.

Problem: Algorithms do not use just sets and relations which can be
represented as BDDs, but value functions v : S → R and
non-binary transition matrices.

Solution: Use a generalization of BDDs called algebraic decision
diagrams (or MTBDDs: multi-terminal BDDs.)
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Implementation Algebraic decision diagrams ADDs

Algebraic decision diagrams

I Graph representation of functions from {0, 1}n → R that
generalizes BDDs (functions {0, 1}n → {0, 1})

I Every BDD is an ADD.
I Canonicity: Two ADDs describe the same function if and only if

they are the same ADD.
I Applications: Computations on very big matrices including

computing stationary probabilities of Markov chains; probabilistic
verification; AI planning

(Albert-Ludwigs-Universität Freiburg) AI Planning June 13, 2005 43 / 57

Implementation Algebraic decision diagrams ADDs

An algebraic decision diagram

0.2

B’ B’ B’ B’

0.0

A’ A’ A’

B B

A

1.00.8

A mapping aba’b’→ R

a′b′ a′b′ a′b′ a′b′

ab 00 01 10 11

00 1.0 0 0 0
01 0 1.0 0 0
10 0.8 0 0.2 0
11 0 0 0 0
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Implementation Algebraic decision diagrams ADDs

Operations on ADDs

Operations } for ADDs f and g are definable by
(f } g)(x) = f(x) } g(x).

abc f g f + g max(f, g) 7 · f

000 0 3 3 3 0
001 1 2 3 2 7
010 1 0 1 1 7
011 2 1 3 2 14
100 1 0 1 1 7
101 2 0 2 2 14
110 2 0 2 2 14
111 3 1 4 3 21
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Implementation Algebraic decision diagrams ADDs

Operations on ADDs
Sum

A

B B

C C C

3 2 1 0

+

A

B B

C

320 1

C =

A

B B

C C C

3 2 14
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Implementation Algebraic decision diagrams ADDs

Operations on ADDs
Maximum

A

B B

C C C

3 2 1 0

max

A

B B

C

320 1

C =

A

B B

C C C

3 2 1
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Implementation Algebraic decision diagrams ADDs

Operations on ADDs
Arithmetic ∃ abstraction

(∃p.f)(x) = (f [>/p])(x) + (f [⊥/p])(x)

abc f

000 0
001 1
010 1
011 2
100 1
101 2
110 2
111 3

∃c.f is obtained by summing
f(x) and f(x′) when x and x′

differ only on c:

ab ∃c.f

00 1
01 3
10 3
11 5
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Implementation Algebraic decision diagrams ADDs

Matrix multiplication with ADDs (I)

Consider matrices M1 and M2, represented as mappings:

(

1 2
3 4

) (

1 2
2 1

)

aa′ M1

00 1
01 2
10 3
11 4

a′a′′ M2

00 1
01 2
10 2
11 1
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Implementation Algebraic decision diagrams ADDs

Matrix multiplication with ADDs (II)

aa′a′′ M1 M2 M1 · M2

000 1 1 1
001 1 2 2
010 2 2 4
011 2 1 2
100 3 1 3
101 3 2 6
110 4 2 8
111 4 1 4

aa′′ ∃a′.(M1 · M2)

00 5
01 4
10 11
11 10

(

1 2
3 4

) (

1 2
2 1

)

=

(

5 4
11 10

)
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Implementation Value iteration with ADDs

Implementation of value iteration with ADDs

I Start from 〈A, I, O, G, W 〉.
I Variables in ADDs A and A′ = {a′|a ∈ A}.
I Construct transition matrix ADDs from all o ∈ O (next slide).
I Construct ADDs for representing rewards W (o), o ∈ O.
I Functions vi are ADDs that map valuations of A to R.
I All computation is for all states (one ADD) simultaneously: big

speed-ups possible.
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Implementation Value iteration with ADDs

Translation of operators into ADDs

Translation for operator o = 〈c, e〉 in normal form is
τprob
A (o) = c ∧ τprob

A (e) where

τ
prob
B

(e) = τB(e) when e is deterministic

τ
prob
B

(p1e1| · · · |pnen) = p1τ
prob
B

(e1) + · · · + pnτ
prob
B

(en)

τ
prob
B

(e1 ∧ · · · ∧ en) = τ
prob
B\(B2∪···∪Bn)(e1) · τ

prob
B2

(e2) · . . . · τ
prob
Bn

(en)

where Bi = changes(ei) for all i ∈ {1, . . . , n}

Nondeterministic choice and outermost conjunctions are respectively
by arithmetic sum and multiplication.
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Implementation Value iteration with ADDs

Translation of reward functions into ADDs

I Let the rewards for o = 〈c, e〉 ∈ O be represented by
W (o) = {〈φ1, r1〉, . . . , 〈φn, rn〉}.

I We construct an ADD Ro that maps each state to the
corresponding rewards.

I This is by constructing the BDDs for φ1, . . . , φn and then
multiplying them with the respective numbers r1, . . . , rn:

Ro = r1 · φ1 + · · · + rn · φn −∞ · ¬c
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Implementation Value iteration with ADDs

The value iteration algorithm without ADDs

1. n := 0

2. Choose any value function v0.

3. For every s ∈ S

vn+1(s) = max
o∈O(s)

(

R(s, o) +
∑

s′∈S

λp(s′|s, o)vn(s′)

)

.

Go to step 4 if |vn+1(s) − vn(s)| < ε(1−λ)
2λ

for all s ∈ S.
Otherwise set n := n + 1 and go to step 3.
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Implementation Value iteration with ADDs

The value iteration algorithm with ADDs

Backup step for vn+1 with o as product of τprob
A (o) and vn:

Ro + λ

















a′b′ a′b′ a′b′ a′b′

ab 00 01 10 11

00 1.0 0 0 0

01 0 1.0 0 0

10 0.2 0 0.8 0

11 0 0 0 0

































a′b′ vn

00 −5.1
01 2.8
10 10.2
11 3.7

















Remark
The fact that the operator is not applicable in 11 is handled by having
the immediate reward −∞ in that state.
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Implementation Value iteration with ADDs

The value iteration algorithm with ADDs

1. Assign n := 0 and let vn be an ADD that is constant 0.

2.
vn+1 := max

o∈O

(

Ro + λ · ∃A′.(τprob
A (o) · (vn[A′/A])

)

Unsatisfied preconditions are handled by the immediate rewards
−∞.

3. If all terminal nodes of ADD |vn+1 − vn| are < ε(1−λ)
2λ

then stop.

4. Otherwise, set n := n + 1 and repeat from step 2.
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Implementation Value iteration with ADDs

Summary

I Probabilities are needed when plan has to have low expected
costs or a high success probability when success cannot be
guaranteed.

I We have presented several algorithms based on dynamic
programming.

I Most of these algorithms can be easily implemented by using
Algebraic Decision Diagrams ADDs as a data structure for
representing probability distributions and transition matrices.

I There are also other algorithms that do not always require looking
at every state but restrict to states that are reachable from the
initial states.
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