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Motivation for introducing probabilities

Reaching the goals is often not sufficient: it is important
that the expected costs do not outweigh the benefit of
reaching the goals.

1 Objective: maximize benefits - costs.
2 Measuring expected costs requires considering the

probabilities of effects.

Plans that guarantee achieving goals often do not exist.
Then it is important to find a plan that maximizes
success probability.
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Probabilistic planning: Quality criteria for plans

The purpose of a plan may vary.

1 Reach goals with probability 1.
2 Reach goals with the highest possible probability.
3 Reach goals with the smallest possible expected cost.
4 Gain highest possible expected rewards (over a finite or

an infinite execution).

For each objective a different algorithm is needed.
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Probabilities for nondeterministic actions
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A B C D E F

A 0 0.5 0 0 0 0.5
B 0 0 0 0 0 1.0
C 0 0 0.1 0.9 0 0
D 0 0 0.7 0 0.3 0
E 0 1.0 0 0 0 0
F 0 0 0 0 0 0
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Probabilistic transition system

Definition

A probabilistic transition system is 〈S, I,O,G, R〉 where
1 S is a finite set of states,
2 I is a probability distribution over S,
3 O is a finite set of actions = partial functions that map

each state to a probability distribution over S,
4 G ⊆ S is the set of goal states, and
5 R : O × S → R is a function from actions and states to

real numbers, indicating the reward associated with an
action in a given state.
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Probabilistic transition system
Notation

Notation: Applicable actions

O(s) denotes the set of actions that are applicable in s.

Notation: Probabilities of successor states

p(s′|s, o) denotes the probability o assigns to s′ as a
successor state of s.
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Probabilistic operators
Example

Let o = 〈¬a, (0.2a|0.8b) ∧ (0.4c|0.6>)〉. Compute the
successors of s |= ¬a ∧ ¬b ∧ ¬c with respect to o.
Active effects:

[0.2a|0.8b]s = {〈0.2, {a}〉, 〈0.8, {b}〉}
[0.4c|0.6>]s = {〈0.4, {c}〉, 〈0.6, ∅〉}

[(0.2a|0.8b) ∧ (0.4c|0.6>)]s = {〈0.08, {a, c}〉, 〈0.32, {b, c}〉,
〈0.12, {a}〉, 〈0.48, {b}〉}

Successor states of s with respect to o are

s1 |= a ∧ ¬b ∧ c, (probability 0.08)
s2 |= ¬a ∧ b ∧ c, (probability 0.32)
s3 |= a ∧ ¬b ∧ ¬c, (probability 0.12)
s4 |= ¬a ∧ b ∧ ¬c(probability 0.48).
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Probabilistic operators
Definition

Definition

An operator is a pair 〈c, e〉 where c is a propositional formula
(the precondition), and e is an effect. Effects are recursively
defined as follows.

1 a and ¬a for state variables a ∈ A are effects.
2 e1 ∧ · · · ∧ en is an effect if e1, . . . , en are effects (the

special case with n = 0 is the empty effect >.)
3 c B e is an effect if c is a formula and e is an effect.
4 p1e1| · · · |pnen is an effect if n ≥ 2 and e1, . . . , en for

n ≥ 2 are effects and p1, . . . , pn are real numbers such
that p1 + · · ·+ pn = 1 and 0 ≤ pi ≤ 1 for all
i ∈ {1, . . . , n}.

Operators map states to probability distributions over their
successor states.
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Probabilistic operators
Semantics

Definition (Active effects)

Assign effects e a set of pairs of numbers and literal sets.

1 [a]s = {〈1, {a}〉} and [¬a]s = {〈1, {¬a}〉} for a ∈ A.
2 [e1 ∧ · · · ∧ en]s

= {〈
∏n

i=1 pi,
⋃n

i=1 Mi〉|〈p1,M1〉 ∈ [e1]s, . . . , 〈pn,Mn〉 ∈
[en]s}.

3 [z B e]s = [e]s if s |= z and otherwise [z B e]s = {〈1, ∅〉}.
4 [p1e1| · · · |pnen]s =

⋃
i∈{1,...,n}{〈pi · p, e〉|〈p, e〉 ∈ [ei]s}

Remark

In (4) the union of sets is defined so that for example
{〈0.2, {a}〉} ∪ {〈0.2, {a}〉} = {〈0.4, {a}〉}: same sets of
changes are combined by summing their probabilities.
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Probabilistic operators
Semantics

Definition

Let 〈c, e〉 be an operator and s a state.

o is applicable in s if s |= c and for every E ∈ [e]s the set⋃
{M |〈p, M〉 ∈ E, p > 0} is consistent.

The successor states of s under operator with effect e
are ones that are obtained from s by making the literals
in M for some 〈p, M〉 ∈ [e]s true and retaining the
truth-values of state variables not occurring in M .

The probability of a successor state is the sum of the
probabilities p for 〈p, M〉 ∈ [e]s that lead to it.
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Probabilistic succinct transition systems

Definition

A succinct probabilistic transition system is 〈A, I,O,G, W 〉
where

1 A is a finite set of state variables,
2 I = {〈p1, φ1〉, . . . , 〈pn, φn〉} where 0 ≤ pi ≤ 1 and φi is a

formula over A for every i ∈ {1, . . . , n} and
(
∑

s∈S,s|=φ1
p1) + · · ·+ (

∑
s∈S,s|=φn

pn) = 1 describes the
initial probability distribution over the states,

3 O is a finite set of operators over A,
4 G is a formula over A describing the goal states, and
5 W is a function from operators to sets of pairs 〈φ, r〉

where φ is a formula and r is a real number: reward of
executing o ∈ O in s is r if there is 〈φ, r〉 ∈ W (o) such
that s |= φ and otherwise the reward is 0.
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Stationary probabilities under a plan

To measure the performance of a plan it is necessary to
compute the probabilities of different executions.

If there is an infinite number of infinite-length executions
then infinitely many of them have probability 0.

Probability of execution s0, s1, s2, . . . , sn is obtained as
the product of the initial probability of s0 multiplied by
the probabilities of reaching si from si−1 with π(si−1) for
all i ∈ {1, . . . , n}.
It is often possible to associate a unique probability with
each state: the stationary probability of the state after a
sufficiently high number of execution steps = probability
that at any time point the current state is that state.

Some cases there is no unique stationary probability, in
which case the plan executions are periodic.
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Stationary probabilities under a plan

To measure the performance of a plan it is necessary to
compute the probabilities of different executions.

If there is an infinite number of infinite-length executions
then infinitely many of them have probability 0.

Probability of execution s0, s1, s2, . . . , sn is obtained as
the product of the initial probability of s0 multiplied by
the probabilities of reaching si from si−1 with π(si−1) for
all i ∈ {1, . . . , n}.
It is often possible to associate a unique probability with
each state: the stationary probability of the state after a
sufficiently high number of execution steps = probability
that at any time point the current state is that state.

Some cases there is no unique stationary probability, in
which case the plan executions are periodic.
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Stationary probabilities under a plan
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J = (0.9, 0.1, 0, 0, 0)

A B C D E

A 0 1.0 0 0 0
B 0.6 0 0.4 0 0
C 0 0 0 0.2 0.8
D 0 0 0 0 1.0
E 0 0 1.0 0 0
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Stationary probabilities under a plan

The probability of the transition system being in given states
can be computed by matrix multiplication from the
probability distribution for the initial states and the transition
probabilities of the plan.

J probability distribution initially
JM after 1 action

JMM after 2 actions
JMMM after 3 actions

...
JM i after i actions

A probability distribution P over states s1, . . . , sn is
represented as an n-element row vector (P (s1), . . . , P (sn)).
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Stationary probabilities under a plan
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t A B C D E
0 0.900 0.100 0.000 0.000 0.000
1 0.060 0.900 0.040 0.000 0.000
2 0.540 0.060 0.360 0.008 0.032
3 0.036 0.540 0.056 0.072 0.296
4 0.324 0.036 0.512 0.011 0.117
5 0.022 0.324 0.131 0.102 0.421
6 0.194 0.022 0.550 0.026 0.207
7 0.013 0.194 0.216 0.110 0.467
8 0.117 0.013 0.544 0.043 0.283
9 0.008 0.117 0.288 0.109 0.479

10 0.070 0.008 0.525 0.058 0.339
...

0.000 0.000 0.455 0.091 0.455
0.000 0.000 0.455 0.091 0.455
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Probabilities of states under a plan (periodic)

0.6
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A
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t A B C D E
0 0.900 0.100 0.000 0.000 0.000
1 0.060 0.900 0.040 0.000 0.000
2 0.540 0.060 0.360 0.008 0.032
3 0.036 0.540 0.064 0.072 0.288
4 0.324 0.036 0.576 0.013 0.051
5 0.022 0.324 0.078 0.115 0.461
6 0.194 0.022 0.706 0.016 0.063
7 0.013 0.194 0.087 0.141 0.564
...

0.000 0.000 0.900 0.020 0.080
0.000 0.000 0.100 0.180 0.720
0.000 0.000 0.900 0.020 0.080
0.000 0.000 0.100 0.180 0.720
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Evaluation of performance
Average rewards

A waiter/waitress robot
induces costs: cost of food and beverages brought to
customers, broken plates and glasses, ...
brings rewards: collects money from customers.

This can be viewed as an infinite sequence of rewards
-6.0, 3.1, 6.9, -0.80, -1.2, 2.6, 12.8, -1.1, 2.1, -10.0,...

Owner’s objective: the plan the robot follows must
maximize the average reward.
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Average rewards

A waiter/waitress robot
induces costs: cost of food and beverages brought to
customers, broken plates and glasses, ...
brings rewards: collects money from customers.

This can be viewed as an infinite sequence of rewards
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Evaluation of performance
Average rewards

A waiter/waitress robot
induces costs: cost of food and beverages brought to
customers, broken plates and glasses, ...
brings rewards: collects money from customers.

This can be viewed as an infinite sequence of rewards
-6.0, 3.1, 6.9, -0.80, -1.2, 2.6, 12.8, -1.1, 2.1, -10.0,...

Owner’s objective: the plan the robot follows must
maximize the average reward.
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Evaluation of performance
Discounted rewards

A company decides every month the pricing of its
products and performs other actions affecting its costs
and profits.

Since there is a lot of uncertainty about distant future,
the company’s short-term performance (next 1-4 years)
is more important than long-term performance (after 5
years) and distant future (after 10 years) is almost
completely left out of all calculations.

This can be similarly viewed as an infinite sequence
-1.1, 2.1, -10.0, 4.5, -0.6, -1.0, 3.6, 18.4, ... but the
reward at time point i + 1 is discounted by a factor
λ ∈]0..1[ in comparison to reward at i to reflect the
importance of short-term performance.



AI Planning

Motivation

Pr. tr. systems

Evaluation
Examples

Definition

Algorithms

Implementation

Evaluation of performance
Discounted rewards

A company decides every month the pricing of its
products and performs other actions affecting its costs
and profits.

Since there is a lot of uncertainty about distant future,
the company’s short-term performance (next 1-4 years)
is more important than long-term performance (after 5
years) and distant future (after 10 years) is almost
completely left out of all calculations.

This can be similarly viewed as an infinite sequence
-1.1, 2.1, -10.0, 4.5, -0.6, -1.0, 3.6, 18.4, ... but the
reward at time point i + 1 is discounted by a factor
λ ∈]0..1[ in comparison to reward at i to reflect the
importance of short-term performance.



AI Planning

Motivation

Pr. tr. systems

Evaluation
Examples

Definition

Algorithms

Implementation

Evaluation of performance
Discounted rewards
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Rewards/costs produced by a plan

An infinite sequence of expected rewards r1, r2, r3, . . . can
be evaluated in alternative ways:

1 total rewards: sum of all rewards r1 + r2 + · · ·
2 average rewards limN→∞

PN
i=1 ri

N

3 discounted rewards r1 + λr2 + λ2r3 + . . . + λk−1rk + · · ·

For infinite executions the sums
∑

i≥0 ri are typically infinite
and discounting is necessary to make them finite. The
geometric series has a finite sum

∑
i≥0 λic = c

1−λ for every
λ < 1 and c.
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Probabilistic planning with full observability

Several algorithms:
1 dynamic programming (finite executions)
2 value iteration (discounted rewards, infinite execution)
3 policy iteration (discounted rewards, infinite execution)

Some of these algorithms can be easily implemented
without explicitly representing the state space (e.g. by
using algebraic decision diagrams ADDs).
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Optimal rewards over a finite execution

Objective: obtain highest possible rewards over a finite
execution of length N (goals are ignored).

Solution by dynamic programming:
1 Value of a state at last stage N is the best immediate

reward.
2 Value of a state at stage i is obtained from values of

states at stage i + 1.

Since the executions are finite, it is possible to sum all
rewards and no discounting is needed.

Since efficiency degrades with long executions, this
algorithm is not practical for very high N .
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Optimal rewards over a finite execution
Example

R=5

R=1

p=0.1

p=0.9

A

B D

E
C


0 0 1.0 0 0

0.1 0 0 0.9 0
1.0 0 0 0 0
0 0 0 0 1.0

1.0 0 0 0 0




0 1.0 0 0 0
1.0 0 0 0 0
0 0 0 0 1.0
0 0 1.0 0 0
0 0 1.0 0 0


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Optimal rewards over a finite execution
Example

R=5

R=1

p=0.1

p=0.9

A

B D

E
C

i vi(A) vi(B) vi(C) vi(D) vi(E)

9 1.00 0.00 0.00 5.00 0.00
8 1.00 4.60 1.00 5.00 1.00
7 4.60 4.60 1.00 6.00 1.00
6 4.60 5.86 4.60 6.00 4.60
5 5.86 5.86 4.60 9.60 4.60
4 5.86 9.23 5.86 9.60 5.86
3 9.23 9.23 5.86 10.86 5.86
2 9.23 10.70 9.23 10.86 9.23
1 10.70 10.70 9.23 14.23 9.23
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Optimal rewards over a finite execution
Algorithm

The optimum values vt(s) for states s ∈ S at time
t ∈ {1, . . . , N} fulfill the following equations.

vN (s) = maxo∈O(s) R(s, o)
vi(s) = maxo∈O(s)

(
R(s, o) +

∑
s′∈S p(s′|s, o)vi+1(s

′)
)

for i ∈ {1, . . . , N − 1}
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Optimal plans over a finite execution
Algorithm

Actions for states s ∈ S at times t ∈ {1, . . . , N} are:

π(s,N) = arg maxo∈O(s) R(s, o)
π(s, i) = arg maxo∈O(s)

(
R(s, o) +

∑
s′∈S p(s′|s, o)vi+1(s

′)
)

for i ∈ {1, . . . , N − 1}

Receding-horizon control

Finite-horizon policies can be applied to infinite-execution
problems as well: always take action π(s, 1). This is known
as receding-horizon control.
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Optimality / Bellman equations
Infinite executions

Values v(s) of states s ∈ S are the discounted sum of the
expected rewards obtained by choosing the best possible
actions in s and in its successors.

v(s) = maxo∈O(s)

(
R(s, o) +

∑
s′∈S λp(s′|s, o)v(s′)

)
λ is the discount constant: 0 < λ < 1.
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The value iteration algorithm

Value iteration is the simplest algorithm for finding
close-to-optimal plans for infinite executions and
discounted rewards.
Idea:

1 Start with an arbitrary value function.
2 Compute better and better approximations of the

optimal value function by using Bellman’s equation.
3 From a good approximation construct a plan.

Plans extracted from a very-close-to-optimal value
function are typically optimal.

Parameter ε: Algorithm terminates when value function
changes less than ε(1−λ)

2λ : difference to optimal value
function is < ε.
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The value iteration algorithm
Definition

1 n := 0

2 Choose any value function v0.
3 For every s ∈ S

vn+1(s) = max
o∈O(s)

(
R(s, o) +

∑
s′∈S

λp(s′|s, o)vn(s′)

)
.

Go to step 4 if |vn+1(s)− vn(s)| < ε(1−λ)
2λ for all s ∈ S.

Otherwise set n := n + 1 and go to step 3.
4 Construct a plan: for every s ∈ S

π(s) = arg max
o∈O(s)

(
R(s, o) +

∑
s′∈S

λp(s′|s, o)vn+1(s
′)

)
.
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The value iteration algorithm
Properties

Theorem

Let vπ be the value function of the plan produced by the
value iteration algorithm, and let v∗ be the value function of
the optimal plan(s). Then |v∗(s)− vπ(s)| ≤ ε for all s ∈ S.

Under full observability there is never a trade-off between
the values of two states: if the optimal value for state s1 is r1

and the optimal value for state s2 is r2, then there is one
plan that achieves these both.
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Value iteration
Example

Let λ = 0.6.
i vi(A) vi(B) vi(C) vi(D) vi(E)

0 0.000 0.000 0.000 0.000 0.000
1 1.000 0.000 0.000 5.000 0.000
2 1.000 2.760 0.600 5.000 0.600
3 1.656 2.760 0.600 5.360 0.600
4 1.656 2.994 0.994 5.360 0.994
5 1.796 2.994 0.994 5.596 0.994
6 1.796 3.130 1.078 5.596 1.078
7 1.878 3.130 1.078 5.647 1.078
8 1.878 3.162 1.127 5.647 1.127
...
19 1.912 3.186 1.147 5.688 1.147
20 1.912 3.186 1.147 5.688 1.147

R=5

R=1

p=0.1

p=0.9

A

B D

E
C
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The policy iteration algorithm

The policy iteration algorithm finds optimal plans.
Slightly more complicated to implement than value
iteration: on each iteration

the value of the current plan is evaluated, and
the current plan is improved if possible.

Number of iterations is smaller than with value iteration.

Value iteration is usually in practice more efficient.
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Plan evaluation by solving linear equations

Given a plan π, its value vπ under discounted rewards with
discount constant λ satisfies the following equation. for
every s ∈ S

vπ(s) = R(s, π(s)) +
∑

s′∈S λp(s′|s, π(s))vπ(s′)

This yields a system of |S| linear equations and |S|
unknowns. The solution of these equations gives the value
of the plan in each state.
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Plan evaluation by solving linear equations
Example

Consider the plan

π(A) = R, π(B) = R, π(C) = B, π(D) = R, π(E) = B

vπ(A) = R(A, R) + 0λvπ(A) + 0λvπ(B) + 1λvπ(C) + 0λvπ(D) + 0λvπ(E)
vπ(B) = R(B, R) + 0.1λvπ(A) + 0λvπ(B) + 0λvπ(C) + 0.9λvπ(D) + 0λvπ(E)
vπ(C) = R(C, B) + 0λvπ(A) + 0λvπ(B) + 0λvπ(C) + 0λvπ(D) + 1λvπ(E)
vπ(D) = R(D, R) + 0λvπ(A) + 0λvπ(B) + 0λvπ(C) + 0λvπ(D) + 1λvπ(E)
vπ(E) = R(E, B) + 0λvπ(A) + 0λvπ(B) + 1λvπ(C) + 0λvπ(D) + 0λvπ(E)

vπ(A) = 1 +λvπ(C)
vπ(B) = 0 + 0.1λvπ(A) +0.9λvπ(D)
vπ(C) = 0 +λvπ(E)
vπ(D) = 5 +λvπ(E)
vπ(E) = 0 +λvπ(C)
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Plan evaluation by solving linear equations
Example

vπ(A) −λvπ(C) = 1
−0.1λvπ(A) +vπ(B) −0.9λvπ(D) = 0

vπ(C) −λvπ(E) = 0
vπ(D) −λvπ(E) = 5

−λvπ(C) +vπ(E) = 0

Solving with λ = 0.5 we get

vπ(A) = 1
vπ(B) = 2.3

vπ(C) = 0
vπ(D) = 5

vπ(E) = 0

This is the value function of the plan.
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The policy iteration algorithm
Definition

1 n := 0

2 Let π0 be any mapping from states s ∈ S to actions in
O(s).

3 Compute vπn(s) for all s ∈ S.
4 For all s ∈ S

πn+1(s) = arg max
o∈O(s)

(
R(s, o) +

∑
s′∈S

λp(s′|s, o)vπn(s′)

)

5 n := n + 1

6 If n = 1 or vπn 6= vπn−1 then go to 3.
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The policy iteration algorithm
Properties

Theorem

The policy iteration algorithm terminates after a finite
number of steps and returns an optimal plan.

Proof idea.

There is only a finite number of different plans, and at each
step a properly better plan is found or the algorithm
terminates.
The number of iterations needed for finding an ε-optimal
plan by policy iteration is never higher than the number of
iterations needed by value iteration.
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The policy iteration algorithm
Example

itr. π(A) π(B) π(C) π(D) π(E) vπ(A) vπ(B) vπ(C) vπ(D) vπ(E)
1 R R R R R 1.56 3.09 0.93 5.56 0.93
2 B R R R R 1.91 3.18 1.14 5.68 1.14

R=5

R=1

p=0.1

p=0.9

A

B D

E
C
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The previous three algorithms ignored the set of goal
states and attempted to maximize the rewards.

Reaching the goal states is an objective that may be
combined with rewards and probabilities.

Goal reachability with minimum costs and probability 1:
Find a plan that guarantees reaching the goals with the
minimum expected costs.

Goal reachability with maximum probability: Find a plan
that maximizes the probability that a goal state is
reached.
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Bounded goal reachability with minimum cost

Define for all i ≥ 0 the following value functions for the
expected cost of reaching a goal state.

v0(s) = −∞ for s ∈ S\G
v0(s) = 0 for s ∈ G

vi+1(s) = maxo∈O(s)

(
R(s, o) +

∑
s′∈S p(s′|s, o)vi(s

′)
)

for s ∈ S\G

This computation converges if for every ε there is i such that
|vi(s)− vi+1(s)| < ε.

Notice

The above algorithm is guaranteed to converge only if all
rewards are < 0. If some rewards are positive, the most
rewarding behavior may be to loop without ever reaching the
goals.
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Goal reachability with highest probability

Define for all i ≥ 0 the following value functions expressing
the probability of eventually reaching a goal.

v0(s) = 0 for s ∈ S\G
v0(s) = 1 for s ∈ G

vi+1(s) = mino∈O(s)

∑
s′∈S p(s′|s, o)vi(s

′) for s ∈ S\G

Notice

The above algorithm converges to v such that v(s) = 1 iff
s ∈ L ∪G where L is the set returned by prune.
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Implementation for big state spaces

Fact The most trivial way of implementing the previous
algorithms is feasible only for state space sizes of
up to 106 or 107.

Problem Every state in the state space has to be
considered explicitly, even when it is not needed
for the solution.

Solution
1 Use algorithms that restrict to the relevant

part of the state space: Real-Time Dynamic
Programming RTDP, ...

2 Use data structures that represent sets of
states and probability distributions compactly:
size of the data structure is not necessarily
linear in the number of states, but could be
logarithmic or less.
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Implementation for big state spaces

Like binary decision diagrams (BDDs) can be used in
implementing algorithms that use strong/weak preimages,
there are data structures that can be used for implementing
probabilistic algorithms for big state spaces.

Problem: Algorithms do not use just sets and relations
which can be represented as BDDs, but value
functions v : S → R and non-binary transition
matrices.

Solution: Use a generalization of BDDs called algebraic
decision diagrams (or MTBDDs: multi-terminal
BDDs.)
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Algebraic decision diagrams

Graph representation of functions from {0, 1}n → R
that generalizes BDDs (functions {0, 1}n → {0, 1})
Every BDD is an ADD.

Canonicity: Two ADDs describe the same function if
and only if they are the same ADD.

Applications: Computations on very big matrices
including computing stationary probabilities of Markov
chains; probabilistic verification; AI planning
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An algebraic decision diagram

0.2

B’ B’ B’ B’

0.0

A’ A’ A’

B B

A

1.00.8

A mapping aba’b’→ R

a′b′ a′b′ a′b′ a′b′

ab 00 01 10 11

00 1.0 0 0 0
01 0 1.0 0 0
10 0.8 0 0.2 0
11 0 0 0 0
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Operations on ADDs

Operations } for ADDs f and g are definable by
(f } g)(x) = f(x) } g(x).

abc f g f + g max(f, g) 7 · f
000 0 3 3 3 0
001 1 2 3 2 7
010 1 0 1 1 7
011 2 1 3 2 14
100 1 0 1 1 7
101 2 0 2 2 14
110 2 0 2 2 14
111 3 1 4 3 21
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Operations on ADDs
Sum

A

B B

C C C

3 2 1 0

+

A

B B

C

320 1

C =

A

B B

C C C

3 2 14
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Operations on ADDs
Maximum

A

B B

C C C

3 2 1 0

max

A

B B

C

320 1

C =

A

B B

C C C

3 2 1
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Operations on ADDs
Arithmetic ∃ abstraction

(∃p.f)(x) = (f [>/p])(x) + (f [⊥/p])(x)

abc f

000 0
001 1
010 1
011 2
100 1
101 2
110 2
111 3

∃c.f is obtained by summing
f(x) and f(x′) when x and x′

differ only on c:

ab ∃c.f
00 1
01 3
10 3
11 5
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Matrix multiplication with ADDs (I)

Consider matrices M1 and M2, represented as mappings:

(
1 2
3 4

) (
1 2
2 1

) aa′ M1

00 1
01 2
10 3
11 4

a′a′′ M2

00 1
01 2
10 2
11 1



AI Planning

Motivation

Pr. tr. systems

Evaluation

Algorithms

Implementation
ADDs

Value iteration

Matrix multiplication with ADDs (II)

aa′a′′ M1 M2 M1 ·M2

000 1 1 1
001 1 2 2
010 2 2 4
011 2 1 2
100 3 1 3
101 3 2 6
110 4 2 8
111 4 1 4

aa′′ ∃a′.(M1 ·M2)

00 5
01 4
10 11
11 10

(
1 2
3 4

) (
1 2
2 1

)
=

(
5 4

11 10

)
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Implementation of value iteration with ADDs

Start from 〈A, I,O,G, W 〉.
Variables in ADDs A and A′ = {a′|a ∈ A}.
Construct transition matrix ADDs from all o ∈ O (next
slide).

Construct ADDs for representing rewards W (o), o ∈ O.

Functions vi are ADDs that map valuations of A to R.

All computation is for all states (one ADD)
simultaneously: big speed-ups possible.
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Translation of operators into ADDs

Translation for operator o = 〈c, e〉 in normal form is
τprob
A (o) = c ∧ τprob

A (e) where

τ
prob
B (e) = τB(e) when e is deterministic

τ
prob
B (p1e1| · · · |pnen) = p1τ

prob
B (e1) + · · · + pnτ

prob
B (en)

τ
prob
B (e1 ∧ · · · ∧ en) = τ

prob
B\(B2∪···∪Bn)(e1) · τprob

B2
(e2) · . . . · τprob

Bn
(en)

where Bi = changes(ei) for all i ∈ {1, . . . , n}

Nondeterministic choice and outermost conjunctions are
respectively by arithmetic sum and multiplication.
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Translation of reward functions into ADDs

Let the rewards for o = 〈c, e〉 ∈ O be represented by
W (o) = {〈φ1, r1〉, . . . , 〈φn, rn〉}.
We construct an ADD Ro that maps each state to the
corresponding rewards.

This is by constructing the BDDs for φ1, . . . , φn and then
multiplying them with the respective numbers r1, . . . , rn:

Ro = r1 · φ1 + · · ·+ rn · φn −∞ · ¬c
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The value iteration algorithm without ADDs

1 n := 0

2 Choose any value function v0.
3 For every s ∈ S

vn+1(s) = max
o∈O(s)

(
R(s, o) +

∑
s′∈S

λp(s′|s, o)vn(s′)

)
.

Go to step 4 if |vn+1(s)− vn(s)| < ε(1−λ)
2λ for all s ∈ S.

Otherwise set n := n + 1 and go to step 3.
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The value iteration algorithm with ADDs

Backup step for vn+1 with o as product of τprob
A (o) and vn:

Ro + λ



a′b′ a′b′ a′b′ a′b′

ab 00 01 10 11

00 1.0 0 0 0
01 0 1.0 0 0
10 0.2 0 0.8 0
11 0 0 0 0




a′b′ vn

00 −5.1
01 2.8
10 10.2
11 3.7



Remark

The fact that the operator is not applicable in 11 is handled
by having the immediate reward −∞ in that state.
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The value iteration algorithm with ADDs

1 Assign n := 0 and let vn be an ADD that is constant 0.
2

vn+1 := max
o∈O

(
Ro + λ · ∃A′.(τprob

A (o) · (vn[A′/A])
)

Unsatisfied preconditions are handled by the immediate
rewards −∞.

3 If all terminal nodes of ADD |vn+1 − vn| are < ε(1−λ)
2λ

then stop.
4 Otherwise, set n := n + 1 and repeat from step 2.
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Summary

Probabilities are needed when plan has to have low
expected costs or a high success probability when
success cannot be guaranteed.

We have presented several algorithms based on
dynamic programming.

Most of these algorithms can be easily implemented by
using Algebraic Decision Diagrams ADDs as a data
structure for representing probability distributions and
transition matrices.

There are also other algorithms that do not always
require looking at every state but restrict to states that
are reachable from the initial states.
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