
Nondeterministic planning (June 6, 2005)

Execution graphs
Definition
Example
Bounded reachability

Plans with unbounded executions
Algorithm idea
Subprocedure prune
Algorithm

Maintenance goals
Definition
Example
Algorithm

Summary

(Albert-Ludwigs-Universität Freiburg) 1 / 29

Execution graphs

Execution graphs

I To formalize more complicated planning problems and more
complicated forms of plans we define execution graphs of a
transition system + plan.

I An execution graph describes the possible states of execution and
the transitions between them.

I For memoryless plans the execution states and states of the
transition system coincide because the execution mechanism is
simple.

I For more complex forms of plans (defined in later lectures when
discussing planning without full observability) the execution states
also include information that encodes memory from earlier states
of execution.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 2 / 29

Execution graphs Definition

Execution graphs
Definition

Definition
Let 〈S, I, O, G, P 〉 be a transition system with full observability and
π : S → O a mapping from states to operators.
Then the execution graph is 〈S, E〉 where

1. states s ∈ S are the nodes of the graph,

2. 〈s, s′〉 ∈ E is an edge if and only if s′ ∈ imgπ(s)(s),

3. the states s ∈ I are the initial nodes,

4. the states s ∈ G are the goal nodes,

5. nodes s ∈ S such that 〈s, s′〉 ∈ E for no s′ ∈ S are terminal nodes.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 3 / 29

Execution graphs Example

Execution graphs
Example

Transition system Execution graph with only
infinite executions.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 4 / 29

Execution graphs Bounded reachability

Plan objectives
Bounded reachability

I The simplest objective for nondeterministic planning is the one we
have used in last lectures: reach a goal state with certainty.

I With this objective the nondeterminism can also be understood as
an opponent like in 2-player games or in n-player games in
general.
Plan guarantees reaching a goal state no matter what the
opponent does: plans are winning strategies.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 5 / 29

Execution graphs Bounded reachability

Plan objectives
Bounded reachability

Definition
Let 〈S, I, O, G, P 〉 be a transition system with full observability and
π : S → O a mapping from states to operators.
Then π is a plan for bounded reachability if

all maximal paths starting from an initial node have a finite
length and end in a goal node.

This rules out infinite paths.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 6 / 29

Plans with unbounded executions

Need for unbounded executions / looping

I The first planning algorithm finds plans that reach a goal state
without visiting any state twice.

I This property guarantees that the length of executions is bounded
by some constant (which is smaller than the number of states.)

I Some solvable problems are not solvable this way.

1. Action may fail to have any effect.
Hit a coconut to break it.

2. Action may fail and take us away from the goals.
Build a house of cards.

Consequences:
1. It is impossible to avoid visiting some states several times.
2. There is no finite upper bound on execution length.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 7 / 29

Plans with unbounded executions

Need for plans with unbounded executions

Assumption

1. For any nondeterministic effect e1| · · · |en the probability of every
effect e1, . . . , en is > 0.

2. For any s′ ∈ imgo(s) the probability of reaching s′ from s by o is
> 0.

This assumption guarantees that any path in the execution graph has a
non-zero probability.
This is not compatible with viewing nondeterminism as an opponent in
a 2-player game: the opponent’s strategy might rule out some of the
choices e1, . . . , en.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 8 / 29

Plans with unbounded executions

Plan objectives
Unbounded reachability

Definition
Let 〈S, I, O, G, P 〉 be a transition system with full observability and
π : S → O a mapping from states to operators.
Then π is a plan for unbounded reachability if

from every node to which there is a path from an initial node
there is a path to a goal node that is a terminal node.

Looping
These plans may loop i.e. visit and revisit a state an unbounded
number of times.
These plans even allow infinite executions that do not reach a goal
state but the probability of such executions under the assumption we
made is 0.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 9 / 29

Plans with unbounded executions

Need for plans with unbounded executions
Example

Example (Breaking a coconut)

I Initial state: coconut is intact.
I Goal state: coconut is broken.
I On every hit the coconut may or

may not break.
I There is no finite upper bound on

the number of hits.

This is equivalent to coin tossing.

distance to G

∞ 0

G

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 10 / 29

Plans with unbounded executions

Need for plans with unbounded executions
Example

Example (Build a house of cards)

I Initial state: all cards lie on the table.
I Goal state: house of cards is complete.
I At every construction step the house may collapse.

distance to G

∞ 0

G

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 11 / 29

Plans with unbounded executions Algorithm idea

Algorithm for unbounded reachability

I We give an algorithm that finds plans that may loop (unbounded
reachability.)

I The algorithm is rather tricky in comparison to the algorithm for
bounded reachability.

I Every state covered by a plan satisfies two properties:
1. The state is good: there is at least one execution (= path in the

execution graph) leading to a goal state.
2. Every successor state is either a goal state or good.

I The algorithm repeatedly eliminates states that are not good.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 12 / 29

Plans with unbounded executions Algorithm idea

Algorithm for unbounded reachability
Example

G

01234
weak backward distances

G

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 13 / 29

Plans with unbounded executions Subprocedure prune

Subprocedure prune

I The procedure prune finds a maximal set of states for which
reaching goals with looping is possible.

I Two nested loops.
1. Inner loop identifies sets Sj of states from which a goal state can be

reached with j steps without leaving the current set of candidate
good states Wi.
Limit of S0, S1, . . . will be Wi+1.

2. Outer loop iterates through i = 0, 1, 2, . . . and produces a
decreasing sequence of candidate good state sets W0, W1, . . . , Wn

until Wn = Wn+1.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 14 / 29

Plans with unbounded executions Subprocedure prune

Subprocedure prune
Definition

1: PROCEDURE prune(T ,O,G);
2: W := T ;
3: REPEAT
4: W ′ := W ;
5: S := ∅;
6: REPEAT
7: S′ := S;
8: S := S′ ∪

⋃
o∈O(preimgo(S

′ ∪ G) ∩ spreimgo(W
′ ∪ G));

9: UNTIL S = S′;
10: W := S;
11: UNTIL W = W ′;
12: RETURN W ;

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 15 / 29

Plans with unbounded executions Subprocedure prune

Subprocedure prune
Correctness

Lemma (Procedure prune)
Let S and G ⊆ S be sets of states and O a set of operators Then
prune(S,O,G) terminates after a finite number of steps and returns
W ⊆ S such that there is π : W → O such that

1. for every s ∈ W there is an execution s0, . . . , sn of π with n ≥ 1
such that s = s0 and sn ∈ G,

2. imgπ(s)({s}) ⊆ W ∪ G for every s ∈ W , and

3. for every s ∈ S\W and function π′ : S → O there is an execution
s0, . . . , sn of π′ such that s = s0 and there is no m ≥ n and
execution sn, . . . , sm such that sm ∈ G.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 16 / 29

Plans with unbounded executions Algorithm

The planning algorithm

1: PROCEDURE FOplanLOOPS(I,O,G)
2: S := the set of all states;
3: L := G∪ prune(S,O,G);
4: IF I 6⊆ L THEN RETURN ∅;
5: D0 := G;
6: i := 1;
7: REPEAT (* Compute weak backward distances *)
8: Di := Di−1 ∪

⋃
o∈O

(preimgo(Di−1) ∩ spreimgo(L));
9: i := i + 1;

10: UNTIL Di = Di−1;
11: FOR EACH s ∈ Di\G DO
12: d := number such that s ∈ Dd\Dd−1;
13: π(s) := o such that imgo(s) ⊆ L and imgo(s) ∩ Dd−1 6= ∅;
14: END DO

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 18 / 29

Plans with unbounded executions Algorithm

Complexity of the planning algorithm

I The procedure prune runs in polynomial time in the number of
states because the number of iterations of each loop is at most n

– hence there are O(n2) iterations – and computation on each
iteration takes polynomial time in the number of states.

I Finding conditional plans for full observability under the bounded
and unbounded reachability objectives is in the complexity class
EXPTIME.

I Lecture notes contain proofs showing that the planning problems
are also EXPTIME-hard.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 19 / 29

Maintenance goals

Maintenance goals

I Planning is often not about reaching a goal state in which
execution can be terminated.

1. An animal: find food, eat, sleep, find food, eat, sleep, ...
2. Cleaner robot: keep the building clean.

I These problems cannot be directly formalized in terms of
reachability because infinite (unbounded) plan execution is
needed.

I We next formalize the simplest objective with infinite plan
executions which is known as maintenance because the transition
system has to be kept in the goal states indefinitely (the condition
expressed by the goals has to be maintained.)

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 20 / 29

Maintenance goals Definition

Plan objectives
Maintenance

Definition
Let 〈S, I, O, G, P 〉 be a transition system with full observability and
π : S → O a mapping from states to operators.
Then π is a plan for maintenance if

every node in the execution graph to which there is a path
from an initial node is a goal node that has a successor node.

The execution graph does not have terminal nodes.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 21 / 29

Maintenance goals Example

Maintenance
Example

I The state of an animal is determined by three state variables:
hunger (0,1,2), thirst (0,1,2) and location (river, pasture, desert).
There is also a special state called death.

I Thirst grows when not at river; at river it is 0.
I Hunger grows when not on pasture; on pasture it is 0.
I If hunger or thirst exceeds 2, the animal dies.
I The goal of the animal is to not die.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 22 / 29

Maintenance goals Example

Algorithm for maintenance goals
Example

pasture

river

Death

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 23 / 29

Maintenance goals Example

Maintenance goals
Example

We can infer rules backwards starting from the death condition.

1. If in desert and thirst = 2 must go to river.

2. If in desert and hunger = 2 must go to pasture.

3. If on pasture and thirst = 1 must go to desert.

4. If at river and hunger = 1 must go to desert.

5. ...

If the above rules conflict, the animal will die.
There is only one plan: go to pasture, go to desert, go to river, go to
desert, ...

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 24 / 29

Maintenance goals Algorithm

Algorithm for maintenance goals
Idea

1. Goal states are 0-safe: maintenance objective is satisfied for the
current state.

2. Given all i-safe states, compute all i + 1-safe states: maintenance
objective is satisfied for i + 1 time points.

3. i + 1-safe states can be computed from i-safe states by using
strong preimages.

4. For some j, j-safe states equal j + 1-safe states because there
are only finitely many states and at each step j + 1-safe states are
a subset of j-safe states.
Then j-safe states are also ∞-safe.

Summary of the algorithm idea
Repeatedly eliminate from consideration those states that in 1 or more
steps unavoidably lead to a non-goal state.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 25 / 29

Maintenance goals Algorithm

Algorithm for maintenance goals
Definition

1: PROCEDURE FOplanMAINTENANCE(I,O,G)
2: G′ := G;
3: REPEAT
4: G′′ := G′;
5: G′ :=

⋃
o∈O

(spreimgo(G
′) ∩ G);

6: UNTIL G′ = G′′;
7: IF I 6⊆ G′ RETURN ∅;
8: FOR EACH s ∈ G′ DO
9: assign π(s) := o such that imgo(s) ⊆ G′;

10: END DO
11: RETURN π;

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 26 / 29

Summary

Summary of objectives

G

Bounded Reachability

G

Unbounded Reachability

G

Maintenance

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 28 / 29

Summary

Summary

I There are several possible objectives a plan can fulfill.
I We have considered bounded reachability, unbounded

reachability and maintenance.
The executions are respectively of bounded finite length,
unbounded finite length, and infinite.

I These objectives have all been formalized in terms of the
properties of execution graphs.

I We have presented dynamic-programming type (backward
search) algorithms for all three planning problems.

I All three algorithms can be implemented by using binary decision
diagrams BDDs as a data structure for state sets.

(Albert-Ludwigs-Universität Freiburg) AI Planning June 6, 2005 29 / 29

