Nondeterministic planning (May 25, 2005)
Plans
Memoryless plans
Example
Definition
Image operations
Images
Preimages
Strong preimages
Algorithms
AND-OR search
Dynamic programming
Backward distances
Regression
Definition
Operators in CPC
Images in CPC
\exists / \forall-abstraction
(Abeltind widsishiversitat freiburg)

Plans

1. Memoryless plans map a state/an observation to an operator.

We use this definition of plans for fully observable problems only.
2. Conditional plans generalize memoryless plans.

They are needed for problems without full observability.

- The state of the execution of a conditional plan depends on observations on earlier execution steps.
- The state of the execution = a primitive form of memory.
- The operator to be executed depends on the state of the execution.

Memoryless plans

Example

Image operations Images

Images

Image

The image of a set T of states with respect to an operator o is the set of those states that can be reached by executing o in a state in T.

(Albert-Ludwigs-Universität Freiburg)
Al Planning
May 30, $2005 \quad 5 / 56$
Image operations Preimages

Preimages

Weak preimage
The preimage of a set T of states with respect to an operator o is the set of those states from which a state in T can be reached by executing o.

Definition (Image of a state)
$\operatorname{img}_{o}(s)=\left\{s^{\prime} \in S \mid \operatorname{sos}^{\prime}\right\}$
Definition (Image of a set of states)
$i m g_{o}(T)=\bigcup_{s \in T} i m g_{o}(s)$
(Albert-Ludwigs-Universität Freiburg) Al Planning May 30, 2005 6/56

Preimages
Formal definition

Definition (Weak preimage of a state)
preimg $_{o}\left(s^{\prime}\right)=\left\{s \in S \mid s o s^{\prime}\right\}$
Definition (Weak preimage of a set of states) $\operatorname{preimg}_{o}(T)=\bigcup_{s \in T} \operatorname{preimg}_{o}(s)$.

Strong preimages

Strong preimage
The strong preimage of a set T of states with respect to an operator o is the set of those states from which a state in T is always reached when executing o.

Algorithms for fully observable problems

1. Heuristic search (forward)

Nondeterministic planning can be viewed as AND-OR search.
OR nodes: Choice between operators
AND nodes: Nondeterministically reached state
Heuristic AND-OR search algorithms: AO*, ...
2. Dynamic programming (backward)

Idea Compute operator/distance/value for a state based on the operators/distances/values of its all successor states.
2.10 actions needed for goal states.
2.2 If states with i actions to goals are known, states with $\leq i+1$ actions to goals can be easily identified.
Automatic reuse of already found plan suffixes.

Dynamic programming

Planning by dynamic programming
If for all successors of state s with respect to operator o a plan exists, assign operator o to s.

Base case $i=0$: In goal states there is nothing to do.
Inductive case $i \geq 1$: If there is $o \in O$ such that for all $s^{\prime} \in \operatorname{img}_{o}(s) s^{\prime}$ is a goal state or $\pi\left(s^{\prime}\right)$ was assigned on iteration $i-1$, then assign $\pi(s)=o$.

Connection to distances
If s is assigned a value on iteration $i \geq 1$, then the backward distance of s is i.
The dynamic programming algorithm essentially computes the backward distances of states.

Backward distances

Definition of distance sets

Definition

Let G be a set of states and O a set of operators. Define the backward distance sets $D_{i}^{\text {bwd }}$ for G, O that consist of those states for which there is a guarantee of reaching a state in G with at most i operator applications.

$$
\begin{aligned}
& D_{0}^{\text {bwd }}=G \\
& D_{i}^{b w d}=D_{i-1}^{b w d} \cup \bigcup_{o \in O} \operatorname{spreimg}_{o}\left(D_{i-1}^{b w d}\right) \text { for all } i \geq 1
\end{aligned}
$$

Strong preimages
Formal definition

Definition (Strong preimage of a set of states) $\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid s^{\prime} \in T\right.$, sos $\left.^{\prime}, \operatorname{img}_{o}(s) \subseteq T\right\}$
(Albert-Ludwigs-Universität Freiburg) Al Planning May 30, 2005 10/56

| (Albert-Ludwigs-Universität Freiburg) | Al Planning | May 30, 2005 | 12/56 |
| :--- | :---: | :---: | :---: | :---: |
| | | | |
| Algorithms \quad Dynamic programming | | | |

Backward distances
Example

Backward distances

Definition

Definition
Let G be as set of states and O a set of operators, and let $D_{0}^{\text {bwd }}, D_{1}^{\text {bwd }}, \ldots$ be the backward distance sets for G and O. Then the backward distance from a state s to G is

$$
\delta_{G}^{b w d}(s)=\left\{\begin{array}{l}
0 \text { if } s \in G \\
i \text { if } s \in D_{i}^{b w d} \backslash D_{i-1}^{b w d}
\end{array}\right.
$$

If $s \notin D_{i}^{\text {bwd }}$ for all $i \geq 0$ then $\delta_{G}^{b w d}(s)=\infty$.

Construction of a plan based on distances

Extraction of a plan from distance sets

1. Let $S^{\prime} \subseteq S$ be those states having a finite backward distance.
2. Let s be a state with distance $i=\delta_{G}^{b w d}(s) \geq 1$.
3. Assign to $\pi(s)$ any operator $o \in O$ such that $i m g_{o}(s) \subseteq D_{i-1}^{\text {bwd }}$. Hence o decreases the backward distance by at least one.

The plan π solves the planning problem for $\langle S, I, O, G, P\rangle$ iff $I \subseteq S^{\prime}$.

Making the algorithm a logic-based algorithm

- We use a formula ϕ as a data structure for representing the set $\{s \in S \mid s \models \phi\}$.
- We show that regression $\operatorname{regro}_{o}^{r d}(\phi)$ for nondeterministic operators is one way of computing strong preimages.
- We present general techniques for computing images, preimages and strong preimages of sets of states represented as formulae.
- Many of the algorithms presented later in the lecture can be lifted to use a logic-based representation, thereby expanding their range of applicability to much bigger transition systems.

Regression Definition
Regression for nondeterministic operators Illustration

Regression for nondeterministic operators Example

Example

Let $o=\langle d,(b \mid \neg c)\rangle$. Then

$$
\begin{aligned}
\operatorname{regr}_{o}^{n d}(b \leftrightarrow c) & =\operatorname{regr}_{\langle d, b\rangle}(b \leftrightarrow c) \wedge \operatorname{regr}_{\langle d, \neg c\rangle}(b \leftrightarrow c) \\
& =(d \wedge(\top \leftrightarrow c)) \wedge(d \wedge(b \leftrightarrow \perp)) \\
& \equiv d \wedge c \wedge \neg b .
\end{aligned}
$$

- An algorithm that represents the states explicitly is feasible for transition systems with at most 10^{6} or 10^{7} states.
- For planning with bigger transition systems structural properties of the transition system have to be taken advantage of.
- Representing state sets as propositional formulae often allow taking advantage of the structural properties: a formula that represents a set of states or a transition relation that has certain regularities may be very small in comparison to the set or relation.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 30, 2005 18/56

Regression for nondeterministic operators Definition

We can easily generalize our regression operation for deterministic operators to regression for nondeterministic operators of a restricted syntactic form.
Definition (Regression for nondeterministic operators)
Let ϕ be a propositional formula and $o=\left\langle c, e_{1}\right| \cdots\left|e_{n}\right\rangle$ an operator where e_{1}, \ldots, e_{n} are deterministic. Define

$$
\operatorname{regr}_{o}^{n d}(\phi)=\operatorname{regr}_{\left\langle c, e_{1}\right\rangle}(\phi) \wedge \cdots \wedge \operatorname{regr}_{\left\langle c, e_{n}\right\rangle}(\phi)
$$

Regression for nondeterministic operators

Correctness

Theorem
Let ϕ be a formula over A, o an operator over A, and S the set of all states over A. Then $\left\{s \in S \mid s \models \operatorname{regr}_{o}^{n d}(\phi)\right\}=\operatorname{spreimg}_{o}(\{s \in S \mid s \models \phi\})$.

Proof.
Let $o=\left\langle c,\left(e_{1}|\cdots| e_{n}\right)\right\rangle$.
$\left\{s \in S \mid s \models \operatorname{regr}_{o}^{n d}(\phi)\right\}$
$=\left\{s \in S \mid s \models \operatorname{regr}_{\left\langle c, e_{1}\right\rangle}(\phi) \wedge \cdots \wedge \operatorname{regr}_{\left\langle c, e_{n}\right\rangle}(\phi)\right\}$
$=\left\{s \in S \mid s \models \operatorname{regr}_{\left\langle c, e_{1}\right\rangle}(\phi), \ldots, s \models \operatorname{regr}_{\left\langle c, e_{n}\right\rangle}(\phi)\right\}$
$=\left\{s \in S \mid \operatorname{app}_{\left\langle c, e_{1}\right\rangle}(s) \models \phi, \ldots, \operatorname{app}_{\left\langle c, e_{n}\right\rangle}(s) \models \phi\right\}$
$=\left\{s \in S \mid s^{\prime} \models \phi\right.$ for all $s^{\prime} \in \operatorname{img}_{o}(s)$, there is $s^{\prime} \models \phi$ with sos $\left.^{\prime}\right\}$
$=\operatorname{spreimg}_{o}(\{s \in S \mid s \models \phi\})$
$3 \mathrm{rd}=$ is by properties of deterministic regression.
4 th $=$ is by $\operatorname{img}_{o}(s)=\left\{\operatorname{app}_{\left\langle c, e_{1}\right\rangle}(s), \ldots, \operatorname{app}_{\left\langle c, e_{n}\right\rangle}(s)\right\}$.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 30, 2005 22/56

Backward distances with formulas

By using regression we can compute formulas that represent backward distance sets.
Definition
Let G be a formula and O a set of operators. The backward distance sets $D_{i}^{b w d}$ for G, O are represented by the following formulae.

$$
\begin{aligned}
& D_{0}^{b w d}=G \\
& D_{i}^{b w d}=D_{i-1}^{b w d} \vee \bigvee_{o \in O} \text { regrond }\left(D_{i-1}^{b w d}\right) \text { for all } i \geq 1
\end{aligned}
$$

Backward distances with formulas

General images and preimages with formulas

Definition
Let G be a formula and O a set of operators, and let $D_{0}^{\text {bwd }}, D_{1}^{b w d}, \ldots$ be the formulae representing the backward distance sets for G and O. Then the backward distance from a state s to G is

$$
\delta_{G}^{b w d}(s)=\left\{\begin{array}{l}
0 \text { if } s \models G \\
i \text { if } s \models D_{i}^{b w d} \wedge \neg D_{i-1}^{b w d}
\end{array}\right.
$$

If $s \not \vDash D_{i}^{b w d}$ for all $i \geq 0$ then $\delta_{G}^{b w d}(s)=\infty$.

General images and preimages with formulas

Definition

Define the set of state variables possibly changed by e as

$$
\begin{aligned}
\text { changes }(a) & =\{a\} \\
\text { changes }(\neg a) & =\{a\} \\
\text { changes }(c \triangleright e) & =\text { changes }(e) \\
\text { changes }\left(e_{1} \wedge \cdots \wedge e_{n}\right) & =\text { changes }\left(e_{1}\right) \cup \cdots \cup \text { changes }\left(e_{n}\right) \\
\text { changes }\left(e_{1}|\cdots| e_{n}\right) & =\text { changes }\left(e_{1}\right) \cup \cdots \cup \text { changes }\left(e_{n}\right)
\end{aligned}
$$

Assumption

Let $e_{1} \wedge \cdots \wedge e_{n}$ occur in the effect of an operator. If e_{1}, \ldots, e_{n} are not all deterministic then a and $\neg a$ may occur as an atomic effect in at most one of e_{1}, \ldots, e_{n}.
This assumption rules out effects like $(a \mid b) \wedge(\neg a \mid c)$ that may make a simultaneously true and false.

General images and preimages with formulas

Example

We translate the effect

$$
e=(a \mid(d \triangleright a)) \wedge(c \mid d)
$$

into a propositional formula. The set of state variables is
$A=\{a, b, c, d\}$.

$$
\begin{aligned}
\tau_{\{a, b, c, d\}}^{n d}(e)= & \tau_{\{a, b\}}^{n d}(a \mid(d \triangleright a)) \wedge \tau_{\{c, d\}}^{n d}(c \mid d) \\
= & \left(\tau_{\{a, b\}}^{n d}(a) \vee \tau_{\{a, b\}}^{n d}(d \triangleright a)\right) \wedge\left(\tau_{\{c, d\}}^{n d}(c) \vee \tau_{\{c, d\}}^{n d}(d)\right) \\
= & \left(\left(a^{\prime} \wedge\left(b \leftrightarrow b^{\prime}\right)\right) \vee\left(\left((a \vee d) \leftrightarrow a^{\prime}\right) \wedge\left(b \leftrightarrow b^{\prime}\right)\right)\right) \wedge \\
& \left(\left(c^{\prime} \wedge\left(d \leftrightarrow d^{\prime}\right)\right) \vee\left(\left(c \leftrightarrow c^{\prime}\right) \wedge d^{\prime}\right)\right)
\end{aligned}
$$

Existential and universal abstraction

The most important operations performed on transition relations represented as propositional formulae are based on existential abstraction and universal abstraction.
Definition
Existential abstraction of a formula ϕ with respect to $a \in A$:

$$
\exists a . \phi=\phi[\top / a] \vee \phi[\perp / a] .
$$

Universal abstraction is defined analogously by using conjunction instead of disjunction.
Definition
Universal abstraction of a formula ϕ with respect to $a \in A$:

$$
\forall a . \phi=\phi[\top / a] \wedge \phi[\perp / a] .
$$

- The definition of regression covers only a subclass of nondeterministic operators.
- How to define strong preimages for all operators, and images and preimages?
- Now we apply a general idea:
. View operators/actions as binary relations.
Represent these binary relations as formulae.
Define relational operations for relations represented as formulae.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 30, 2005 26/56

General images and preimages with formulas

In nondeterministic choices $e_{1}|\cdots| e_{n}$ the formula for each e_{i} has to express the changes for exactly the same set B of state variables.
Definition

$$
\begin{aligned}
& \tau_{B}^{n d}(e)=\tau_{B}(e) \text { when } e \text { is deterministic } \\
& \tau_{B}^{n d}\left(e_{1}|\cdots| e_{n}\right)=\tau_{B}^{n d}\left(e_{1}\right) \vee \cdots \vee \tau_{B}^{n d}\left(e_{n}\right) \\
& \tau_{B}^{n d}\left(e_{1} \wedge \cdots \wedge e_{n}\right)=\tau_{B \backslash\left(B_{2} \cup \cdots \cup B_{n}\right)}^{n d}\left(e_{1}\right) \wedge \tau_{B_{2}}^{n d}\left(e_{2}\right) \wedge \cdots \wedge \tau_{B_{n}}^{n d}\left(e_{n}\right) \\
& \text { where } B_{i}=\text { changes }\left(e_{i}\right) \text { for } i \in\{2, \ldots, n\}
\end{aligned}
$$

Definition
Let A be a set of state variables. Let $o=\langle c, e\rangle$ be an operator over A in normal form. Define $\tau_{A}^{n d}(o)=c \wedge \tau_{A}^{n d}(e)$.

Lemma
Let o be an operator. Then

$$
\begin{aligned}
& \left\{v \mid v \text { is a valuation of } A \cup A^{\prime}, v \models \tau_{A}^{n d}(o)\right\} \\
& =\left\{s \cup s^{\prime}\left[A^{\prime} / A\right] \mid s, s^{\prime} \in S, s^{\prime} \in \operatorname{img}_{o}(s)\right\} .
\end{aligned}
$$

\exists-abstraction
Examples

Example

$$
\begin{aligned}
& \exists b .((a \rightarrow b) \wedge(b \rightarrow c)) \\
& =((a \rightarrow \top) \wedge(\top \rightarrow c)) \vee((a \rightarrow \perp) \wedge(\perp \rightarrow c)) \\
& \equiv c \vee \neg a \\
& \equiv a \rightarrow c \\
& \exists a b .(a \vee b)=\exists b .(\top \vee b) \vee(\perp \vee b) \\
& =((\top \vee \top) \vee(\perp \vee \top)) \vee((\top \vee \perp) \vee(\perp \vee \perp)) \\
& =(\top \vee \top) \vee(\top \vee \perp)=\top
\end{aligned}
$$

Example

\exists-abstraction is also known as forgetting:

$$
\begin{aligned}
& \exists \text { mon } \exists \text { tue }((\text { mon } \vee \text { tue }) \wedge(\text { mon } \rightarrow \text { work }) \wedge(\text { tue } \rightarrow \text { work })) \\
& \equiv \exists \text { tue }((\text { work } \wedge(\text { tue } \rightarrow \text { work })) \vee(\text { tue } \wedge(\text { tue } \rightarrow \text { work }))) \equiv \text { work }
\end{aligned}
$$

$\underset{\text { Example }}{\forall \text { and } \exists \text {-abstraction in terms of truth-tables }}$
$\forall a$ and $\exists a$ correspond to combining pairs of lines with the same valuation for variables other than a.
Example

$\exists c .(a \vee(b \wedge c)) \equiv a \vee b \quad \forall c .(a \vee(b \wedge c)) \equiv a$					
abc	$\|a \vee(b \wedge c) \quad a b\|$	$\exists c .(a \vee(b \wedge c))$		$\forall c .(a \vee(b \wedge c))$	
000	0 00	0	00	0	
001	$0 \quad 0 \quad 1$	1	01	0	
010	$0 \quad 10$	1	10	1	
011	$1 \quad 11$	1	11	1	
100	1				
101	1				
110	1				
111	1				
Albert-Ludw	wigs-Universitat Freiburg)	Al Planning		May 30, 2005	33/56

Properties of abstracted formulas

1. Let ϕ be a formula over A. Then $\exists A . \phi$ and $\forall A . \phi$ are formulae that consist of the constants \top and \perp and the logical connectives only.
2. The truth-values of these formulae are independent of the valuation of A, that is, their values are the same for all valuations.
3. $\exists A \cdot \phi \equiv \mathrm{~T}$ if and only if ϕ is satisfiable.
4. $\forall A \cdot \phi \equiv \mathrm{~T}$ if and only if ϕ is valid.

Definition
Existential and universal abstraction of ϕ with respect to a set of atomic propositions $B=\left\{b_{1}, \ldots, b_{n}\right\}$ are

$$
\begin{aligned}
\exists B \cdot \phi & =\exists b_{1} \cdot\left(\exists b_{2} \cdot\left(\ldots \exists b_{n} \cdot \phi \ldots\right)\right) \\
\forall B \cdot \phi & =\forall b_{1} \cdot\left(\forall b_{2} \cdot\left(\ldots \forall b_{n} \cdot \phi \ldots\right)\right)
\end{aligned}
$$

(Albert-Ludwigs-Universität Freiburg) Al Planning May 30, 2005 34/56

Properties of \forall and \exists abstraction

> Lemma If ϕ is a formula over $A \cup A^{\prime}$ and v a valuation of A then 1. $v \models \exists A^{\prime} . \phi$ iff $v \cup v^{\prime} \models \phi$ for some valuation v^{\prime} of A^{\prime}. 2. $v \models \forall A^{\prime} . \phi$ iff $v \cup v^{\prime} \models \phi$ for all valuations v^{\prime} of A^{\prime}.

$$
\begin{aligned}
& \text { (Albert-Ludwigs-Universität Freiburg) Al Planning May 30, 2005 36/56 } \\
& \text { Images in CPC } \quad \exists / \forall \text {-abstraction } \\
& \text { Images by } \exists \text {-abstraction } \\
& \text { Let } \\
& \text { - } A=\left\{a_{1}, \ldots, a_{n}\right\} \text {, } \\
& \text { - } A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\} \text {, } \\
& \text { - } \phi_{1} \text { be a formula on } A \text { representing a row vector } V_{1 \times 2^{n}} \\
& \text { (equivalently, a set of valuations of } A \text {), and } \\
& \text { - } \phi_{2} \text { a formula on } A \cup A^{\prime} \text { representing a matrix } M_{2^{n} \times 2^{n}} \text { (equivalently, } \\
& \text { a binary relation on valuations of } A \text {). } \\
& \text { The product matrix } V M \text { of size } 1 \times 2^{n} \text { is represented by } \\
& \exists A .\left(\phi_{1} \wedge \phi_{2}\right)
\end{aligned}
$$

which is a formula on A^{\prime}.
To obtain a formula over A we have to rename the variables.

$$
\left(\exists A .\left(\phi_{1} \wedge \phi_{2}\right)\right)\left[A / A^{\prime}\right]
$$

(Albert-Ludwigs-Universität Freiburg)
Al Planning
May $30,2005 \quad 38 / 56$

Matrix multiplication by \exists-abstraction

Let

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$,
- $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}$,
- $A^{\prime \prime}=\left\{a_{1}^{\prime \prime}, \ldots, a_{n}^{\prime \prime}\right\}$,
- ϕ_{1} be a formula on $A \cup A^{\prime}$ representing matrix M_{1} and
- ϕ_{2} a formula on $A^{\prime} \cup A^{\prime \prime}$ representing matrix M_{2}.

The matrices M_{1} and M_{2} have size $2^{n} \times 2^{n}$.
The product matrix $M_{1} M_{2}$ is represented by

$$
\exists A^{\prime} .\left(\phi_{1} \wedge \phi_{2}\right)
$$

which is a formula on $A \cup A^{\prime \prime}$.

The formula b represents $\{01,11\}$.

Matrix multiplication by \exists-abstraction Example

Example

Let $\phi_{1}=a \leftrightarrow \neg a^{\prime}$ and $\phi_{2}=a^{\prime} \leftrightarrow a^{\prime \prime}$ represent two actions, reversing the truth-value of a and doing nothing. The sequential composition of these actions is

$$
\begin{aligned}
\exists a^{\prime} . \phi_{1} \wedge \phi_{2} & =\left((a \leftrightarrow \neg \top) \wedge\left(\top \leftrightarrow a^{\prime \prime}\right)\right) \vee\left((a \leftrightarrow \neg \perp) \wedge\left(\perp \leftrightarrow a^{\prime \prime}\right)\right) \\
& \equiv\left((a \leftrightarrow \perp) \wedge\left(\top \leftrightarrow a^{\prime \prime}\right)\right) \vee\left((a \leftrightarrow \top) \wedge\left(\perp \leftrightarrow a^{\prime \prime}\right)\right) \\
& \equiv\left(\neg a \wedge a^{\prime \prime}\right) \vee\left(a \wedge \neg a^{\prime \prime}\right) \\
& \equiv a \leftrightarrow \neg a^{\prime \prime} .
\end{aligned}
$$

Images and preimages by formula manipulation

Define $s\left[A^{\prime} / A\right]=\left\{\left\langle a^{\prime}, s(a)\right\rangle \mid a \in A\right\}$.

Lemma
Let ϕ be a formula on A and v a valuation of A. Then $v \models \phi$ iff $v\left[A^{\prime} / A\right] \models \phi\left[A^{\prime} / A\right]$.

Definition
Let o be an operator and ϕ a formula. Define

$$
\begin{aligned}
\operatorname{img}_{o}(\phi) & =\left(\exists A \cdot\left(\phi \wedge \tau_{A}^{n d}(o)\right)\right)\left[A / A^{\prime}\right] \\
\operatorname{preimg}_{o}(\phi) & =\exists A^{\prime} .\left(\tau_{A}^{n d}(o) \wedge \phi\left[A^{\prime} / A\right]\right) \\
\operatorname{spreimg}_{o}(\phi) & =\forall A^{\prime} .\left(\tau_{A}^{n d}(o) \rightarrow \phi\left[A^{\prime} / A\right]\right) \wedge \exists A^{\prime} . \tau_{A}^{n d}(o) .
\end{aligned}
$$

Matrix multiplication

Multiply $\left(\neg a \leftrightarrow a^{\prime}\right) \wedge\left(\neg b \leftrightarrow b^{\prime}\right)$ and $\left(a^{\prime} \leftrightarrow b^{\prime \prime}\right) \wedge\left(b^{\prime} \leftrightarrow a^{\prime \prime}\right)$:

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \times\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

This is

$$
\begin{aligned}
& \exists a^{\prime} . \exists b^{\prime} \cdot\left(\neg a \leftrightarrow a^{\prime}\right) \wedge\left(\neg b \leftrightarrow b^{\prime}\right) \wedge\left(a^{\prime} \leftrightarrow b^{\prime \prime}\right) \wedge\left(b^{\prime} \leftrightarrow a^{\prime \prime}\right) \\
& \equiv\left(\neg a \leftrightarrow b^{\prime \prime}\right) \wedge\left(\neg b \leftrightarrow a^{\prime \prime}\right) .
\end{aligned}
$$

Images by formula manipulation

Theorem
Let $T=\{s \in S \mid s \models \phi\}$. Then $\left\{s \in S \mid s \models \operatorname{img}_{o}(\phi)\right\}=\{s \in S \mid s \models$ $\left.\left(\exists A .\left(\phi \wedge \tau_{A}^{n d}(o)\right)\right)\left[A / A^{\prime}\right]\right\}=i m g_{o}(T)$.
Proof.
$s^{\prime} \models\left(\exists A .\left(\phi \wedge \tau_{A}^{n d}(o)\right)\right)\left[A / A^{\prime}\right]$
iff $s^{\prime}\left[A^{\prime} / A\right] \models \exists A$. $\left(\phi \wedge \tau_{A}^{n d}(o)\right)$
iff there is valuation s of A s.t. $\left(s \cup s^{\prime}\left[A^{\prime} / A\right]\right) \models \phi \wedge \tau_{A}^{n d}(o)$
iff there is valuation s of A s.t. $s \models \phi$ and $\left(s \cup s^{\prime}\left[A^{\prime} / A\right]\right) \models \tau_{A}^{\text {nd }}(o)$
iff there is $s \in T$ s.t. $\left(s \cup s^{\prime}\left[A^{\prime} / A\right]\right) \models \tau_{A}^{n d}(o)$
iff there is $s \in T$ s.t. $s^{\prime} \in \operatorname{img}_{o}(s)$
iff $s^{\prime} \in \operatorname{img}_{o}(T)$.

Strong preimages by formula manipulation

Theorem
Let $T=\{s \in S \mid s \models \phi\}$. Then $\left\{s \in S \mid s \models\right.$ spreimg $\left._{o}(\phi)\right\}=\{s \in S \mid s \models$ $\left.\forall A^{\prime} .\left(\tau_{A}^{n d}(o) \rightarrow \phi\left[A^{\prime} / A\right]\right) \wedge \exists A^{\prime} . \tau_{A}^{n d}(o)\right\}=\operatorname{spreimg}_{o}(T)$.

Proof.
See the lecture notes.
(Albert-Ludwigs-Universiät Freiburg) \quad Al Planning \quad May 30, 2005 $46 / 56$

Summary of matrix/logic/relational operations

matrices	formulas	state sets
vector $V_{1 \times n}$	formula on A	set
matrix $M_{n \times n}$	formula on $A \cup A^{\prime}$	relation
$V_{1 \times n}+V_{1 \times n}^{\prime}$	$\phi_{1} \vee \phi_{2}$	union
	$\phi_{1} \wedge \phi_{2}$	intersection
$V_{1 \times n} \times M_{n \times n}$	$\left(\exists A .\left(\phi \wedge \tau_{A}^{n d}(o)\right)\right)\left[A / A^{\prime}\right]$	img ${ }_{o}(T)$
$M_{n \times n} \times V_{n \times 1}$	$\exists A^{\prime} .\left(\tau_{A}^{n d}(o) \wedge \phi\left[A^{\prime} / A\right]\right)$	$\operatorname{preimg}_{o}(T)$
	$\forall A^{\prime} .\left(\tau_{A}^{n d}(o) \rightarrow \phi\left[A^{\prime} / A\right]\right) \wedge \exists A^{\prime} . \tau_{A}^{n d}(o)$	spreimg ${ }_{\text {(}}(T)$

Albert-Ludwigs-Universität Freiburg) Al Planning May 30, 2005 46/56

Corollary
Let $o=\left\langle c,\left(e_{1}|\cdots| e_{n}\right)\right\rangle$ be an operator such that all e_{i} are deterministic.
The formula spreimg ${ }_{o}(\phi)$ is logically equivalent to regrond (ϕ).
Proof.
$\left\{s \in \dot{S} \mid s \models \operatorname{regr}_{o}(\phi)\right\}=\operatorname{spreimg}_{o}(\{s \in S \mid s \models \phi\})=\{s \in S \mid s \models$ spreimg $\left._{o}(\phi)\right\}$.

Strong preimages vs. regression
Let $T=\{s \in S \mid s \models \phi\}$. Then $\left\{s \in S \mid s \models \operatorname{preimg}_{o}(\phi)\right\}=\{s \in S \mid s \models$ $\left.\exists A^{\prime} .\left(\tau_{A}^{n d}(o) \wedge \phi\left[A^{\prime} / A\right]\right)\right\}=\operatorname{preimg}_{o}(T)$.

Proof.
$s \vDash \exists A^{\prime} .\left(\tau_{A}^{n d}(o) \wedge \phi\left[A^{\prime} / A\right]\right)$
iff there is $s_{0}^{\prime}: A^{\prime} \rightarrow\{0,1\}$ s.t. $\left(s \cup s_{0}^{\prime}\right) \models \tau_{A}^{n d}(o) \wedge \phi\left[A^{\prime} / A\right]$
iff there is $s_{0}^{\prime}: A^{\prime} \rightarrow\{0,1\}$ s.t. $s_{0}^{\prime} \models \phi\left[A^{\prime} / A\right]$ and $\left(s \cup s_{0}^{\prime}\right) \models \tau_{A}^{n d}(o)$
iff there is $s^{\prime}: A \rightarrow\{0,1\}$ s.t. $s^{\prime} \models \phi$ and $\left(s \cup s_{0}^{\prime}\right) \models \tau_{A}^{n d}(o)$
iff there is $s^{\prime} \in T$ s.t. $\left(s \cup s^{\prime}\left[A^{\prime} / A\right]\right) \models \tau_{A}^{n d}(o)$
iff there is $s^{\prime} \in T$ s.t. $s^{\prime} \in \operatorname{img}_{o}(s)$
iff there is $s^{\prime} \in T$ s.t. $s \in \operatorname{preimg}_{o}\left(s^{\prime}\right)$
iff $s \in \operatorname{preimg}_{o}(T)$.
Above we define $s^{\prime}=s_{0}^{\prime}\left[A / A^{\prime}\right]$ (and hence $s_{0}^{\prime}=s^{\prime}\left[A^{\prime} / A\right]$.)

Albert-Ludwigs-Universität Freiburg)

Images in CPC Strong preimages

Images and preimages of sets of operators

The union of images of ϕ with respect to all operators $o \in O$ is

$$
\bigvee_{o \in O} i m g_{o}(\phi)
$$

This can be computed more directly by using the disjunction $\bigvee_{o \in O} \tau_{A}(o)$ of the transition formulae:

$$
\exists A .\left(\phi \wedge\left(\bigvee_{o \in O} \tau_{A}(o)\right)\right)\left[A / A^{\prime}\right]
$$

Same works for preimages.

Shannon expansion

Definition
3-place connective if-then-else is defined by

$$
\operatorname{ite}\left(a, \phi_{1}, \phi_{2}\right)=\left(a \wedge \phi_{1}\right) \vee\left(\neg a \wedge \phi_{2}\right)
$$

where a is a proposition.
Definition
Shannon expansion of a formula ϕ with respect to $a \in A$ is

$$
\phi \equiv(a \wedge \phi[\top / a]) \vee(\neg a \wedge \phi[\perp / a])=\operatorname{ite}(a, \phi[\top / a], \phi[\perp / a])
$$

Binary decision diagrams
Canonicity

Transformation to ordered BDDs

1. Fix an ordering a_{1}, \ldots, a_{n} on all propositional variables.
2. Apply Shannon expansion to all variables in this order.
3. Represent the resulting formulae as directed acyclic graphs (DAG) so that shared subformulae occur only once.

Theorem
Let ϕ_{1} and ϕ_{2} be two ordered BDDs obtained by using the same variable ordering. Then $\phi_{1} \equiv \phi_{2}$ if and only if ϕ_{1} and ϕ_{2} are isomorphic (the same DAG.)

Satisfiability algorithms vs. BDDs

Comparison: technique	formula size, runtime size of $\mathcal{R}_{1}\left(P, P^{\prime}\right)$	runtime for plan length n
satisfiability	not a problem	exponential in n
BDDs	major problem	less dependent on n

Comparison: technique	resource consumption critical resource
satisfiability	runtime memory
BDDs	memparison:

Image computation vs. planning by satisfiability

- We tested plan existence by testing satisfiability of

$$
\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right) \wedge \cdots \wedge \mathcal{R}_{1}\left(A^{t-1}, A^{t}\right) \wedge G^{t}
$$

where $\mathcal{R}_{1}\left(A, A^{\prime}\right)=\bigvee_{o \in O} \tau_{A}(o)$.

- ヨ-abstracting $A^{0} \cup \cdots \cup A^{t-1}$ yields

$$
\exists A^{t-1} \cdot\left(\cdots \exists A^{0} .\left(\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right)\right) \wedge \cdots \wedge \mathcal{R}_{1}\left(A^{t-1}, A^{t}\right) \wedge G^{t}\right) .
$$

- This is equivalent to conjoining the t-fold image of ι

$$
\bigvee_{o \in O} i m g_{o}\left(\cdots \bigvee_{o \in O} i m g_{o}(\iota) \cdots\right)
$$

with G to test goal reachability in t steps.
We can do the same with preimages starting from G.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 30, 2005 50/56

Binary decision diagrams

Example

By repeated application of Shannon expansion any propositional formula can be transformed to an equivalent formula containing no other connectives than ite and propositional variables only in the first position of ite.

$$
\begin{aligned}
& \text { Example } \\
& \quad(a \vee b) \wedge(b \vee c) \\
& \equiv \text { ite }(a,(\top \vee b) \wedge(b \vee c),(\perp \vee b) \wedge(b \vee c)) \\
& \equiv \text { ite }(a, b \vee c, b) \\
& \equiv \text { ite }(a, \text { ite }(b, \top \vee c, \perp \vee, \perp \vee c), \text { ite }(b, \top, \perp)) \\
& \equiv \text { itt }(a, \text { ite }(, \top, c), \text {,te }(b, \top, \perp)) \\
& \equiv \text { ite }(a, \text { ite }(b, \top, \text { ite }(c, \top, \perp)), \text { ite }(b, \top, \perp))
\end{aligned}
$$

(Albert-Ludwigs-Universität Freiburg) Al Planning May 30, 2005 54/56

Binary decision diagrams BDDs
Properties of CPC normal forms

Trade-offs between different CPC normal forms Normal forms that allow faster reasoning are more expensive to construct from an arbitrary propositional formula and may be much bigger.
Properties of different normal forms

	V	\wedge				
circuits	poly	poly	poly	co-NP-hard	NP-hard	co-NP-hard
formulae	poly	poly	poly	co-NP-hard	NP-hard	co-NP-hard
DNF	poly	exp	exp	co-NP-hard	in P	co-NP-hard
CNF	exp	poly	exp	in P	NP-hard	co-NP-hard
BDD	exp	exp	poly	in P	in P	in P

For BDDs one \vee / \wedge is polynomial time/size (size is doubled) but repeated \vee / \wedge lead to exponential size.

