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Plans

Plans

1. Memoryless plans map a state/an observation to an operator.
We use this definition of plans for fully observable problems only.

2. Conditional plans generalize memoryless plans.
They are needed for problems without full observability.

I The state of the execution of a conditional plan depends on
observations on earlier execution steps.

I The state of the execution = a primitive form of memory.
I The operator to be executed depends on the state of the execution.
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Memoryless plans Example

Memoryless plans
Example
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Memoryless plans Definition

Memoryless plans
Definition

Definition
Let S be the set of all states.
A memoryless plan is a partial function π : S → O.

Execution of a memoryless plan

1. Determine the current state s (full observability!!!).

2. If π(s) is not defined then terminate execution.
If the objective is to reach a goal state, then π(s) is not defined if s
is a goal state so that the execution terminates.

3. Execute action π(s).

4. Goto step 1.
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Image operations Images

Images

Image
The image of a set T of states with respect to an operator o is the set
of those states that can be reached by executing o in a state in T .

T imgo(T )
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Image operations Images

Images
Formal definition

Definition (Image of a state)
imgo(s) = {s′ ∈ S|sos′}

Definition (Image of a set of states)
imgo(T ) =

⋃

s∈T imgo(s)
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Image operations Preimages

Preimages

Weak preimage
The preimage of a set T of states with respect to an operator o is the
set of those states from which a state in T can be reached by
executing o.

preimgo(T ) T
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Image operations Preimages

Preimages
Formal definition

Definition (Weak preimage of a state)
preimgo(s

′) = {s ∈ S|sos′}

Definition (Weak preimage of a set of states)
preimgo(T ) =

⋃

s∈T preimgo(s).
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Image operations Strong preimages

Strong preimages

Strong preimage
The strong preimage of a set T of states with respect to an operator o
is the set of those states from which a state in T is always reached
when executing o.

spreimgo(T ) T
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Image operations Strong preimages

Strong preimages
Formal definition

Definition (Strong preimage of a set of states)
spreimgo(T ) = {s ∈ S|s′ ∈ T, sos′, imgo(s) ⊆ T}
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Algorithms

Algorithms for fully observable problems

1. Heuristic search (forward)
Nondeterministic planning can be viewed as AND-OR search.

OR nodes: Choice between operators
AND nodes: Nondeterministically reached state

Heuristic AND-OR search algorithms: AO*, ...

2. Dynamic programming (backward)
Idea Compute operator/distance/value for a state based on the
operators/distances/values of its all successor states.

2.1 0 actions needed for goal states.
2.2 If states with i actions to goals are known, states with ≤ i + 1

actions to goals can be easily identified.

Automatic reuse of already found plan suffixes.

(Albert-Ludwigs-Universität Freiburg) AI Planning May 30, 2005 11 / 56

Algorithms AND-OR search

AND-OR search

OR

OR OR OR OR

s1 s2 s3 s4

s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20
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Algorithms Dynamic programming

Dynamic programming

Planning by dynamic programming
If for all successors of state s with respect to operator o a plan exists,
assign operator o to s.

Base case i = 0: In goal states there is nothing to do.

Inductive case i ≥ 1: If there is o ∈ O such that for all s′ ∈ imgo(s) s′ is
a goal state or π(s′) was assigned on iteration
i − 1, then assign π(s) = o.

Connection to distances
If s is assigned a value on iteration i ≥ 1, then the backward distance
of s is i.
The dynamic programming algorithm essentially computes the
backward distances of states.
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Algorithms Dynamic programming

Backward distances
Example

distance to G

∞ 3 2 1 0

G
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Algorithms Backward distances

Backward distances
Definition of distance sets

Definition
Let G be a set of states and O a set of operators. Define the backward
distance sets Dbwd

i for G, O that consist of those states for which there
is a guarantee of reaching a state in G with at most i operator
applications.

Dbwd
0 = G

Dbwd
i = Dbwd

i−1 ∪
⋃

o∈O spreimgo(D
bwd
i−1 ) for all i ≥ 1
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Algorithms Backward distances

Backward distances
Definition

Definition
Let G be as set of states and O a set of operators, and let
Dbwd

0 , Dbwd
1 , . . . be the backward distance sets for G and O. Then the

backward distance from a state s to G is

δbwd
G (s) =

{

0 if s ∈ G

i if s ∈ Dbwd
i \Dbwd

i−1

If s 6∈ Dbwd
i for all i ≥ 0 then δbwd

G (s) = ∞.
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Algorithms Backward distances

Construction of a plan based on distances

Extraction of a plan from distance sets

1. Let S′ ⊆ S be those states having a finite backward distance.

2. Let s be a state with distance i = δbwd
G (s) ≥ 1.

3. Assign to π(s) any operator o ∈ O such that imgo(s) ⊆ Dbwd
i−1 .

Hence o decreases the backward distance by at least one.

The plan π solves the planning problem for 〈S, I, O, G, P 〉 iff I ⊆ S′.
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Regression

Making the algorithm a logic-based algorithm

I An algorithm that represents the states explicitly is feasible for
transition systems with at most 106 or 107 states.

I For planning with bigger transition systems structural properties of
the transition system have to be taken advantage of.

I Representing state sets as propositional formulae often allow
taking advantage of the structural properties: a formula that
represents a set of states or a transition relation that has certain
regularities may be very small in comparison to the set or relation.
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Regression

Making the algorithm a logic-based algorithm

I We use a formula φ as a data structure for representing the set
{s ∈ S|s |= φ}.

I We show that regression regrnd
o (φ) for nondeterministic operators

is one way of computing strong preimages.
I We present general techniques for computing images, preimages

and strong preimages of sets of states represented as formulae.
I Many of the algorithms presented later in the lecture can be lifted

to use a logic-based representation, thereby expanding their
range of applicability to much bigger transition systems.
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Regression Definition

Regression for nondeterministic operators
Definition

We can easily generalize our regression operation for deterministic
operators to regression for nondeterministic operators of a restricted
syntactic form.

Definition (Regression for nondeterministic operators)
Let φ be a propositional formula and o = 〈c, e1| · · · |en〉 an operator
where e1, . . . , en are deterministic. Define

regrnd
o (φ) = regr〈c,e1〉(φ) ∧ · · · ∧ regr〈c,en〉(φ).
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Regression Definition

Regression for nondeterministic operators
Illustration

φ

regr〈c,e1〉(φ)

regr〈c,e2〉(φ)

regr〈c,(e1|e2)〉(φ) = regr〈c,e1〉(φ) ∧ regr〈c,e2〉(φ)
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Regression Definition

Regression for nondeterministic operators
Correctness

Theorem
Let φ be a formula over A, o an operator over A, and S the set of all
states over A. Then {s ∈ S|s |= regrnd

o (φ)} = spreimgo({s ∈ S|s |= φ}).

Proof.
Let o = 〈c, (e1| · · · |en)〉.
{s ∈ S|s |= regrnd

o (φ)}
= {s ∈ S|s |= regr〈c,e1〉(φ) ∧ · · · ∧ regr〈c,en〉(φ)}

= {s ∈ S|s |= regr〈c,e1〉(φ), . . . , s |= regr〈c,en〉(φ)}

= {s ∈ S|app〈c,e1〉(s) |= φ, . . . , app〈c,en〉(s) |= φ}

= {s ∈ S|s′ |= φ for all s′ ∈ imgo(s), there is s′ |= φ with sos′}
= spreimgo({s ∈ S|s |= φ})

3rd = is by properties of deterministic regression.
4th = is by imgo(s) = {app〈c,e1〉(s), . . . , app〈c,en〉(s)}.
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Regression Definition

Regression for nondeterministic operators
Example

Example
Let o = 〈d, (b|¬c)〉. Then

regrnd
o (b ↔ c) = regr〈d,b〉(b ↔ c) ∧ regr〈d,¬c〉(b ↔ c)

= (d ∧ (> ↔ c)) ∧ (d ∧ (b ↔ ⊥))
≡ d ∧ c ∧ ¬b.
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Regression Definition

Backward distances with formulas

By using regression we can compute formulas that represent
backward distance sets.

Definition
Let G be a formula and O a set of operators. The backward distance
sets Dbwd

i for G, O are represented by the following formulae.

Dbwd
0 = G

Dbwd
i = Dbwd

i−1 ∨
∨

o∈O regrnd
o (Dbwd

i−1 ) for all i ≥ 1
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Regression Definition

Backward distances with formulas

Definition
Let G be a formula and O a set of operators, and let Dbwd

0 , Dbwd
1 , . . . be

the formulae representing the backward distance sets for G and O.
Then the backward distance from a state s to G is

δbwd
G (s) =

{

0 if s |= G

i if s |= Dbwd
i ∧ ¬Dbwd

i−1

If s 6|= Dbwd
i for all i ≥ 0 then δbwd

G (s) = ∞.
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Regression Definition

General images and preimages with formulas

I The definition of regression covers only a subclass of
nondeterministic operators.

I How to define strong preimages for all operators, and images and
preimages?

I Now we apply a general idea:
1. View operators/actions as binary relations.
2. Represent these binary relations as formulae.
3. Define relational operations for relations represented as formulae.
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Operators in CPC

General images and preimages with formulas

Definition
Define the set of state variables possibly changed by e as

changes(a) = {a}
changes(¬a) = {a}

changes(c B e) = changes(e)
changes(e1 ∧ · · · ∧ en) = changes(e1) ∪ · · · ∪ changes(en)

changes(e1| · · · |en) = changes(e1) ∪ · · · ∪ changes(en)

Assumption
Let e1 ∧ · · · ∧ en occur in the effect of an operator. If e1, . . . , en are not
all deterministic then a and ¬a may occur as an atomic effect in at
most one of e1, . . . , en.

This assumption rules out effects like (a|b) ∧ (¬a|c) that may make a
simultaneously true and false.
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Operators in CPC

General images and preimages with formulas

In nondeterministic choices e1| · · · |en the formula for each ei has to
express the changes for exactly the same set B of state variables.

Definition
τnd
B

(e) = τB(e) when e is deterministic
τnd
B

(e1| · · · |en) = τnd
B

(e1) ∨ · · · ∨ τnd
B

(en)

τnd
B

(e1 ∧ · · · ∧ en) = τnd
B\(B2∪···∪Bn)(e1) ∧ τnd

B2
(e2) ∧ · · · ∧ τnd

Bn

(en)

where Bi = changes(ei) for i ∈ {2, . . . , n}
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Operators in CPC

General images and preimages with formulas

Example
We translate the effect

e = (a|(d B a)) ∧ (c|d)

into a propositional formula. The set of state variables is
A = {a, b, c, d}.

τnd
{a,b,c,d}(e) = τnd

{a,b}(a|(d B a)) ∧ τnd
{c,d}(c|d)

= (τnd
{a,b}(a) ∨ τnd

{a,b}(d B a)) ∧ (τnd
{c,d}(c) ∨ τnd

{c,d}(d))

= ((a′ ∧ (b ↔ b′)) ∨ (((a ∨ d) ↔ a′) ∧ (b ↔ b′)))∧
((c′ ∧ (d ↔ d′)) ∨ ((c ↔ c′) ∧ d′))
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Operators in CPC

General images and preimages with formulas

Definition
Let A be a set of state variables. Let o = 〈c, e〉 be an operator over A in
normal form. Define τnd

A (o) = c ∧ τnd
A (e).

Lemma
Let o be an operator. Then

{v|v is a valuation of A ∪ A′, v |= τnd
A (o)}

= {s ∪ s′[A′/A]|s, s′ ∈ S, s′ ∈ imgo(s)}.

(Albert-Ludwigs-Universität Freiburg) AI Planning May 30, 2005 30 / 56

Images in CPC ∃/∀-abstraction

Existential and universal abstraction

The most important operations performed on transition relations
represented as propositional formulae are based on existential
abstraction and universal abstraction.

Definition
Existential abstraction of a formula φ with respect to a ∈ A:

∃a.φ = φ[>/a] ∨ φ[⊥/a].

Universal abstraction is defined analogously by using conjunction
instead of disjunction.

Definition
Universal abstraction of a formula φ with respect to a ∈ A:

∀a.φ = φ[>/a] ∧ φ[⊥/a].
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Images in CPC ∃/∀-abstraction

∃-abstraction
Examples

Example

∃b.((a→b) ∧ (b→c))
= ((a→>) ∧ (>→c)) ∨ ((a→⊥) ∧ (⊥→c))
≡ c ∨ ¬a
≡ a→c

∃ab.(a ∨ b) = ∃b.(> ∨ b) ∨ (⊥ ∨ b)
= ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))
= (> ∨>) ∨ (> ∨⊥) = >

Example
∃-abstraction is also known as forgetting:

∃mon∃tue((mon ∨ tue) ∧ (mon→work) ∧ (tue→work))
≡ ∃tue((work ∧ (tue→work)) ∨ (tue ∧ (tue→work))) ≡ work
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Images in CPC ∃/∀-abstraction

∀ and ∃-abstraction in terms of truth-tables
Example

∀a and ∃a correspond to combining pairs of lines with the same
valuation for variables other than a.

Example

∃c.(a ∨ (b ∧ c)) ≡ a ∨ b ∀c.(a ∨ (b ∧ c)) ≡ a

a b c a ∨ (b ∧ c)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

a b ∃c.(a ∨ (b ∧ c))
0 0 0
0 1 1
1 0 1
1 1 1

a b ∀c.(a ∨ (b ∧ c))
0 0 0
0 1 0
1 0 1
1 1 1
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Images in CPC ∃/∀-abstraction

Properties of abstraction operations

Definition
Existential and universal abstraction of φ with respect to a set of
atomic propositions B = {b1, . . . , bn} are

∃B.φ = ∃b1.(∃b2.(. . . ∃bn.φ . . .))
∀B.φ = ∀b1.(∀b2.(. . . ∀bn.φ . . .)).
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Images in CPC ∃/∀-abstraction

Properties of abstracted formulas

1. Let φ be a formula over A. Then ∃A.φ and ∀A.φ are formulae that
consist of the constants > and ⊥ and the logical connectives only.

2. The truth-values of these formulae are independent of the
valuation of A, that is, their values are the same for all valuations.

3. ∃A.φ ≡ > if and only if φ is satisfiable.

4. ∀A.φ ≡ > if and only if φ is valid.
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Images in CPC ∃/∀-abstraction

Properties of ∀ and ∃ abstraction

Lemma
If φ is a formula over A ∪ A′ and v a valuation of A then

1. v |= ∃A′.φ iff v ∪ v′ |= φ for some valuation v′ of A′.

2. v |= ∀A′.φ iff v ∪ v′ |= φ for all valuations v′ of A′.
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Images in CPC ∃/∀-abstraction

Size of abstracted formulae

I Abstracting one variable takes polynomial time in the size of the
formula.

I Abstracting one variable may double the formula size.
I Abstracting n variables may increase size by factor 2n.
I For making abstraction practical the formulae must be simplified,

for example with equivalences like > ∧ φ ≡ φ, ⊥ ∧ φ ≡ ⊥,
> ∨ φ ≡ >, ⊥ ∨ φ ≡ φ, ¬⊥ ≡ >, and ¬> ≡ ⊥.
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Images in CPC ∃/∀-abstraction

Images by ∃-abstraction
Let

I A = {a1, . . . , an},
I A′ = {a′1, . . . , a

′
n},

I φ1 be a formula on A representing a row vector V1×2n

(equivalently, a set of valuations of A), and
I φ2 a formula on A ∪A′ representing a matrix M2n×2n (equivalently,

a binary relation on valuations of A).

The product matrix V M of size 1 × 2n is represented by

∃A.(φ1 ∧ φ2)

which is a formula on A′.
To obtain a formula over A we have to rename the variables.

(∃A.(φ1 ∧ φ2))[A/A′]
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Images in CPC ∃/∀-abstraction

Images by ∃-abstraction

Example
Let A = {a, b} be the state variables.

(

1 0 1 0
)

×









0 1 0 1

1 0 1 0
0 1 0 1

1 0 1 0









=
(

0 1 0 1
)

represents the image of {00, 10} with respect to a relation.

∃a.∃b.(¬b ∧ (b ↔ ¬b′))
≡ ∃b.(¬b ∧ (b ↔ ¬b′))
≡ (¬> ∧ (> ↔ ¬b′)) ∨ (¬⊥ ∧ (⊥ ↔ ¬b′))
≡ b′

The formula b represents {01, 11}.
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Images in CPC ∃/∀-abstraction

Matrix multiplication by ∃-abstraction

Let
I A = {a1, . . . , an},
I A′ = {a′1, . . . , a

′
n},

I A′′ = {a′′1, . . . , a
′′
n},

I φ1 be a formula on A ∪ A′ representing matrix M1 and
I φ2 a formula on A′ ∪ A′′ representing matrix M2.

The matrices M1 and M2 have size 2n × 2n.
The product matrix M1M2 is represented by

∃A′.(φ1 ∧ φ2)

which is a formula on A ∪ A′′.
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Images in CPC ∃/∀-abstraction

Matrix multiplication by ∃-abstraction
Example

Example
Let φ1 = a ↔ ¬a′ and φ2 = a′ ↔ a′′ represent two actions, reversing
the truth-value of a and doing nothing. The sequential composition of
these actions is

∃a′.φ1 ∧ φ2 = ((a ↔ ¬>) ∧ (> ↔ a′′)) ∨ ((a ↔ ¬⊥) ∧ (⊥ ↔ a′′))
≡ ((a ↔ ⊥) ∧ (> ↔ a′′)) ∨ ((a ↔ >) ∧ (⊥ ↔ a′′))
≡ (¬a ∧ a′′) ∨ (a ∧ ¬a′′)
≡ a ↔ ¬a′′.
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Images in CPC ∃/∀-abstraction

Matrix multiplication

Multiply (¬a ↔ a′) ∧ (¬b ↔ b′) and (a′ ↔ b′′) ∧ (b′ ↔ a′′):









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









×









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









=









0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0









This is

∃a′.∃b′.(¬a ↔ a′) ∧ (¬b ↔ b′) ∧ (a′ ↔ b′′) ∧ (b′ ↔ a′′)
≡ (¬a ↔ b′′) ∧ (¬b ↔ a′′).
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Images in CPC ∃/∀-abstraction

Images and preimages by formula manipulation

Define s[A′/A] = {〈a′, s(a)〉|a ∈ A}.

Lemma
Let φ be a formula on A and v a valuation of A. Then v |= φ iff
v[A′/A] |= φ[A′/A].

Definition
Let o be an operator and φ a formula. Define

imgo(φ) = (∃A.(φ ∧ τnd
A (o)))[A/A′]

preimgo(φ) = ∃A′.(τnd
A (o) ∧ φ[A′/A])

spreimgo(φ) = ∀A′.(τnd
A (o)→φ[A′/A]) ∧ ∃A′.τnd

A (o).
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Images in CPC Images

Images by formula manipulation

Theorem
Let T = {s ∈ S|s |= φ}. Then {s ∈ S|s |= imgo(φ)} = {s ∈ S|s |=
(∃A.(φ ∧ τnd

A (o)))[A/A′]} = imgo(T ).

Proof.
s′ |= (∃A.(φ ∧ τnd

A
(o)))[A/A′]

iff s′[A′/A] |= ∃A.(φ ∧ τnd
A

(o))

iff there is valuation s of A s.t. (s ∪ s′[A′/A]) |= φ ∧ τnd
A

(o)

iff there is valuation s of A s.t. s |= φ and (s ∪ s′[A′/A]) |= τnd
A

(o)

iff there is s ∈ T s.t. (s ∪ s′[A′/A]) |= τnd
A

(o)
iff there is s ∈ T s.t. s′ ∈ imgo(s)
iff s′ ∈ imgo(T ).
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Images in CPC Preimages

Preimages by formula manipulation

Theorem
Let T = {s ∈ S|s |= φ}. Then {s ∈ S|s |= preimgo(φ)} = {s ∈ S|s |=
∃A′.(τnd

A (o) ∧ φ[A′/A])} = preimgo(T ).

Proof.
s |= ∃A′.(τnd

A
(o) ∧ φ[A′/A])

iff there is s′0 : A′ → {0, 1} s.t. (s ∪ s′0) |= τnd
A

(o) ∧ φ[A′/A]

iff there is s′0 : A′ → {0, 1} s.t. s′0 |= φ[A′/A] and (s ∪ s′0) |= τnd
A

(o)

iff there is s′ : A → {0, 1} s.t. s′ |= φ and (s ∪ s′0) |= τnd
A

(o)

iff there is s′ ∈ T s.t. (s ∪ s′[A′/A]) |= τnd
A

(o)
iff there is s′ ∈ T s.t. s′ ∈ imgo(s)
iff there is s′ ∈ T s.t. s ∈ preimgo(s

′)
iff s ∈ preimgo(T ).

Above we define s′ = s′0[A/A′] (and hence s′0 = s′[A′/A].)
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Images in CPC Strong preimages

Strong preimages by formula manipulation

Theorem
Let T = {s ∈ S|s |= φ}. Then {s ∈ S|s |= spreimgo(φ)} = {s ∈ S|s |=
∀A′.(τnd

A (o)→φ[A′/A]) ∧ ∃A′.τnd
A (o)} = spreimgo(T ).

Proof.
See the lecture notes.

(Albert-Ludwigs-Universität Freiburg) AI Planning May 30, 2005 46 / 56

Images in CPC Strong preimages

Strong preimages vs. regression

Corollary
Let o = 〈c, (e1| · · · |en)〉 be an operator such that all ei are deterministic.
The formula spreimgo(φ) is logically equivalent to regrnd

o (φ).

Proof.
{s ∈ S|s |= regro(φ)} = spreimgo({s ∈ S|s |= φ}) = {s ∈ S|s |=
spreimgo(φ)}.
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Images in CPC Summary

Summary of matrix/logic/relational operations

matrices formulas state sets
vector V1×n formula on A set
matrix Mn×n formula on A ∪ A′ relation
V1×n + V ′

1×n φ1 ∨ φ2 union
φ1 ∧ φ2 intersection

V1×n × Mn×n (∃A.(φ ∧ τnd
A (o)))[A/A′] imgo(T )

Mn×n × Vn×1 ∃A′.(τnd
A (o) ∧ φ[A′/A]) preimgo(T )

∀A′.(τnd
A (o)→φ[A′/A]) ∧ ∃A′.τnd

A (o) spreimgo(T )
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Images in CPC vs. SAT

Images and preimages of sets of operators

The union of images of φ with respect to all operators o ∈ O is
∨

o∈O

imgo(φ).

This can be computed more directly by using the disjunction
∨

o∈O τA(o) of the transition formulae:

∃A.(φ ∧ (
∨

o∈O

τA(o)))[A/A′].

Same works for preimages.
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Images in CPC vs. SAT

Image computation vs. planning by satisfiability

I We tested plan existence by testing satisfiability of

ι0 ∧R1(A
0, A1) ∧ · · · ∧ R1(A

t−1, At) ∧ Gt

where R1(A, A′) =
∨

o∈O τA(o).
I ∃-abstracting A0 ∪ · · · ∪ At−1 yields

∃At−1.(· · · ∃A0.(ι0 ∧R1(A
0, A1)) ∧ · · · ∧ R1(A

t−1, At) ∧ Gt).

I This is equivalent to conjoining the t-fold image of ι

∨

o∈O

imgo(· · ·
∨

o∈O

imgo(ι) · · · )

with G to test goal reachability in t steps.
We can do the same with preimages starting from G.
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Binary decision diagrams BDDs

Shannon expansion

Definition
3-place connective if-then-else is defined by

ite(a, φ1, φ2) = (a ∧ φ1) ∨ (¬a ∧ φ2)

where a is a proposition.

Definition
Shannon expansion of a formula φ with respect to a ∈ A is

φ ≡ (a ∧ φ[>/a]) ∨ (¬a ∧ φ[⊥/a]) = ite(a, φ[>/a], φ[⊥/a])

(Albert-Ludwigs-Universität Freiburg) AI Planning May 30, 2005 51 / 56

Binary decision diagrams BDDs

Binary decision diagrams
Example

By repeated application of Shannon expansion any propositional
formula can be transformed to an equivalent formula containing no
other connectives than ite and propositional variables only in the first
position of ite.

Example
(a ∨ b) ∧ (b ∨ c)

≡ ite(a, (> ∨ b) ∧ (b ∨ c), (⊥ ∨ b) ∧ (b ∨ c))
≡ ite(a, b ∨ c, b)
≡ ite(a, ite(b,> ∨ c,⊥ ∨ c), ite(b,>,⊥))
≡ ite(a, ite(b,>, c), ite(b,>,⊥))
≡ ite(a, ite(b,>, ite(c,>,⊥)), ite(b,>,⊥))
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Binary decision diagrams BDDs

Binary decision diagrams
Canonicity

Transformation to ordered BDDs
1. Fix an ordering a1, . . . , an on all propositional variables.

2. Apply Shannon expansion to all variables in this order.

3. Represent the resulting formulae as directed acyclic graphs (DAG)
so that shared subformulae occur only once.

Theorem
Let φ1 and φ2 be two ordered BDDs obtained by using the same
variable ordering. Then φ1 ≡ φ2 if and only if φ1 and φ2 are isomorphic
(the same DAG.)
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Binary decision diagrams BDDs

Binary decision diagrams: example

1 0

c

b b

a
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Binary decision diagrams BDDs

Satisfiability algorithms vs. BDDs

Comparison: formula size, runtime
technique size of R1(P, P ′) runtime for plan length n

satisfiability not a problem exponential in n
BDDs major problem less dependent on n

Comparison: resource consumption
technique critical resource
satisfiability runtime
BDDs memory

Comparison: application domain
technique types of problems
satisfiability lots of state variables, short plans
BDDs few state variables, long plans
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Binary decision diagrams BDDs

Properties of CPC normal forms

Trade-offs between different CPC normal forms
Normal forms that allow faster reasoning are more expensive to
construct from an arbitrary propositional formula and may be much
bigger.

Properties of different normal forms
∨ ∧ ¬ φ ∈TAUT? φ ∈SAT? φ ≡ φ′?

circuits poly poly poly co-NP-hard NP-hard co-NP-hard
formulae poly poly poly co-NP-hard NP-hard co-NP-hard
DNF poly exp exp co-NP-hard in P co-NP-hard
CNF exp poly exp in P NP-hard co-NP-hard
BDD exp exp poly in P in P in P

For BDDs one ∨/∧ is polynomial time/size (size is doubled) but repeated ∨/∧
lead to exponential size.
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