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Plans

1 Memoryless plans map a state/an observation to an
operator.
We use this definition of plans for fully observable
problems only.

2 Conditional plans generalize memoryless plans.
They are needed for problems without full observability.

The state of the execution of a conditional plan depends
on observations on earlier execution steps.
The state of the execution = a primitive form of memory.
The operator to be executed depends on the state of
the execution.
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Definition

Let S be the set of all states.
A memoryless plan is a partial function π : S → O.

Execution of a memoryless plan

1 Determine the current state s (full observability!!!).
2 If π(s) is not defined then terminate execution.

If the objective is to reach a goal state, then π(s) is not
defined if s is a goal state so that the execution
terminates.

3 Execute action π(s).
4 Goto step 1.
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Images

Image

The image of a set T of states with respect to an operator o
is the set of those states that can be reached by executing o
in a state in T .

T imgo(T )
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Images
Formal definition

Definition (Image of a state)

imgo(s) = {s′ ∈ S|sos′}

Definition (Image of a set of states)

imgo(T ) =
⋃

s∈T imgo(s)
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Weak preimage

The preimage of a set T of states with respect to an
operator o is the set of those states from which a state in T
can be reached by executing o.

preimgo(T ) T
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Preimages
Formal definition

Definition (Weak preimage of a state)

preimgo(s
′) = {s ∈ S|sos′}

Definition (Weak preimage of a set of states)

preimgo(T ) =
⋃

s∈T preimgo(s).
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Strong preimage

The strong preimage of a set T of states with respect to an
operator o is the set of those states from which a state in T
is always reached when executing o.

spreimgo(T ) T
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Strong preimages
Formal definition

Definition (Strong preimage of a set of states)

spreimgo(T ) = {s ∈ S|s′ ∈ T, sos′, imgo(s) ⊆ T}



AI Planning

Plans

Plans

Images

Algorithms
AND-OR search

Dynamic
programming

Bwd-distances

Regression

CPC
operators

CPC images

BDDs

Algorithms for fully observable problems

1 Heuristic search (forward)
Nondeterministic planning can be viewed as AND-OR
search.

OR nodes: Choice between operators
AND nodes: Nondeterministically reached state

Heuristic AND-OR search algorithms: AO*, ...
2 Dynamic programming (backward)

Idea Compute operator/distance/value for a state based
on the operators/distances/values of its all successor
states.

1 0 actions needed for goal states.
2 If states with i actions to goals are known, states with
≤ i + 1 actions to goals can be easily identified.

Automatic reuse of already found plan suffixes.
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AND-OR search

s1 s2 s3 s4

s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20
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AND-OR search

OR

OR OR OR OR

s1 s2 s3 s4

s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20
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Dynamic programming

Planning by dynamic programming

If for all successors of state s with respect to operator o a
plan exists, assign operator o to s.

Base case i = 0: In goal states there is nothing to do.

Inductive case i ≥ 1: If there is o ∈ O such that for all
s′ ∈ imgo(s) s′ is a goal state or π(s′)
was assigned on iteration i− 1, then
assign π(s) = o.

Connection to distances

If s is assigned a value on iteration i ≥ 1, then the backward
distance of s is i.
The dynamic programming algorithm essentially computes
the backward distances of states.
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Backward distances
Example

distance to G
∞ 3 2 1 0

G
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Backward distances
Definition of distance sets

Definition

Let G be a set of states and O a set of operators. Define the
backward distance sets Dbwd

i for G, O that consist of those
states for which there is a guarantee of reaching a state in
G with at most i operator applications.

Dbwd
0 = G

Dbwd
i = Dbwd

i−1 ∪
⋃

o∈O spreimgo(D
bwd
i−1 ) for all i ≥ 1
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Definition

Let G be as set of states and O a set of operators, and let
Dbwd

0 , Dbwd
1 , . . . be the backward distance sets for G and O.

Then the backward distance from a state s to G is

δbwd
G (s) =

{
0 if s ∈ G

i if s ∈ Dbwd
i \Dbwd

i−1

If s 6∈ Dbwd
i for all i ≥ 0 then δbwd

G (s) = ∞.
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Construction of a plan based on distances

Extraction of a plan from distance sets

1 Let S′ ⊆ S be those states having a finite backward
distance.

2 Let s be a state with distance i = δbwd
G (s) ≥ 1.

3 Assign to π(s) any operator o ∈ O such that
imgo(s) ⊆ Dbwd

i−1 . Hence o decreases the backward
distance by at least one.

The plan π solves the planning problem for 〈S, I,O,G, P 〉 iff
I ⊆ S′.
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Making the algorithm a logic-based algorithm

An algorithm that represents the states explicitly is
feasible for transition systems with at most 106 or 107

states.

For planning with bigger transition systems structural
properties of the transition system have to be taken
advantage of.

Representing state sets as propositional formulae often
allow taking advantage of the structural properties: a
formula that represents a set of states or a transition
relation that has certain regularities may be very small
in comparison to the set or relation.
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Making the algorithm a logic-based algorithm

We use a formula φ as a data structure for representing
the set {s ∈ S|s |= φ}.
We show that regression regrnd

o (φ) for nondeterministic
operators is one way of computing strong preimages.

We present general techniques for computing images,
preimages and strong preimages of sets of states
represented as formulae.

Many of the algorithms presented later in the lecture
can be lifted to use a logic-based representation,
thereby expanding their range of applicability to much
bigger transition systems.
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Regression for nondeterministic operators
Definition

We can easily generalize our regression operation for
deterministic operators to regression for nondeterministic
operators of a restricted syntactic form.

Definition (Regression for nondeterministic operators)

Let φ be a propositional formula and o = 〈c, e1| · · · |en〉 an
operator where e1, . . . , en are deterministic. Define

regrnd
o (φ) = regr〈c,e1〉(φ) ∧ · · · ∧ regr〈c,en〉(φ).
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Regression for nondeterministic operators
Illustration

φ

regr〈c,e1〉(φ)

regr〈c,e2〉(φ)

regr〈c,(e1|e2)〉(φ) = regr〈c,e1〉(φ) ∧ regr〈c,e2〉(φ)
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Regression for nondeterministic operators
Correctness

Theorem

Let φ be a formula over A, o an operator over A, and S the
set of all states over A. Then
{s ∈ S|s |= regrnd

o (φ)} = spreimgo({s ∈ S|s |= φ}).

Proof.

Let o = 〈c, (e1| · · · |en)〉.
{s ∈ S|s |= regrnd

o (φ)}
= {s ∈ S|s |= regr〈c,e1〉(φ) ∧ · · · ∧ regr〈c,en〉(φ)}
= {s ∈ S|s |= regr〈c,e1〉(φ), . . . , s |= regr〈c,en〉(φ)}
= {s ∈ S|app〈c,e1〉(s) |= φ, . . . , app〈c,en〉(s) |= φ}
= {s ∈ S|s′ |= φ for all s′ ∈ imgo(s), there is s′ |= φ with sos′}
= spreimgo({s ∈ S|s |= φ})

3rd = is by properties of deterministic regression.
4th = is by imgo(s) = {app〈c,e1〉(s), . . . , app〈c,en〉(s)}.



AI Planning

Plans

Plans

Images

Algorithms

Regression
Definition

CPC
operators

CPC images

BDDs

Regression for nondeterministic operators
Example

Example

Let o = 〈d, (b|¬c)〉. Then

regrnd
o (b ↔ c) = regr〈d,b〉(b ↔ c) ∧ regr〈d,¬c〉(b ↔ c)

= (d ∧ (> ↔ c)) ∧ (d ∧ (b ↔ ⊥))
≡ d ∧ c ∧ ¬b.
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Backward distances with formulas

By using regression we can compute formulas that
represent backward distance sets.

Definition

Let G be a formula and O a set of operators. The backward
distance sets Dbwd

i for G, O are represented by the following
formulae.

Dbwd
0 = G

Dbwd
i = Dbwd

i−1 ∨
∨

o∈O regrnd
o (Dbwd

i−1 ) for all i ≥ 1
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Backward distances with formulas

Definition

Let G be a formula and O a set of operators, and let
Dbwd

0 , Dbwd
1 , . . . be the formulae representing the backward

distance sets for G and O. Then the backward distance
from a state s to G is

δbwd
G (s) =

{
0 if s |= G

i if s |= Dbwd
i ∧ ¬Dbwd

i−1

If s 6|= Dbwd
i for all i ≥ 0 then δbwd

G (s) = ∞.
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General images and preimages with formulas

The definition of regression covers only a subclass of
nondeterministic operators.

How to define strong preimages for all operators, and
images and preimages?
Now we apply a general idea:

1 View operators/actions as binary relations.
2 Represent these binary relations as formulae.
3 Define relational operations for relations represented as

formulae.
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General images and preimages with formulas

Definition

Define the set of state variables possibly changed by e as

changes(a) = {a}
changes(¬a) = {a}

changes(c B e) = changes(e)
changes(e1 ∧ · · · ∧ en) = changes(e1) ∪ · · · ∪ changes(en)

changes(e1| · · · |en) = changes(e1) ∪ · · · ∪ changes(en)

Assumption

Let e1 ∧ · · · ∧ en occur in the effect of an operator. If
e1, . . . , en are not all deterministic then a and ¬a may occur
as an atomic effect in at most one of e1, . . . , en.

This assumption rules out effects like (a|b) ∧ (¬a|c) that may
make a simultaneously true and false.
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General images and preimages with formulas

In nondeterministic choices e1| · · · |en the formula for each ei

has to express the changes for exactly the same set B of
state variables.

Definition

τnd
B (e) = τB(e) when e is deterministic

τnd
B (e1| · · · |en) = τnd

B (e1) ∨ · · · ∨ τnd
B (en)

τnd
B (e1 ∧ · · · ∧ en) = τnd

B\(B2∪···∪Bn)(e1) ∧ τnd
B2

(e2) ∧ · · · ∧ τnd
Bn

(en)

where Bi = changes(ei) for i ∈ {2, . . . , n}
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General images and preimages with formulas

Example

We translate the effect

e = (a|(d B a)) ∧ (c|d)

into a propositional formula. The set of state variables is
A = {a, b, c, d}.

τnd
{a,b,c,d}(e) = τnd

{a,b}(a|(d B a)) ∧ τnd
{c,d}(c|d)

= (τnd
{a,b}(a) ∨ τnd

{a,b}(d B a)) ∧ (τnd
{c,d}(c) ∨ τnd

{c,d}(d))

= ((a′ ∧ (b ↔ b′)) ∨ (((a ∨ d) ↔ a′) ∧ (b ↔ b′)))∧
((c′ ∧ (d ↔ d′)) ∨ ((c ↔ c′) ∧ d′))
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General images and preimages with formulas

Definition

Let A be a set of state variables. Let o = 〈c, e〉 be an
operator over A in normal form. Define τnd

A (o) = c ∧ τnd
A (e).

Lemma

Let o be an operator. Then

{v|v is a valuation of A ∪A′, v |= τnd
A (o)}

= {s ∪ s′[A′/A]|s, s′ ∈ S, s′ ∈ imgo(s)}.
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Existential and universal abstraction

The most important operations performed on transition
relations represented as propositional formulae are based
on existential abstraction and universal abstraction.

Definition

Existential abstraction of a formula φ with respect to a ∈ A:

∃a.φ = φ[>/a] ∨ φ[⊥/a].

Universal abstraction is defined analogously by using
conjunction instead of disjunction.

Definition

Universal abstraction of a formula φ with respect to a ∈ A:

∀a.φ = φ[>/a] ∧ φ[⊥/a].
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∃-abstraction
Examples

Example

∃b.((a→b) ∧ (b→c))
= ((a→>) ∧ (>→c)) ∨ ((a→⊥) ∧ (⊥→c))
≡ c ∨ ¬a
≡ a→c

∃ab.(a ∨ b) = ∃b.(> ∨ b) ∨ (⊥ ∨ b)
= ((> ∨>) ∨ (⊥ ∨>)) ∨ ((> ∨⊥) ∨ (⊥ ∨⊥))
= (> ∨>) ∨ (> ∨⊥) = >

Example

∃-abstraction is also known as forgetting:
∃mon∃tue((mon ∨ tue) ∧ (mon→work) ∧ (tue→work))
≡ ∃tue((work ∧ (tue→work)) ∨ (tue ∧ (tue→work))) ≡ work
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∀ and ∃-abstraction in terms of truth-tables
Example

∀a and ∃a correspond to combining pairs of lines with the
same valuation for variables other than a.

Example

∃c.(a ∨ (b ∧ c)) ≡ a ∨ b ∀c.(a ∨ (b ∧ c)) ≡ a

a b c a ∨ (b ∧ c)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

a b ∃c.(a ∨ (b ∧ c))
0 0 0
0 1 1
1 0 1
1 1 1

a b ∀c.(a ∨ (b ∧ c))
0 0 0
0 1 0
1 0 1
1 1 1
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Properties of abstraction operations

Definition

Existential and universal abstraction of φ with respect to a
set of atomic propositions B = {b1, . . . , bn} are

∃B.φ = ∃b1.(∃b2.(. . .∃bn.φ . . .))
∀B.φ = ∀b1.(∀b2.(. . .∀bn.φ . . .)).
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Properties of abstracted formulas

1 Let φ be a formula over A. Then ∃A.φ and ∀A.φ are
formulae that consist of the constants > and ⊥ and the
logical connectives only.

2 The truth-values of these formulae are independent of
the valuation of A, that is, their values are the same for
all valuations.

3 ∃A.φ ≡ > if and only if φ is satisfiable.
4 ∀A.φ ≡ > if and only if φ is valid.
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Properties of ∀ and ∃ abstraction

Lemma

If φ is a formula over A ∪A′ and v a valuation of A then
1 v |= ∃A′.φ iff v ∪ v′ |= φ for some valuation v′ of A′.
2 v |= ∀A′.φ iff v ∪ v′ |= φ for all valuations v′ of A′.
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Size of abstracted formulae

Abstracting one variable takes polynomial time in the
size of the formula.

Abstracting one variable may double the formula size.

Abstracting n variables may increase size by factor 2n.

For making abstraction practical the formulae must be
simplified, for example with equivalences like
> ∧ φ ≡ φ, ⊥ ∧ φ ≡ ⊥, > ∨ φ ≡ >, ⊥ ∨ φ ≡ φ, ¬⊥ ≡ >,
and ¬> ≡ ⊥.
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Images by ∃-abstraction

Let

A = {a1, . . . , an},
A′ = {a′1, . . . , a′n},
φ1 be a formula on A representing a row vector V1×2n

(equivalently, a set of valuations of A), and

φ2 a formula on A ∪A′ representing a matrix M2n×2n

(equivalently, a binary relation on valuations of A).

The product matrix V M of size 1× 2n is represented by

∃A.(φ1 ∧ φ2)

which is a formula on A′.
To obtain a formula over A we have to rename the variables.

(∃A.(φ1 ∧ φ2))[A/A′]
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Images by ∃-abstraction

Example

Let A = {a, b} be the state variables.

(
1 0 1 0

)
×


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 =
(
0 1 0 1

)

represents the image of {00, 10} with respect to a relation.

∃a.∃b.(¬b ∧ (b ↔ ¬b′))
≡ ∃b.(¬b ∧ (b ↔ ¬b′))
≡ (¬> ∧ (> ↔ ¬b′)) ∨ (¬⊥ ∧ (⊥ ↔ ¬b′))
≡ b′

The formula b represents {01, 11}.
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Matrix multiplication by ∃-abstraction

Let

A = {a1, . . . , an},
A′ = {a′1, . . . , a′n},
A′′ = {a′′1, . . . , a′′n},
φ1 be a formula on A ∪A′ representing matrix M1 and

φ2 a formula on A′ ∪A′′ representing matrix M2.

The matrices M1 and M2 have size 2n × 2n.
The product matrix M1M2 is represented by

∃A′.(φ1 ∧ φ2)

which is a formula on A ∪A′′.
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Matrix multiplication by ∃-abstraction
Example

Example

Let φ1 = a ↔ ¬a′ and φ2 = a′ ↔ a′′ represent two actions,
reversing the truth-value of a and doing nothing. The
sequential composition of these actions is

∃a′.φ1 ∧ φ2 = ((a ↔ ¬>) ∧ (> ↔ a′′)) ∨ ((a ↔ ¬⊥) ∧ (⊥ ↔ a′′))
≡ ((a ↔ ⊥) ∧ (> ↔ a′′)) ∨ ((a ↔ >) ∧ (⊥ ↔ a′′))
≡ (¬a ∧ a′′) ∨ (a ∧ ¬a′′)
≡ a ↔ ¬a′′.
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Matrix multiplication

Multiply (¬a ↔ a′) ∧ (¬b ↔ b′) and (a′ ↔ b′′) ∧ (b′ ↔ a′′):
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

×


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


This is

∃a′.∃b′.(¬a ↔ a′) ∧ (¬b ↔ b′) ∧ (a′ ↔ b′′) ∧ (b′ ↔ a′′)
≡ (¬a ↔ b′′) ∧ (¬b ↔ a′′).
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Images and preimages by formula manipulation

Define s[A′/A] = {〈a′, s(a)〉|a ∈ A}.

Lemma

Let φ be a formula on A and v a valuation of A. Then v |= φ
iff v[A′/A] |= φ[A′/A].

Definition

Let o be an operator and φ a formula. Define

imgo(φ) = (∃A.(φ ∧ τnd
A (o)))[A/A′]

preimgo(φ) = ∃A′.(τnd
A (o) ∧ φ[A′/A])

spreimgo(φ) = ∀A′.(τnd
A (o)→φ[A′/A]) ∧ ∃A′.τnd

A (o).
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Images by formula manipulation

Theorem

Let T = {s ∈ S|s |= φ}. Then {s ∈ S|s |= imgo(φ)} = {s ∈
S|s |= (∃A.(φ ∧ τnd

A (o)))[A/A′]} = imgo(T ).

Proof.

s′ |= (∃A.(φ ∧ τnd
A (o)))[A/A′]

iff s′[A′/A] |= ∃A.(φ ∧ τnd
A (o))

iff there is valuation s of A s.t. (s ∪ s′[A′/A]) |= φ ∧ τnd
A (o)

iff there is valuation s of A s.t. s |= φ and (s ∪ s′[A′/A]) |= τnd
A (o)

iff there is s ∈ T s.t. (s ∪ s′[A′/A]) |= τnd
A (o)

iff there is s ∈ T s.t. s′ ∈ imgo(s)
iff s′ ∈ imgo(T ).
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Preimages by formula manipulation

Theorem

Let T = {s ∈ S|s |= φ}. Then {s ∈ S|s |= preimgo(φ)} =
{s ∈ S|s |= ∃A′.(τnd

A (o) ∧ φ[A′/A])} = preimgo(T ).

Proof.

s |= ∃A′.(τnd
A (o) ∧ φ[A′/A])

iff there is s′0 : A′ → {0, 1} s.t. (s ∪ s′0) |= τnd
A (o) ∧ φ[A′/A]

iff there is s′0 : A′ → {0, 1} s.t. s′0 |= φ[A′/A] and (s ∪ s′0) |= τnd
A (o)

iff there is s′ : A → {0, 1} s.t. s′ |= φ and (s ∪ s′0) |= τnd
A (o)

iff there is s′ ∈ T s.t. (s ∪ s′[A′/A]) |= τnd
A (o)

iff there is s′ ∈ T s.t. s′ ∈ imgo(s)
iff there is s′ ∈ T s.t. s ∈ preimgo(s

′)
iff s ∈ preimgo(T ).

Above we define s′ = s′0[A/A′] (and hence s′0 = s′[A′/A].)
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Strong preimages by formula manipulation

Theorem

Let T = {s ∈ S|s |= φ}. Then
{s ∈ S|s |= spreimgo(φ)} = {s ∈ S|s |= ∀A′.(τnd

A (o)→
φ[A′/A]) ∧ ∃A′.τnd

A (o)} = spreimgo(T ).

Proof.

See the lecture notes.
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Strong preimages vs. regression

Corollary

Let o = 〈c, (e1| · · · |en)〉 be an operator such that all ei are
deterministic. The formula spreimgo(φ) is logically
equivalent to regrnd

o (φ).

Proof.

{s ∈ S|s |= regro(φ)} = spreimgo({s ∈ S|s |= φ}) = {s ∈
S|s |= spreimgo(φ)}.
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Summary of matrix/logic/relational operations

matrices formulas state sets
vector V1×n formula on A set
matrix Mn×n formula on A ∪A′ relation
V1×n + V ′

1×n φ1 ∨ φ2 union
φ1 ∧ φ2 intersection

V1×n ×Mn×n (∃A.(φ ∧ τnd
A (o)))[A/A′] imgo(T )

Mn×n × Vn×1 ∃A′.(τnd
A (o) ∧ φ[A′/A]) preimgo(T )

∀A′.(τnd
A (o)→φ[A′/A]) ∧ ∃A′.τnd

A (o) spreimgo(T )
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Images and preimages of sets of operators

The union of images of φ with respect to all operators o ∈ O
is ∨

o∈O

imgo(φ).

This can be computed more directly by using the disjunction∨
o∈O τA(o) of the transition formulae:

∃A.(φ ∧ (
∨
o∈O

τA(o)))[A/A′].

Same works for preimages.
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Image computation vs. planning by satisfiability

We tested plan existence by testing satisfiability of

ι0 ∧R1(A
0, A1) ∧ · · · ∧ R1(A

t−1, At) ∧Gt

where R1(A,A′) =
∨

o∈O τA(o).

∃-abstracting A0 ∪ · · · ∪At−1 yields

∃At−1.(· · · ∃A0.(ι0∧R1(A
0, A1))∧· · ·∧R1(A

t−1, At)∧Gt).

This is equivalent to conjoining the t-fold image of ι∨
o∈O

imgo(· · ·
∨
o∈O

imgo(ι) · · · )

with G to test goal reachability in t steps.
We can do the same with preimages starting from G.
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Image computation vs. planning by satisfiability

We tested plan existence by testing satisfiability of

ι0 ∧R1(A
0, A1) ∧ · · · ∧ R1(A

t−1, At) ∧Gt

where R1(A,A′) =
∨

o∈O τA(o).

∃-abstracting A0 ∪ · · · ∪At−1 yields

∃At−1.(· · · ∃A0.(ι0∧R1(A
0, A1))∧· · ·∧R1(A

t−1, At)∧Gt).

This is equivalent to conjoining the t-fold image of ι∨
o∈O

imgo(· · ·
∨
o∈O

imgo(ι) · · · )

with G to test goal reachability in t steps.
We can do the same with preimages starting from G.
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Shannon expansion

Definition

3-place connective if-then-else is defined by

ite(a, φ1, φ2) = (a ∧ φ1) ∨ (¬a ∧ φ2)

where a is a proposition.

Definition

Shannon expansion of a formula φ with respect to a ∈ A is

φ ≡ (a ∧ φ[>/a]) ∨ (¬a ∧ φ[⊥/a]) = ite(a, φ[>/a], φ[⊥/a])
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Binary decision diagrams
Example

By repeated application of Shannon expansion any
propositional formula can be transformed to an equivalent
formula containing no other connectives than ite and
propositional variables only in the first position of ite.

Example

(a ∨ b) ∧ (b ∨ c)
≡ ite(a, (> ∨ b) ∧ (b ∨ c), (⊥ ∨ b) ∧ (b ∨ c))
≡ ite(a, b ∨ c, b)
≡ ite(a, ite(b,> ∨ c,⊥ ∨ c), ite(b,>,⊥))
≡ ite(a, ite(b,>, c), ite(b,>,⊥))
≡ ite(a, ite(b,>, ite(c,>,⊥)), ite(b,>,⊥))
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Binary decision diagrams
Canonicity

Transformation to ordered BDDs
1 Fix an ordering a1, . . . , an on all propositional variables.
2 Apply Shannon expansion to all variables in this order.
3 Represent the resulting formulae as directed acyclic

graphs (DAG) so that shared subformulae occur only
once.

Theorem
Let φ1 and φ2 be two ordered BDDs obtained by using the
same variable ordering. Then φ1 ≡ φ2 if and only if φ1 and
φ2 are isomorphic (the same DAG.)
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Binary decision diagrams: example

1 0

(a ∨ b) ∧ (b ∨ c)
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Binary decision diagrams: example

1 0

(> ∨ b) ∧ (b ∨ c) (⊥ ∨ b) ∧ (b ∨ c)

a
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Binary decision diagrams: example

1 0

b ∨ c b

a
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Binary decision diagrams: example

1 0

> ∨ c ⊥ ∨ c

b b

a
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Binary decision diagrams: example

1 0

> c

b b

a
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Binary decision diagrams: example

1 0

c

b b

a
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Satisfiability algorithms vs. BDDs

Comparison: formula size, runtime

technique size of R1(P, P ′) runtime for plan length n

satisfiability not a problem exponential in n
BDDs major problem less dependent on n

Comparison: resource consumption

technique critical resource
satisfiability runtime
BDDs memory

Comparison: application domain

technique types of problems
satisfiability lots of state variables, short plans
BDDs few state variables, long plans
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Properties of CPC normal forms

Trade-offs between different CPC normal forms

Normal forms that allow faster reasoning are more
expensive to construct from an arbitrary propositional
formula and may be much bigger.

Properties of different normal forms

∨ ∧ ¬ φ ∈TAUT? φ ∈SAT? φ ≡ φ′?

circuits poly poly poly co-NP-hard NP-hard co-NP-hard
formulae poly poly poly co-NP-hard NP-hard co-NP-hard
DNF poly exp exp co-NP-hard in P co-NP-hard
CNF exp poly exp in P NP-hard co-NP-hard
BDD exp exp poly in P in P in P

For BDDs one ∨/∧ is polynomial time/size (size is doubled) but
repeated ∨/∧ lead to exponential size.
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