Plans

(1) Memoryless plans map a state/an observation to an operator.
We use this definition of plans for fully observable problems only.
(2) Conditional plans generalize memoryless plans. They are needed for problems without full observability.

- The state of the execution of a conditional plan depends on observations on earlier execution steps.
- The state of the execution = a primitive form of memory.
- The operator to be executed depends on the state of the execution.

Memoryless plans

Example

Memoryless plans

Example

Memoryless plans

Definition

Definition

Let S be the set of all states.
A memoryless plan is a partial function $\pi: S \rightarrow O$.

Execution of a memoryless plan

(1) Determine the current state s (full observability!!!).
(2) If $\pi(s)$ is not defined then terminate execution.

If the objective is to reach a goal state, then $\pi(s)$ is not

Plans
Plans
Example
Definition
Images
Algorithms
Regression
CPC
operators
CPC images
BDDs terminates.
(3) Execute action $\pi(s)$.
(4) Goto step 1.

Images

Image

The image of a set T of states with respect to an operator o is the set of those states that can be reached by executing o in a state in T.

Plans
Plans
Images
Images
Preimages
Strong preimages
Algorithms
Regression
CPC
operators
CPC images
BDDs

Images

Formal definition

$$
\begin{aligned}
& \text { Definition (Image of a state) } \\
& \operatorname{img}_{o}(s)=\left\{s^{\prime} \in S \mid \operatorname{sos}^{\prime}\right\}
\end{aligned}
$$

Definition (Image of a set of states)
$i m g_{o}(T)=\bigcup_{s \in T} i m g_{o}(s)$

Al Planning

Plans
Plans
Images
Images
Preimages
Strong preimages
Algorithms
Regression
CPC
operators
CPC images
BDDs

Preimages

Weak preimage

The preimage of a set T of states with respect to an operator o is the set of those states from which a state in T can be reached by executing o.

Preimages

Formal definition

Definition (Weak preimage of a state) $\operatorname{preimg}_{o}\left(s^{\prime}\right)=\left\{s \in S \mid s o s^{\prime}\right\}$

Definition (Weak preimage of a set of states)

$\operatorname{preimg}_{o}(T)=\bigcup_{s \in T} \operatorname{preimg}_{o}(s)$.

Regression
CPC
operators
CPC images
BDDs

Strong preimages

Strong preimage

The strong preimage of a set T of states with respect to an operator o is the set of those states from which a state in T is always reached when executing o.

Plans
Images
Images
Preimages
Strong preimages
Algorithms
Regression
CPC
operators
CPC images
BDDs

Strong preimages

Formal definition

Definition (Strong preimage of a set of states)

$\operatorname{spreimg}_{o}(T)=\left\{s \in S \mid s^{\prime} \in T\right.$, sos $\left.^{\prime}, \operatorname{img}_{o}(s) \subseteq T\right\}$

Algorithms for fully observable problems

(1) Heuristic search (forward)

Nondeterministic planning can be viewed as AND-OR search.

Plans
Plans
OR nodes: Choice between operators
AND nodes: Nondeterministically reached state Heuristic AND-OR search algorithms: AO*, ...
(2) Dynamic programming (backward) Idea Compute operator/distance/value for a state based on the operators/distances/values of its all successor states.
(1) 0 actions needed for goal states.
(2) If states with i actions to goals are known, states with $\leq i+1$ actions to goals can be easily identified.

Automatic reuse of already found plan suffixes.

AND-OR search

Plans
Plans
Images
Algorithms
AND-OR search
Dynamic
programming
Bwdddistances
Regression
CPC
operators
CPC images
BDDs

AND-OR search

Al Planning

Plans
Plans
Images
Algorithms
AND-OR search
Dynamic
programming
Bwd-distances
Regression
CPC
operators
CPC images
BDDs

Dynamic programming

Planning by dynamic programming
If for all successors of state s with respect to operator o a plan exists, assign operator o to s.

Base case $i=0$: In goal states there is nothing to do. Inductive case $i \geq 1$: If there is $o \in O$ such that for all $s^{\prime} \in i m g_{o}(s) s^{\prime}$ is a goal state or $\pi\left(s^{\prime}\right)$ was assigned on iteration $i-1$, then assign $\pi(s)=o$.

Connection to distances

If s is assigned a value on iteration $i \geq 1$, then the backward distance of s is i.
The dynamic programming algorithm essentially computes the backward distances of states.

Backward distances

Example

Backward distances

Definition of distance sets

Definition

Let G be a set of states and O a set of operators. Define the backward distance sets $D_{i}^{\text {bwd }}$ for G, O that consist of those states for which there is a guarantee of reaching a state in G with at most i operator applications.

$$
\begin{aligned}
& D_{0}^{\text {bwd }}=G \\
& D_{i}^{\text {bid }}=D_{i-1}^{\text {bwd }} \cup \bigcup_{o \in O} \text { spreimg }_{o}\left(D_{i-1}^{\text {bwd }}\right) \text { for all } i \geq 1
\end{aligned}
$$

Backward distances

Definition

Definition

Let G be as set of states and O a set of operators, and let $D_{0}^{\text {bwd }}, D_{1}^{\text {bwd }}, \ldots$ be the backward distance sets for G and O. Then the backward distance from a state s to G is

$$
\delta_{G}^{b w d}(s)=\left\{\begin{array}{l}
0 \text { if } s \in G \\
i \text { if } s \in D_{i}^{b w d} \backslash D_{i-1}^{b w d}
\end{array}\right.
$$

If $s \notin D_{i}^{b w d}$ for all $i \geq 0$ then $\delta_{G}^{b w d}(s)=\infty$.

Construction of a plan based on distances

Extraction of a plan from distance sets

(1) Let $S^{\prime} \subseteq S$ be those states having a finite backward distance.
(2) Let s be a state with distance $i=\delta_{G}^{b w d}(s) \geq 1$.
(3) Assign to $\pi(s)$ any operator $o \in O$ such that $i^{i m g}(s) \subseteq D_{i-1}^{\text {bwd }}$. Hence o decreases the backward distance by at least one.

The plan π solves the planning problem for $\langle S, I, O, G, P\rangle$ iff

Making the algorithm a logic-based algorithm

- An algorithm that represents the states explicitly is feasible for transition systems with at most 10^{6} or 10^{7} states.
- For planning with bigger transition systems structural properties of the transition system have to be taken advantage of.
- Representing state sets as propositional formulae often allow taking advantage of the structural properties: a formula that represents a set of states or a transition relation that has certain regularities may be very small in comparison to the set or relation.

Making the algorithm a logic-based algorithm

- We use a formula ϕ as a data structure for representing the set $\{s \in S \mid s \models \phi\}$.

Plans
Plans

- We show that regression $\operatorname{regr}_{o}^{n d}(\phi)$ for nondeterministic operators is one way of computing strong preimages.
- We present general techniques for computing images, preimages and strong preimages of sets of states represented as formulae.
- Many of the algorithms presented later in the lecture

Images
Algorithms
Regression
Definition
CPC
operators
CPC images
BDDs can be lifted to use a logic-based representation, thereby expanding their range of applicability to much bigger transition systems.

Regression for nondeterministic operators Definition

We can easily generalize our regression operation for deterministic operators to regression for nondeterministic operators of a restricted syntactic form.

Plans
Plans
Images
Algorithms
Regression
Definition
CPC
operators
CPC images
BDDs

$$
\operatorname{regr}_{o}^{n d}(\phi)=\operatorname{regr}_{\left\langle, c, e_{1}\right\rangle}(\phi) \wedge \cdots \wedge \operatorname{regr}_{\left\langle\left\langle, e_{n}\right\rangle\right.}(\phi) .
$$

Regression for nondeterministic operators

Illustration

$$
\operatorname{regr}_{\left\langle c,\left(e_{1} \mid e_{2}\right)\right\rangle}(\phi)=\operatorname{regr}_{\left\langle c, e_{1}\right\rangle}(\phi) \wedge \operatorname{regr}_{\left\langle c, e_{2}\right\rangle}(\phi)
$$

Plans
Plans
Images
Algorithms
Regression
Definition
CPC
operators
CPC images
BDDs

Regression for nondeterministic operators

Correctness

Theorem

Let ϕ be a formula over A, o an operator over A, and S the set of all states over A. Then $\left\{s \in S \mid s \models \operatorname{regr}_{o}^{r d}(\phi)\right\}=\operatorname{spreimg}_{o}(\{s \in S \mid s \models \phi\})$.

Proof.

$$
\begin{aligned}
& \text { Let } o=\left\langle c,\left(e_{1}|\cdots| e_{n}\right)\right\rangle \text {. } \\
& \left\{s \in S \mid s \models \operatorname{regr}_{o}^{n d}(\phi)\right\} \\
& =\left\{s \in S \mid s \vDash \operatorname{regr}_{\left\langle c, e_{1}\right\rangle}(\phi) \wedge \cdots \wedge \operatorname{regr}_{\left\langle,,_{n}\right\rangle}(\phi)\right\} \\
& =\left\{s \in S \mid s \models \operatorname{regr}_{\left\{\left(, e_{1}\right\rangle\right.}(\phi), \ldots, s \models \operatorname{regr}_{\left\langle\left(, e_{n}\right\rangle\right.}(\phi)\right\} \\
& =\left\{s \in S \mid a \operatorname{app}_{\left\langle c, e_{1}\right\rangle}(s) \models \phi, \ldots, \operatorname{app}_{\left\langle c, e_{n}\right\rangle}(s) \models \phi\right\} \\
& =\left\{s \in S \mid s^{\prime} \models \phi \text { for all } s^{\prime} \in \operatorname{img}_{o}(s) \text {, there is } s^{\prime} \models \phi \text { with sos }\right\} \\
& =\text { spreimg }_{o}(\{s \in S \mid s \models \phi\})
\end{aligned}
$$

3rd $=$ is by properties of deterministic regression.
4th $=$ is by $\left.\operatorname{img}_{o}(s)=\left\{\operatorname{app}_{\left\langle c, e_{1}\right\rangle}(s), \ldots, \operatorname{app}_{\left\langle c, e_{n}\right\rangle}\right\rangle(s)\right\}$.

Plans
Plans
Images
Algorithms
Regression
Definition
CPC
operators
CPC images
BDDs

Regression for nondeterministic operators

Example

Example

Let $o=\langle d,(b \mid \neg c)\rangle$. Then

$$
\begin{aligned}
\operatorname{regr}_{o}^{n d}(b \leftrightarrow c) & =\operatorname{regr}_{\langle d, b\rangle}(b \leftrightarrow c) \wedge \operatorname{regr}_{\langle d, \neg c\rangle}(b \leftrightarrow c) \\
& =(d \wedge(T \leftrightarrow c)) \wedge(d \wedge(b \leftrightarrow \perp)) \\
& \equiv d \wedge c \wedge \neg b .
\end{aligned}
$$

Backward distances with formulas

By using regression we can compute formulas that represent backward distance sets.

Definition

Let G be a formula and O a set of operators. The backward distance sets $D_{i}^{b w d}$ for G, O are represented by the following formulae.

$$
\begin{aligned}
& D_{0}^{b w d}=G \\
& D_{i}^{b w d}=D_{i-1}^{b w d} \vee \bigvee_{o \in O} \text { regr }_{o}^{n d}\left(D_{i-1}^{b w d}\right) \text { for all } i \geq 1
\end{aligned}
$$

Regression
Definition
CPC
operators
CPC images
BDDs

Backward distances with formulas

Definition

Let G be a formula and O a set of operators, and let $D_{0}^{b w d}, D_{1}^{b w d}, \ldots$ be the formulae representing the backward distance sets for G and O. Then the backward distance from a state s to G is

$$
\delta_{G}^{b w d}(s)=\left\{\begin{array}{l}
0 \text { if } s \models G \\
i \text { if } s \models D_{i}^{b w d} \wedge \neg D_{i-1}^{b w d}
\end{array}\right.
$$

If $s \not \vDash D_{i}^{\text {bwd }}$ for all $i \geq 0$ then $\delta_{G}^{\text {bwd }}(s)=\infty$.

General images and preimages with formulas

- The definition of regression covers only a subclass of nondeterministic operators.
- How to define strong preimages for all operators, and images and preimages?
- Now we apply a general idea:
(1) View operators/actions as binary relations.
(2) Represent these binary relations as formulae.
(3) Define relational operations for relations represented as formulae.

General images and preimages with formulas

Definition

Define the set of state variables possibly changed by e as

$$
\begin{aligned}
\text { changes }(a) & =\{a\} \\
\text { changes }(\neg a) & =\{a\} \\
\text { changes }(c \triangleright e) & =\text { changes }(e)
\end{aligned}
$$

changes $\left(e_{1} \wedge \cdots \wedge e_{n}\right)=\operatorname{changes}\left(e_{1}\right) \cup \cdots \cup \operatorname{changes}\left(e_{n}\right)$ changes $\left(e_{1}|\cdots| e_{n}\right)=\operatorname{changes}\left(e_{1}\right) \cup \cdots \cup \operatorname{changes}\left(e_{n}\right)$

Plans
Plans
Images
Algorithms
Regression
CPC
operators

BDDs

Assumption

Let $e_{1} \wedge \cdots \wedge e_{n}$ occur in the effect of an operator. If e_{1}, \ldots, e_{n} are not all deterministic then a and $\neg a$ may occur as an atomic effect in at most one of e_{1}, \ldots, e_{n}.

This assumption rules out effects like $(a \mid b) \wedge(\neg a \mid c)$ that may make a simultaneously true and false.

General images and preimages with formulas

In nondeterministic choices $e_{1}|\cdots| e_{n}$ the formula for each e_{i} has to express the changes for exactly the same set B of

Plans
Images
Algorithms
Regression
CPC
operators
CPC images
BDDs

General images and preimages with formulas

Al Planning

Example

We translate the effect

$$
e=(a \mid(d \triangleright a)) \wedge(c \mid d)
$$

into a propositional formula. The set of state variables is $A=\{a, b, c, d\}$.

$$
\begin{aligned}
\tau_{\{a, b, c, d\}}^{n d}(e)= & \tau_{\{a, b\}}^{n d}(a \mid(d \triangleright a)) \wedge \tau_{\{c, d\}}^{n d}(c \mid d) \\
= & \left(\tau_{\{a, b\}}^{n d}(a) \vee \tau_{\{a, b\}}^{n d}(d \triangleright a)\right) \wedge\left(\tau_{\{c, d\}}^{n d}(c) \vee \tau_{\{c, d\}}^{n d}(d)\right) \\
= & \left(\left(a^{\prime} \wedge\left(b \leftrightarrow b^{\prime}\right)\right) \vee\left(\left((a \vee d) \leftrightarrow a^{\prime}\right) \wedge\left(b \leftrightarrow b^{\prime}\right)\right)\right) \wedge \\
& \left(\left(c^{\prime} \wedge\left(d \leftrightarrow d^{\prime}\right)\right) \vee\left(\left(c \leftrightarrow c^{\prime}\right) \wedge d^{\prime}\right)\right)
\end{aligned}
$$

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
BDDs

General images and preimages with formulas

Definition

Let A be a set of state variables. Let $o=\langle c, e\rangle$ be an operator over A in normal form. Define $\tau_{A}^{n d}(o)=c \wedge \tau_{A}^{n d}(e)$.

Lemma

Let o be an operator. Then

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
BDDs

$$
\begin{aligned}
& \left\{v \mid v \text { is a valuation of } A \cup A^{\prime}, v \models \tau_{A}^{n d}(o)\right\} \\
& =\left\{s \cup s^{\prime}\left[A^{\prime} / A\right] \mid s, s^{\prime} \in S, s^{\prime} \in \operatorname{img}(s)\right\} .
\end{aligned}
$$

Existential and universal abstraction

The most important operations performed on transition relations represented as propositional formulae are based on existential abstraction and universal abstraction.
Definition
Existential abstraction of a formula ϕ with respect to $a \in A$:

$$
\exists a . \phi=\phi[\top / a] \vee \phi[\perp / a] .
$$

Universal abstraction is defined analogously by using conjunction instead of disjunction.

Definition

Universal abstraction of a formula ϕ with respect to $a \in A$:

$$
\forall a . \phi=\phi[\top / a] \wedge \phi[\perp / a]
$$

ヨ-abstraction

Examples

Example

$$
\begin{aligned}
& \exists b \cdot((a \rightarrow b) \wedge(b \rightarrow c)) \\
& =((a \rightarrow \top) \wedge(\top \rightarrow c)) \vee((a \rightarrow \perp) \wedge(\perp \rightarrow c)) \\
& \equiv c \vee \neg a \\
& \equiv a \rightarrow c
\end{aligned}
$$

$$
\begin{aligned}
& \exists a b .(a \vee b)=\exists b .(T \vee b) \vee(\perp \vee b) \\
& =((T \vee T) \vee(\perp \vee T)) \vee((T \vee \perp) \vee(\perp \vee \perp)) \\
& =(T \vee T) \vee(T \vee \perp)=T
\end{aligned}
$$

Example

\exists-abstraction is also known as forgetting:
\exists mon \exists tue $(($ mon \vee tue $) \wedge($ mon \rightarrow work $) \wedge($ tue \rightarrow work $))$
$\equiv \exists$ tue $(($ work $\wedge($ tue \rightarrow work $)) \vee($ tue $\wedge($ tue \rightarrow work $))) \equiv$ work

\forall and \exists-abstraction in terms of truth-tables

Example

$\forall a$ and $\exists a$ correspond to combining pairs of lines with the same valuation for variables other than a.

Example

$$
\exists c .(a \vee(b \wedge c)) \equiv a \vee b \quad \forall c .(a \vee(b \wedge c)) \equiv a
$$

a	b	c	$a \vee(b \wedge c)$	a	b	$\exists c .(a \vee(b \wedge c))$	
0	0	0	0	0	b	0	$\forall c .(a \vee(b \wedge c))$
0	0	1	0	0	1	1	0
0	1	0	0	1	0	1	0
0	1	1	1	1	1	1	1

CPC

operators
CPC images
\exists / \forall-abstraction
Images
Preimages
Strong preimages
Summary
vs. SAT
BDDs

Properties of abstraction operations

Definition

Existential and universal abstraction of ϕ with respect to a set of atomic propositions $B=\left\{b_{1}, \ldots, b_{n}\right\}$ are

$$
\begin{aligned}
& \exists B \cdot \phi=\exists b_{1} \cdot\left(\exists b_{2} \cdot\left(\ldots \exists b_{n} \cdot \phi \ldots\right)\right) \\
& \forall B . \phi=\forall b_{1} \cdot\left(\forall b_{2} \cdot\left(\ldots \forall b_{n} \cdot \phi \ldots\right)\right) .
\end{aligned}
$$

Properties of abstracted formulas

(1) Let ϕ be a formula over A. Then $\exists A . \phi$ and $\forall A . \phi$ are formulae that consist of the constants \top and \perp and the logical connectives only.
(2) The truth-values of these formulae are independent of the valuation of A, that is, their values are the same for all valuations.
(3) $\exists A \cdot \phi \equiv$ T if and only if ϕ is satisfiable.
(4) $\forall A \cdot \phi \equiv \mathrm{~T}$ if and only if ϕ is valid.

Properties of \forall and \exists abstraction

Lemma

If ϕ is a formula over $A \cup A^{\prime}$ and v a valuation of A then
(1) $v \models \exists A^{\prime}$. ϕ iff $v \cup v^{\prime} \models \phi$ for some valuation v^{\prime} of A^{\prime}.
(2) $v \models \forall A^{\prime} . \phi$ iff $v \cup v^{\prime} \models \phi$ for all valuations v^{\prime} of A^{\prime}.

Size of abstracted formulae

- Abstracting one variable takes polynomial time in the size of the formula.
- Abstracting one variable may double the formula size.
- Abstracting n variables may increase size by factor 2^{n}.
- For making abstraction practical the formulae must be simplified, for example with equivalences like $\top \wedge \phi \equiv \phi, \perp \wedge \phi \equiv \perp, \top \vee \phi \equiv \top, \perp \vee \phi \equiv \phi, \neg \perp \equiv \top$, and $\neg T \equiv \perp$.

Images by \exists-abstraction

Let

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$,
- $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}$,
- ϕ_{1} be a formula on A representing a row vector $V_{1 \times 2^{n}}$ (equivalently, a set of valuations of A), and
- ϕ_{2} a formula on $A \cup A^{\prime}$ representing a matrix $M_{2^{n} \times 2^{n}}$ (equivalently, a binary relation on valuations of A).
The product matrix $V M$ of size 1×2^{n} is represented by

$$
\exists A .\left(\phi_{1} \wedge \phi_{2}\right)
$$

which is a formula on A^{\prime}.
To obtain a formula over A we have to rename the variables.

Al Planning

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
\exists / \forall-abstraction
Images
Preimages
Strong preimages
Summary
vs. SAT
BDDs

$$
\left(\exists A .\left(\phi_{1} \wedge \phi_{2}\right)\right)\left[A / A^{\prime}\right]
$$

Images by \exists-abstraction

Example

Let $A=\{a, b\}$ be the state variables.

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0
\end{array}\right) \times\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{llll}
0 & 1 & 0 & 1
\end{array}\right)
$$

represents the image of $\{00,10\}$ with respect to a relation.

$$
\begin{aligned}
& \exists a . \exists b .\left(\neg b \wedge\left(b \leftrightarrow \neg b^{\prime}\right)\right) \\
& \equiv \exists b .\left(\neg b \wedge\left(b \leftrightarrow \neg b^{\prime}\right)\right) \\
& \equiv\left(\neg \top \wedge\left(\top \leftrightarrow \neg b^{\prime}\right)\right) \vee\left(\neg \perp \wedge\left(\perp \leftrightarrow \neg b^{\prime}\right)\right) \\
& \equiv b^{\prime}
\end{aligned}
$$

The formula b represents $\{01,11\}$.

Matrix multiplication by \exists-abstraction

Let

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$,
- $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}$,
- $A^{\prime \prime}=\left\{a_{1}^{\prime \prime}, \ldots, a_{n}^{\prime \prime}\right\}$,
- ϕ_{1} be a formula on $A \cup A^{\prime}$ representing matrix M_{1} and
- ϕ_{2} a formula on $A^{\prime} \cup A^{\prime \prime}$ representing matrix M_{2}.

The matrices M_{1} and M_{2} have size $2^{n} \times 2^{n}$.
The product matrix $M_{1} M_{2}$ is represented by

$$
\exists A^{\prime} .\left(\phi_{1} \wedge \phi_{2}\right)
$$

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
\exists / \forall-abstraction
Images
Preimages
Strong preimages
Summary
vs. SAT
BDDs
which is a formula on $A \cup A^{\prime \prime}$.

Matrix multiplication by \exists-abstraction

Example

Example

Let $\phi_{1}=a \leftrightarrow \neg a^{\prime}$ and $\phi_{2}=a^{\prime} \leftrightarrow a^{\prime \prime}$ represent two actions, reversing the truth-value of a and doing nothing. The sequential composition of these actions is

$$
\begin{aligned}
\exists a^{\prime} \cdot \phi_{1} \wedge \phi_{2} & =\left((a \leftrightarrow \neg \top) \wedge\left(\top \leftrightarrow a^{\prime \prime}\right)\right) \vee\left((a \leftrightarrow \neg \perp) \wedge\left(\perp \leftrightarrow a^{\prime \prime}\right)\right) \\
& \equiv\left((a \leftrightarrow \perp) \wedge\left(\top \leftrightarrow a^{\prime \prime}\right)\right) \vee\left((a \leftrightarrow \top) \wedge\left(\perp \leftrightarrow a^{\prime \prime}\right)\right) \\
& \equiv\left(\neg a \wedge a^{\prime \prime}\right) \vee\left(a \wedge \neg a^{\prime \prime}\right) \\
& \equiv a \leftrightarrow \neg a^{\prime \prime} .
\end{aligned}
$$

Matrix multiplication

Multiply $\left(\neg a \leftrightarrow a^{\prime}\right) \wedge\left(\neg b \leftrightarrow b^{\prime}\right)$ and $\left(a^{\prime} \leftrightarrow b^{\prime \prime}\right) \wedge\left(b^{\prime} \leftrightarrow a^{\prime \prime}\right)$:

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \times\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
\exists / \forall-abstraction
Images
Preimages
Strong preimages
Summary
vs. SAT
BDDs

Images and preimages by formula manipulation

Define $s\left[A^{\prime} / A\right]=\left\{\left\langle a^{\prime}, s(a)\right\rangle \mid a \in A\right\}$.

Lemma

Let ϕ be a formula on A and v a valuation of A. Then $v \models \phi$ iff $v\left[A^{\prime} / A\right] \models \phi\left[A^{\prime} / A\right]$.

Definition

$$
\operatorname{img}_{o}(\phi)=\left(\exists A \cdot\left(\phi \wedge \tau_{A}^{n d}(o)\right)\right)\left[A / A^{\prime}\right]
$$

$\operatorname{preimg}_{o}(\phi)=\exists A^{\prime} .\left(\tau_{A}^{n d}(o) \wedge \phi\left[A^{\prime} / A\right]\right)$ spreimg $_{o}(\phi)=\forall A^{\prime} .\left(\tau_{A}^{n d}(o) \rightarrow \phi\left[A^{\prime} / A\right]\right) \wedge \exists A^{\prime} \cdot \tau_{A}^{n d}(o)$.

Images by formula manipulation

Theorem

Let $T=\{s \in S \mid s \models \phi\}$. Then $\left\{s \in S|s|=i m g_{o}(\phi)\right\}=\{s \in$
Plans $\left.S \mid s \models\left(\exists A .\left(\phi \wedge \tau_{A}^{n d}(o)\right)\right)\left[A / A^{\prime}\right]\right\}=i m g_{o}(T)$.

Plans
Images
Algorithms
Regression
CPC
operators
CPC images
\exists / \forall-abstraction
Images
Preimages
Strong preimages
Summary
vs. SAT
BDDs

Preimages by formula manipulation

Theorem

Let $T=\{s \in S \mid s \models \phi\}$. Then $\left\{s \in S|s|=\operatorname{preimg}_{o}(\phi)\right\}=$ $\left\{s \in S \mid s=\exists A^{\prime} .\left(\tau_{A}^{n d}(o) \wedge \phi\left[A^{\prime} / A\right]\right)\right\}=\operatorname{preimg}_{o}(T)$.

Proof.

$s=\exists A^{\prime} .\left(\tau_{A}^{n d}(o) \wedge \phi\left[A^{\prime} / A\right]\right)$
iff there is $s_{0}^{\prime}: A^{\prime} \rightarrow\{0,1\}$ s.t. $\left(s \cup s_{0}^{\prime}\right) \models \tau_{A}^{n d}(o) \wedge \phi\left[A^{\prime} / A\right]$
iff there is $s_{0}^{\prime}: A^{\prime} \rightarrow\{0,1\}$ s.t. $s_{0}^{\prime} \models \phi\left[A^{\prime} / A\right]$ and $\left(s \cup s_{0}^{\prime}\right) \models \tau_{A}^{n d}(o)$
iff there is $s^{\prime}: A \rightarrow\{0,1\}$ s.t. $s^{\prime} \models \phi$ and $\left(s \cup s_{0}^{\prime}\right) \models \tau_{A}^{n d}(o)$
iff there is $s^{\prime} \in T$ s.t. $\left(s \cup s^{\prime}\left[A^{\prime} / A\right]\right) \models \tau_{A}^{n d}(o)$
iff there is $s^{\prime} \in T$ s.t. $s^{\prime} \in \operatorname{img}_{o}(s)$
iff there is $s^{\prime} \in T$ s.t. $s \in \operatorname{preimg}_{o}\left(s^{\prime}\right)$
Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
\exists / \forall-abstraction
Images
Preimages
Strong preimages
Summary
vs. SAT
BDDs
iff $s \in \operatorname{preimg}_{o}(T)$.
Above we define $s^{\prime}=s_{0}^{\prime}\left[A / A^{\prime}\right]$ (and hence $s_{0}^{\prime}=s^{\prime}\left[A^{\prime} / A\right]$.)

Strong preimages by formula manipulation

Theorem

Let $T=\{s \in S \mid s \models \phi\}$. Then
$\left\{s \in S \mid s \models\right.$ spreimg $\left._{o}(\phi)\right\}=\left\{s \in S|s|=\forall A^{\prime} .\left(\tau_{A}^{n d}(o) \rightarrow\right.\right.$ $\left.\left.\phi\left[A^{\prime} / A\right]\right) \wedge \exists A^{\prime} . \tau_{A}^{\text {nd }}(o)\right\}=\operatorname{spreimg}_{o}(T)$.

Proof.

See the lecture notes.

Plans
Plans
Images
Algorithms
Regression

CPC

operators
CPC images
\exists / \forall-abstraction
Images
Preimages
Strong preimages
Summary
vs. SAT
BDDs

Strong preimages vs. regression

Corollary

Let $o=\left\langle c,\left(e_{1}|\cdots| e_{n}\right)\right\rangle$ be an operator such that all e_{i} are deterministic. The formula spreimgo (ϕ) is logically equivalent to regro ${ }_{o}^{\text {nd }}(\phi)$.

Proof.

$\left\{s \in S \mid s \models \operatorname{regr}_{o}(\phi)\right\}=\operatorname{spreimg}_{o}(\{s \in S \mid s \models \phi\})=\{s \in$ $S \mid s \models$ spreimg $\left._{o}(\phi)\right\}$.

Summary of matrix/logic/relational operations

Al Planning

matrices	formulas	state sets
vector $V_{1 \times n}$	formula on A	set
matrix $M_{n \times n}$	formula on $A \cup A^{\prime}$	relation
$V_{1 \times n}+V_{1 \times n}^{\prime}$	$\phi_{1} \vee \phi_{2}$	union $\phi_{1} \wedge \phi_{2}$ intersection $V_{1 \times n} \times M_{n \times n}$
$\left(\exists A .\left(\phi \wedge \tau_{A}^{n d}(o)\right)\right)\left[A / A^{\prime}\right]$ $M_{n \times n} \times V_{n \times 1}$ $\exists A^{\prime} .\left(\tau_{A}^{n d}(o) \wedge \phi\left[A^{\prime} / A\right]\right)$ $\forall A^{\prime} .\left(\tau_{A}^{n d}(o) \rightarrow \phi\left[A^{\prime} / A\right]\right) \wedge \exists A^{\prime} . \tau_{A}^{n d}(o)$ $\operatorname{preimg}_{o}(T)$ $\operatorname{spreimg}_{o}(T)$		

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
\exists / \forall-abstraction
Images
Preimages
Strong preimages
Summary
vs. SAT
BDDs

Images and preimages of sets of operators

The union of images of ϕ with respect to all operators $o \in O$ is

$$
\bigvee_{o \in O} i m g_{o}(\phi) .
$$

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
\exists / \forall-abstraction
Images
Preimages
Strong preimages
Summary
vs. SAT
Same works for preimages.

Image computation vs. planning by satisfiability

- We tested plan existence by testing satisfiability of

$$
\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right) \wedge \cdots \wedge \mathcal{R}_{1}\left(A^{t-1}, A^{t}\right) \wedge G^{t}
$$

where $\mathcal{R}_{1}\left(A, A^{\prime}\right)=\bigvee_{o \in O} \tau_{A}(o)$.
\exists-abstracting yields

- This is equivalent to conjoining the t-fold image of t

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
\exists / \forall-abstraction
Images
Preimages
Strong preimages
Summary
vs. SAT
BDDs
with G to test goal reachability in t steps.
We can do the same with preimages starting from G

Image computation vs. planning by satisfiability

- We tested plan existence by testing satisfiability of

$$
\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right) \wedge \cdots \wedge \mathcal{R}_{1}\left(A^{t-1}, A^{t}\right) \wedge G^{t}
$$

where $\mathcal{R}_{1}\left(A, A^{\prime}\right)=\bigvee_{o \in O} \tau_{A}(o)$.

- \exists-abstracting $A^{0} \cup \cdots \cup A^{t-1}$ yields

$$
\exists A^{t-1} .\left(\cdots \exists A^{0} .\left(\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right)\right) \wedge \cdots \wedge \mathcal{R}_{1}\left(A^{t-1}, A^{t}\right) \wedge G^{t}\right) .
$$

- This is equivalent to conjoining the t-fold image of ι

$$
\bigvee_{o \in O} i m g_{o}\left(\cdots \bigvee_{o \in O} i m g_{o}(\iota) \cdots\right)
$$

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
\exists / \forall-abstraction
Images
Preimages
Strong preimages
Summary
vs. SAT
BDDs
with G to test goal reachability in t steps.
We can do the same with preimages starting from G.

Shannon expansion

Definition

3-place connective if-then-else is defined by

$$
\operatorname{ite}\left(a, \phi_{1}, \phi_{2}\right)=\left(a \wedge \phi_{1}\right) \vee\left(\neg a \wedge \phi_{2}\right)
$$

where a is a proposition.

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
BDDs

Definition

Shannon expansion of a formula ϕ with respect to $a \in A$ is

$$
\phi \equiv(a \wedge \phi[\top / a]) \vee(\neg a \wedge \phi[\perp / a])=\operatorname{ite}(a, \phi[\top / a], \phi[\perp / a])
$$

Binary decision diagrams

Example

Al Planning

By repeated application of Shannon expansion any propositional formula can be transformed to an equivalent formula containing no other connectives than ite and propositional variables only in the first position of ite.

Plans
Plans
Images
Algorithms
Regression
Example

$$
\begin{aligned}
& (a \vee b) \wedge(b \vee c) \\
\equiv & \text { ite }(a,(\top \vee b) \wedge(b \vee c),(\perp \vee b) \wedge(b \vee c)) \\
\equiv & \text { ite }(a, b \vee c, b) \\
\equiv & \text { ite }(a, \text { ite }(b, \top \vee c, \perp \vee c), \text { ite }(b, \top, \perp)) \\
\equiv & \text { ite }(a, \text { ite }(b, \top, c), \text { ite }(b, \top, \perp)) \\
\equiv & \text { ite }(a, \text { ite }(b, \top, \text { ite }(c, \top, \perp)), \text { ite }(b, \top, \perp))
\end{aligned}
$$

Binary decision diagrams
 Canonicity

Transformation to ordered BDDs

(1) Fix an ordering a_{1}, \ldots, a_{n} on all propositional variables.

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
BDDs

Theorem

Let ϕ_{1} and ϕ_{2} be two ordered BDDs obtained by using the same variable ordering. Then $\phi_{1} \equiv \phi_{2}$ if and only if ϕ_{1} and ϕ_{2} are isomorphic (the same DAG.)

Binary decision diagrams: example

$$
(a \vee b) \wedge(b \vee c)
$$

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
BDDs

Binary decision diagrams: example

Binary decision diagrams: example

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
BDDs

Binary decision diagrams: example

Binary decision diagrams: example

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
BDDs

Binary decision diagrams: example

Plans
Plans
Images
Algorithms
Regression
CPC
operators
CPC images
BDDs

Satisfiability algorithms vs. BDDs

Comparison: formula size, runtime

technique	size of $\mathcal{R}_{1}\left(P, P^{\prime}\right)$	runtime for plan length n
satisfiability	not a problem	exponential in n
BDDs	major problem	less dependent on n

Comparison: resource consumption

technique	critical resource

runtime

Comparison: application domain technique \quad types of problems satisfiability lots of state variables, short plans BDDs few state variables, long plans

Properties of CPC normal forms

Trade-offs between different CPC normal forms

Normal forms that allow faster reasoning are more expensive to construct from an arbitrary propositional formula and may be much bigger.

Properties of different normal forms

	V	\wedge	\neg	$\phi \in$ TAUT?	$\phi \in$ SAT?	$\phi \equiv \phi^{\prime} ?$
circuits	poly	poly	poly	co-NP-hard	NP-hard	co-NP-hard
formulae	poly	poly	poly	co-NP-hard	NP-hard	co-NP-hard
DNF	poly	exp	exp	co-NP-hard	in P	co-NP-hard
CNF	exp	poly	exp	in P	NP-hard	co-NP-hard
BDD	exp	exp	poly	in P	in P	in P

Regression
CPC
operators
CPC images
BDDs

For BDDs one \vee / \wedge is polynomial time/size (size is doubled) but repeated \vee / \wedge lead to exponential size.

