Nondeterministic planning (May 25, 2005)

Motivation

Transition systems

Observability

Succinct TS

Operators Semantics Observability Translation into TS

(Albert-Ludwigs-Universität Freiburg)

1/17

Nondeterminism

Nondeterministic/conditional planning Motivation

Motivation

- In deterministic planning we have assumed that the only changes taking place in the world are those caused by us and that we can exactly predict the results of our actions.
- > Other agents and processes, beyond our control, are formalized as nondeterminism.
- Implications:
 - 1. The future state of the world cannot be predicted.
 - We cannot reliably plan ahead: no single action sequence achieves 2.
 - the goals. 3. In some cases it is not possible to achieve the goals with certainty, only with some probability.

Nondeterministic/conditional planning Motivation

- World is not predictable.
- Al robotics:
 - imprecise movement of the robot
 - other robots human beings, animals
 - machines (cars, trains, airplanes, lawn-mowers, ...)
 - natural phenomena (wind, water, snow, temperature, ...)
- Games: other players are outside our control.
- To win a game (reaching a goal state) with certainty all possible actions by the other players have to be anticipated (a winning strategy of a game).
- World is not predictable because it is unknown: we cannot observe everything.

(Albert-Ludwigs-Universität Freiburg) Al Planning May 25, 2005 2 / 17 Nondeterminism Example: uncertainty in robot movement

May 25, 2005 4 / 17

Transition systems

Transition systems General definition with nondeterminism and observability

Definition

A transition system is a 5-tuple $\Pi = \langle S, I, O, G, P \rangle$ where

- 1. S is a finite set of states,
- 2. $I \subseteq S$ is the set of initial states,
- **3**. *O* is a finite set of actions $o \subseteq S \times S$,
- 4. $G \subseteq S$ is the set of goal states, and
- 5. $P = (C_1, \ldots, C_n)$ is a partition of S to classes of observationally indistinguishable states satisfying $\bigcup\{C_1,\ldots,C_n\}=S$ and $C_i \cap C_j = \emptyset$ for all i, j such that $1 \le i < j \le n$.

Making an observation tells which set C_i the current state belongs to. Distinguishing states within a given C_i is not possible by observations.

Observability

Observability

Classification full, partial, no observability

Let $S = \{s_1, \ldots, s_n\}$ be the set of states. Classification of planning problems in terms of observability:

- Full $P = (\{s_1\}, \{s_2\}, \dots, \{s_n\})$ number of observational classes: \boldsymbol{n} Chess is a fully observable 2-person game.
- **No** $P = (\{s_1, ..., s_n\})$ number of observational classes: 1
- Partial No restrictions on P. number of observational classes : between 1 and nPoker is a partially observable 2-person game. Mastermind is a partially observable 1-person game.

n-person games for $n \ge 2 \sim$ nondeterministic planning

Nondeterministic actions as operators Example

Succinct TS Se

Nondeterministic operators Semantics, example

Example

$\langle a, (b|\neg b) \land (c|\neg c) \land (d|\neg d) \rangle$

has 2³ alternative sets of effects, leading to 8 different successor states

- 1. effects $\{b, c, d\}$ lead to state $s \models a \land b \land c \land d$
- 2. effects $\{\neg b, c, d\}$ lead to state $s \models a \land \neg b \land c \land d$
- 3. effects $\{b, \neg c, d\}$ lead to state $s \models a \land b \land \neg c \land d$
- 4. effects $\{\neg b, \neg c, d\}$ lead to state $s \models a \land \neg b \land \neg c \land d$
- 5. effects $\{b, c, \neg d\}$ lead to state $s \models a \land b \land c \land \neg d$
- 6. effects $\{\neg b, c, \neg d\}$ lead to state $s \models a \land \neg b \land c \land \neg d$
- 7. effects $\{b, \neg c, \neg d\}$ lead to state $s \models a \land b \land \neg c \land \neg d$
- 8. effects $\{\neg b, \neg c, \neg d\}$ lead to state $s \models a \land \neg b \land \neg c \land \neg d$ (Albert-Ludwigs-Universität Freiburg) Al Planning May 25, 2005

Succinct TS Semantics

Nondeterministic operators Binary relation induced by an operator

Definition

An operator $\langle c, e \rangle$ induces a binary relation $R \langle c, e \rangle$ on the states as follows: $sR\langle c, e\rangle s'$ if there is $E \in [e]_s$ such that

- 1. $s \models c$,
- **2.** $s' \models E$, and

3. $s \models a$ iff $s' \models a$ for all $a \in A$ such that $\{a, \neg a\} \cap E = \emptyset$. We also write simply sos' instead of sR(o)s'.

Definition

Let s and s' be states and o an operator. If sos' then s' is a successor state of s.

(Albert-Ludwigs-Universität Freiburg)

Succinct TS Observability

AI Planning

Succinct transition systems Observability

Let $A = \{a_1, \ldots, a_n\}$ be the state variables.

Classification of planning problems in terms of observability:

- Full observable state variables: V = Anumber of observational classes: $2^{|A|}$ No observable state variables: $V = \emptyset$
- number of observational classes: 1
- Partial observable state variables: no restrictions, $\emptyset \subseteq V \subseteq A$ number of observational classes: 1 to $2^{|A|}$

AI Planning

Nondeterministic actions as operators Definition

Definition

Let A be a set of state variables. An operator is a pair (c, e) where c is a propositional formula over A (the precondition), and e is an effect over A. Effects over A are recursively defined as follows.

- 1. *a* and $\neg a$ for state variables $a \in A$ are effects over *A*.
- **2**. $e_1 \wedge \cdots \wedge e_n$ is an effect over A if e_1, \ldots, e_n are effects over A.
- 3. $c \triangleright e$ is an effect over A if c is a formula over A and e is an effect over A.
- 4. $e_1 | \cdots | e_n$ is an effect over A if e_1, \ldots, e_n for $n \ge 2$ are effects over Α.

(Albert-Ludwigs-Universität Freiburg)

Al Planning

May 25, 2005 10/17

May 25, 2005 12 / 17

nct TS Sem

Nondeterministic operators Semantics

Definition (Operator application)

Let $\langle c, e \rangle$ be an operator over A and s a state.

The set $[e]_s$ of sets of literals is recursively defined as follows.

- 1. $[a]_s = \{\{a\}\}$ and $[\neg a]_s = \{\{\neg a\}\}$ for $a \in A$.
- 2. $[e_1 \land \dots \land e_n]_s = \{\bigcup_{i=1}^n E_i | E_1 \in [e_1]_s, \dots, E_n \in [e_n]_s\}.$
- 3. $[c' \triangleright e]_s = [e]_s$ if $s \models c'$ and $[c' \triangleright e]_s = \{\emptyset\}$ otherwise.
- 4. $[e_1|\cdots|e_n]_s = [e_1]_s \cup \cdots \cup [e_n]_s$.

Definition

(Albert-Ludwigs-Universität Freiburg)

11/17

13/17

May 25, 2005

Operator $\langle c, e \rangle$ is applicable in s if $s \models c$ and every set $E \in [e]_s$ is consistent.

Succinct TS Semantics

Al Planning

Succinct transition systems General definition

Definition

A succinct transition system is a 5-tuple $\Pi = \langle A, I, O, G, V \rangle$ where

- 1. A is a finite set of state variables,
- 2. *I* is a formula over *A* describing the initial states,
- 3. O is a finite set of operators over A,
- 4. G is a formula over A describing the goal states, and
- 5. $V \subseteq A$ is the set of observable state variables.

(Albert-Ludwigs-Universität Freiburg)

May 25, 2005 14/17

Succinct TS Translation into TS

Succinct transition system Translation into transition systems

We can associate a transition system with every succinct transition system.

Definition

Given a succinct transition system $\Pi = \langle A, I, O, G, V \rangle$, construct the transition system $F(\Pi) = \langle S, I', O', G', P \rangle$ where

- 1. S is the set of all Boolean valuations of A,
- 2. $I' = \{s \in S | s \models I\},\$
- **3**. $O' = \{R(o) | o \in O\},\$
- 4. $G' = \{s \in S | s \models G\}$, and
- 5. $P = (C_1, \ldots, C_n)$ where v_1, \ldots, v_n for $n = 2^{|V|}$ are all the Boolean valuations of V and $C_i = \{s \in S | s(a) = v_i(a) \text{ for all } a \in V\}$ for all $i \in \{1,\ldots,n\}.$

Al Planning