Nondeterministic planning (May 25, 2005)

Motivation

Transition systems
Observability

Succinct TS
Operators
Semantics
Observability
Translation into TS
(Albert-Ludwigs-Universität Freiburg)

Nondeterminism
Example: several agents, games

Nondeterministic/conditional planning
 Motivation

- In deterministic planning we have assumed that the only changes taking place in the world are those caused by us and that we can exactly predict the results of our actions.
- Other agents and processes, beyond our control, are formalized as nondeterminism.
- Implications:

1. The future state of the world cannot be predicted.
2. We cannot reliably plan ahead: no single action sequence achieves the goals.
3. In some cases it is not possible to achieve the goals with certainty, only with some probability.

Observability
Example of partition of states into observational classes
Blocks world with 3 blocks and camera far above the table. State variables $V=\{$ Aclear, Bclear, Cclear $\}$ are observable.

are 8 valuations of V but the valuation
$v \models \neg$ Aclear $\wedge \neg$ Bclear $\wedge \neg$ Cclear does not correspond to a blocks world state.

Nondeterministic/conditional planning

Motivation

- World is not predictable.
- Al robotics:
- imprecise movement of the robot
- other robots
- human beings, animals
- machines (cars, trains, airplanes, lawn-mowers, ...)
- natural phenomena (wind, water, snow, temperature, ...)
- Games: other players are outside our control.
- To win a game (reaching a goal state) with certainty all possible actions by the other players have to be anticipated (a winning strategy of a game).
- World is not predictable because it is unknown: we cannot observe everything.
$\begin{array}{lll}\text { (Albert-Ludwigs-Universität Freiburg) } \quad \text { Al Planning } & \text { May 25, 2005 } & \text { 2/17 }\end{array}$

Nondeterminism

Example: uncertainty in robot movement

Transition systems
General definition with nondeterminism and observability

Definition
A transition system is a 5 -tuple $\Pi=\langle S, I, O, G, P\rangle$ where

1. S is a finite set of states,
2. $I \subseteq S$ is the set of initial states,
3. O is a finite set of actions $o \subseteq S \times S$,
4. $G \subseteq S$ is the set of goal states, and
5. $P=\left(C_{1}, \ldots, C_{n}\right)$ is a partition of S to classes of observationally indistinguishable states satisfying $\bigcup\left\{C_{1}, \ldots, C_{n}\right\}=S$ and $C_{i} \cap C_{j}=\emptyset$ for all i, j such that $1 \leq i<j \leq n$.

Making an observation tells which set C_{i} the current state belongs to. Distinguishing states within a given C_{i} is not possible by observations.
(Albert-Ludwigs-Universität Freiburg) \quad Al Planning \quad May 25, 2005 6/17

Observability
Classification full, partial, no observability
Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be the set of states.
Classification of planning problems in terms of observability:
Full $P=\left(\left\{s_{1}\right\},\left\{s_{2}\right\}, \ldots,\left\{s_{n}\right\}\right)$
number of observational classes: n
Chess is a fully observable 2-person game.
No $P=\left(\left\{s_{1}, \ldots, s_{n}\right\}\right)$
number of observational classes: 1
Partial No restrictions on P.
number of observational classes : between 1 and n
Poker is a partially observable 2-person game.
Mastermind is a partially observable 1-person game.
n-person games for $n \geq 2 \sim$ nondeterministic planning

Nondeterministic actions as operators Example

000001010011100101110111								
000	0	1	1	0	0	0	0	0
001	0	0	0	0	0	0	0	0
010	0	0	0	0	0	0	0	0
011	0	0	0	0	0	0	0	0
100	0	1	1	0	0	0	0	0
101	0	0	0	0	0	0	0	0
110	0	0	0	0	0	0	0	0
111	0	0	0	0	0	0	0	0

$A=\{a, b, c\}$ the action can be represented as operator
110
(Albert-Ludwigs-Universität Freiburg)

$$
\langle\neg b \wedge \neg c, \neg a \wedge(b \mid c)\rangle
$$

Nondeterministic operators
 Semantics, example

Example

$$
\langle a,(b \mid \neg b) \wedge(c \mid \neg c) \wedge(d \mid \neg d)\rangle
$$

has 2^{3} alternative sets of effects, leading to 8 different successor states.

1. effects $\{b, c, d\}$ lead to state $s \models a \wedge b \wedge c \wedge d$
2. effects $\{\neg b, c, d\}$ lead to state $s \models a \wedge \neg b \wedge c \wedge d$
3. effects $\{b, \neg c, d\}$ lead to state $s \models a \wedge b \wedge \neg c \wedge d$
4. effects $\{\neg b, \neg c, d\}$ lead to state $s \models a \wedge \neg b \wedge \neg c \wedge d$
5. effects $\{b, c, \neg d\}$ lead to state $s \models a \wedge b \wedge c \wedge \neg d$
6. effects $\{\neg b, c, \neg d\}$ lead to state $s \models a \wedge \neg b \wedge c \wedge \neg d$
7. effects $\{b, \neg c, \neg d\}$ lead to state $s \models a \wedge b \wedge \neg c \wedge \neg d$
8. effects $\{\neg b, \neg c, \neg d\}$ lead to state $s \models a \wedge \neg b \wedge \neg c \wedge \neg d$
(Albert-Ludwigs-Universität Freiburg) Al Planning May 25, 2005 11/17

Nondeterministic operators
 Binary relation induced by an operator

Definition
An operator $\langle c, e\rangle$ induces a binary relation $R\langle c, e\rangle$ on the states as follows: $s R\langle c, e\rangle s^{\prime}$ if there is $E \in[e]_{s}$ such that

$$
\text { 1. } s \models c \text {, }
$$

2. $s^{\prime} \models E$, and
3. $s \models a$ iff $s^{\prime} \models a$ for all $a \in A$ such that $\{a, \neg a\} \cap E=\emptyset$.

We also write simply $\operatorname{sos}^{\prime}$ instead of $s R(o) s^{\prime}$.
Definition
Let s and s^{\prime} be states and o an operator. If $s o s^{\prime}$ then s^{\prime} is a successor state of s.

Succinct transition systems

Observability

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be the state variables.
Classification of planning problems in terms of observability:
Full observable state variables: $V=A$ number of observational classes: $2^{|A|}$
No observable state variables: $V=\emptyset$ number of observational classes: 1
Partial observable state variables: no restrictions, $\emptyset \subseteq V \subseteq A$ number of observational classes: 1 to $2^{|A|}$

Nondeterministic actions as operators
Definition

Definition
Let A be a set of state variables. An operator is a pair $\langle c, e\rangle$ where c is a propositional formula over A (the precondition), and e is an effect over A. Effects over A are recursively defined as follows.
. a and $\neg a$ for state variables $a \in A$ are effects over A.
$e_{1} \wedge \cdots \wedge e_{n}$ is an effect over A if e_{1}, \ldots, e_{n} are effects over A.
$c \triangleright e$ is an effect over A if c is a formula over A and e is an effect over A.
4. $e_{1}|\cdots| e_{n}$ is an effect over A if e_{1}, \ldots, e_{n} for $n \geq 2$ are effects over A.

Nondeterministic operators
 Semantics

Definition (Operator application)
Let $\langle c, e\rangle$ be an operator over A and s a state.
The set $[e]_{s}$ of sets of literals is recursively defined as follows.

1. $[a]_{s}=\{\{a\}\}$ and $[\neg a]_{s}=\{\{\neg a\}\}$ for $a \in A$.
2. $\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}=\left\{\bigcup_{i=1}^{n} E_{i} \mid E_{1} \in\left[e_{1}\right]_{s}, \ldots, E_{n} \in\left[e_{n}\right]_{s}\right\}$.
3. $\left[c^{\prime} \triangleright e\right]_{s}=[e]_{s}$ if $s \models c^{\prime}$ and $\left[c^{\prime} \triangleright e\right]_{s}=\{\emptyset\}$ otherwise.
4. $\left[e_{1}|\cdots| e_{n}\right]_{s}=\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s}$.

Definition
Operator $\langle c, e\rangle$ is applicable in s if $s \models c$ and every set $E \in[e]_{s}$ is consistent.
(Albert-Ludwigs-Universität Freiburg)

Succinct transition systems
General definition

Definition
A succinct transition system is a 5 -tuple $\Pi=\langle A, I, O, G, V\rangle$ where

1. A is a finite set of state variables,
2. I is a formula over A describing the initial states,
3. O is a finite set of operators over A,
4. G is a formula over A describing the goal states, and
5. $V \subseteq A$ is the set of observable state variables.

Succinct transition system
 Translation into transition systems

We can associate a transition system with every succinct transition system.
Definition
Given a succinct transition system $\Pi=\langle A, I, O, G, V\rangle$, construct the transition system $F(\Pi)=\left\langle S, I^{\prime}, O^{\prime}, G^{\prime}, P\right\rangle$ where
S is the set of all Boolean valuations of A,
$I^{\prime}=\{s \in S \mid s \models I\}$,
$O^{\prime}=\{R(o) \mid o \in O\}$,
$G^{\prime}=\{s \in S \mid s \models G\}$, and
5. $P=\left(C_{1}, \ldots, C_{n}\right)$ where v_{1}, \ldots, v_{n} for $n=2^{|V|}$ are all the Boolean valuations of V and $C_{i}=\left\{s \in S \mid s(a)=v_{i}(a)\right.$ for all $\left.a \in V\right\}$ for all $i \in\{1, \ldots, n\}$.

