• World is not predictable.

• Al robotics:

- imprecise movement of the robot
- other robots
- human beings, animals
- machines (cars, trains, airplanes, lawn-mowers, ...
- natural phenomena (wind, water, snow, temperature, ...)
- Games: other players are outside our control.
- To win a game (reaching a goal state) with certainty all possible actions by the other players have to be anticipated (a winning strategy of a game).
- World is not predictable because it is unknown: we cannot observe everything.

AI Planning

Motivation

Transition systems

- World is not predictable.
- Al robotics:
 - imprecise movement of the robot
 - other robots
 - human beings, animals
 - machines (cars, trains, airplanes, lawn-mowers, ...)
 - natural phenomena (wind, water, snow, temperature, ...)
- Games: other players are outside our control.
- To win a game (reaching a goal state) with certainty all possible actions by the other players have to be anticipated (a winning strategy of a game).
- World is not predictable because it is unknown: we cannot observe everything.

AI Planning

Motivation

Transition systems

- World is not predictable.
- Al robotics:
 - imprecise movement of the robot
 - other robots
 - human beings, animals
 - machines (cars, trains, airplanes, lawn-mowers, ...)
 - natural phenomena (wind, water, snow, temperature, ...)
- Games: other players are outside our control.
- To win a game (reaching a goal state) with certainty all possible actions by the other players have to be anticipated (a winning strategy of a game).
- World is not predictable because it is unknown: we cannot observe everything.

AI Planning

Motivation

Transition systems

- World is not predictable.
- Al robotics:
 - imprecise movement of the robot
 - other robots
 - human beings, animals
 - machines (cars, trains, airplanes, lawn-mowers, ...)
 - natural phenomena (wind, water, snow, temperature, ...)
- Games: other players are outside our control.
- To win a game (reaching a goal state) with certainty all possible actions by the other players have to be anticipated (a winning strategy of a game).
- World is not predictable because it is unknown: we cannot observe everything.

AI Planning

Motivation

Transition systems

- World is not predictable.
- Al robotics:
 - imprecise movement of the robot
 - other robots
 - human beings, animals
 - machines (cars, trains, airplanes, lawn-mowers, ...)
 - natural phenomena (wind, water, snow, temperature, ...)
- Games: other players are outside our control.
- To win a game (reaching a goal state) with certainty all possible actions by the other players have to be anticipated (a winning strategy of a game).
- World is not predictable because it is unknown: we cannot observe everything.

AI Planning

Motivation

Transition systems

Nondeterminism

Example: several agents, games

AI Planning

Motivation

Transition systems

Nondeterminism

Example: several agents, games

AI Planning

Motivation

Transition systems

Nondeterminism Example: uncertainty in robot movement

AI Planning

Motivation

Transition systems

- In deterministic planning we have assumed that the only changes taking place in the world are those caused by us and that we can exactly predict the results of our actions.
- Other agents and processes, beyond our control, are formalized as nondeterminism.
- Implications:
 - The future state of the world cannot be predicted.
 - We cannot reliably plan ahead: no single action sequence achieves the goals.
 - In some cases it is not possible to achieve the goals with certainty, only with some probability.

AI Planning

Motivation

Transition systems

- In deterministic planning we have assumed that the only changes taking place in the world are those caused by us and that we can exactly predict the results of our actions.
- Other agents and processes, beyond our control, are formalized as nondeterminism.
- Implications:
 - The future state of the world cannot be predicted.
 - We cannot reliably plan ahead: no single action sequence achieves the goals.
 - In some cases it is not possible to achieve the goals with certainty, only with some probability.

AI Planning

Motivation

Transition systems

- In deterministic planning we have assumed that the only changes taking place in the world are those caused by us and that we can exactly predict the results of our actions.
- Other agents and processes, beyond our control, are formalized as nondeterminism.
- Implications:
 - The future state of the world cannot be predicted.
 - We cannot reliably plan ahead: no single action sequence achieves the goals.
 - In some cases it is not possible to achieve the goals with certainty, only with some probability.

AI Planning

Motivation

Transition systems

Transition systems

General definition with nondeterminism and observability

Definition

A transition system is a 5-tuple $\Pi = \langle S, I, O, G, P \rangle$ where

- \bigcirc S is a finite set of states,
- 2 $I \subseteq S$ is the set of initial states,
- **③** *O* is a finite set of actions $o \subseteq S \times S$,
- $G \subseteq S$ is the set of goal states, and
- P = (C₁,...,C_n) is a partition of S to classes of observationally indistinguishable states satisfying ∪{C₁,...,C_n} = S and C_i ∩ C_j = Ø for all i, j such that 1 ≤ i < j ≤ n.

Making an observation tells which set C_i the current state belongs to. Distinguishing states within a given C_i is not possible by observations.

AI Planning

Motivation

Transition systems Observability

Observability Example of partition of states into observational classes

Observability Classification full, partial, no observability

Let $S = \{s_1, \ldots, s_n\}$ be the set of states.

Classification of planning problems in terms of observability:

Full
$$P = (\{s_1\}, \{s_2\}, \dots, \{s_n\})$$

number of observational classes: n

Chess is a fully observable 2-person game.

No
$$P = (\{s_1, ..., s_n\})$$

number of observational classes: 1

Partial No restrictions on P.

number of observational classes : between 1 and nPoker is a partially observable 2-person game. Mastermind is a partially observable 1-person game.

n-person games for $n \ge 2 \sim$ nondeterministic planning

AI Planning

Motivation

Transition systems Observability

Nondeterministic actions as operators Example

	000	001	010	011	100	101	110	111
000	0	1	1	0	0	0	0	0
001	0	0	0	0	0	0	0	0
010	0	0	0	0	0	0	0	0
011	0	0	0	0	0	0	0	0
100	0	1	1	0	0	0	0	0
101	0	0	0	0	0	0	0	0
110	0	0	0	0	0	0	0	0
111	0	0	0	0	0	0	0	0

AI Planning

Motivation

Transition systems

Succinct TS Operators Semantics Observability Translation into TS

101

In terms of state variables $A = \{a, b, c\}$ the action can be represented as operator

110

111

 $\langle \neg b \land \neg c, \neg a \land (b|c) \rangle$

Nondeterministic actions as operators Definition

Definition

Let *A* be a set of state variables. An operator is a pair $\langle c, e \rangle$ where *c* is a propositional formula over *A* (the precondition), and *e* is an effect over *A*. Effects over *A* are recursively defined as follows.

- **(**) a and $\neg a$ for state variables $a \in A$ are effects over A.
- 2 $e_1 \wedge \cdots \wedge e_n$ is an effect over A if e_1, \ldots, e_n are effects over A.
- 3 c
 ightarrow e is an effect over A if c is a formula over A and e is an effect over A.
- $e_1 | \cdots | e_n$ is an effect over A if e_1, \ldots, e_n for $n \ge 2$ are effects over A.

AI Planning

Motivation

ransition ystems

Semantics, example

Example

$$\langle a, (\mathbf{b}|\neg b) \land (\mathbf{c}|\neg c) \land (\mathbf{d}|\neg d) \rangle$$

has 2³ alternative sets of effects, leading to 8 different successor states.

• effects $\{b, c, d\}$ lead to state $s \models a \land b \land c \land d$

2 effects
$$\{\neg b, c, d\}$$
 lead to state $s \models a \land \neg b \land c \land d$

• effects
$$\{b, \neg c, d\}$$
 lead to state $s \models a \land b \land \neg c \land d$

• effects
$$\{\neg b, \neg c, d\}$$
 lead to state $s \models a \land \neg b \land \neg c \land d$

• effects
$$\{b, c, \neg d\}$$
 lead to state $s \models a \land b \land c \land \neg d$

• effects
$$\{\neg b, c, \neg d\}$$
 lead to state $s \models a \land \neg b \land c \land \neg d$

O effects
$$\{b, \neg c, \neg d\}$$
 lead to state $s \models a \land b \land \neg c \land \neg d$

If effects
$$\{\neg b, \neg c, \neg d\}$$
 lead to state $s \models a \land \neg b \land \neg c \land \neg d$

AI Planning

Motivation

Transition systems

Semantics, example

Example

$$\langle a, (b|\neg b) \land (c|\neg c) \land (d|\neg d) \rangle$$

has 2³ alternative sets of effects, leading to 8 different successor states.

AI Planning

Motivation

Transition Systems

Semantics, example

Example

$$\langle a, (b|\neg b) \land (c|\neg c) \land (d|\neg d)
angle$$

has 2³ alternative sets of effects, leading to 8 different successor states.

AI Planning

Motivation

Fransition Systems

Semantics, example

Example

$$\langle a, (b|\neg b) \land (c|\neg c) \land (d|\neg d) \rangle$$

has 2³ alternative sets of effects, leading to 8 different successor states.

AI Planning

Motivation

Transition systems

Semantics, example

Example

$$\langle a, (\mathbf{b}|\neg b) \land (\mathbf{c}|\neg c) \land (d|\neg d) \rangle$$

has 2³ alternative sets of effects, leading to 8 different successor states.

AI Planning

Motivation

Transition Systems

Semantics, example

Example

$$\langle a, (b|\neg b) \land (c|\neg c) \land (d|\neg d) \rangle$$

has 2³ alternative sets of effects, leading to 8 different successor states.

AI Planning

Motivation

Transition systems

Semantics, example

Example

$$\langle a, (b|\neg b) \land (c|\neg c) \land (d|\neg d) \rangle$$

has 2³ alternative sets of effects, leading to 8 different successor states.

AI Planning

Motivation

Transition Systems

```
Succinct TS
Operators
Semantics
Observability
Translation into TS
```

Semantics, example

Example

$$\langle a, (b|\neg b) \land (c|\neg c) \land (d|\neg d)
angle$$

has 2³ alternative sets of effects, leading to 8 different successor states.

AI Planning

Motivation

Transition Systems

Nondeterministic operators Semantics

Definition (Operator application)

Let $\langle c, e \rangle$ be an operator over A and s a state. The set $[e]_s$ of sets of literals is recursively defined as follows.

1
$$[a]_s = \{\{a\}\} \text{ and } [\neg a]_s = \{\{\neg a\}\} \text{ for } a \in A.$$

2 $[e_1 \land \dots \land e_n]_s = \{\bigcup_{i=1}^n E_i | E_1 \in [e_1]_s, \dots, E_n \in [e_n]_s\}$
3 $[c' \rhd e]_s = [e]_s \text{ if } s \models c' \text{ and } [c' \rhd e]_s = \{\emptyset\} \text{ otherwise.}$
4 $[e_1| \cdots | e_n]_s = [e_1]_s \cup \cdots \cup [e_n]_s.$

Definition

Operator $\langle c, e \rangle$ is applicable in *s* if $s \models c$ and every set $E \in [e]_s$ is consistent.

AI Planning

Motivation

Fransition Systems

Binary relation induced by an operator

Definition

An operator $\langle c, e \rangle$ induces a binary relation $R \langle c, e \rangle$ on the states as follows: $sR \langle c, e \rangle s'$ if there is $E \in [e]_s$ such that

$$1 s \models c,$$

2
$$s' \models E$$
, and

3
$$s \models a$$
 iff $s' \models a$ for all $a \in A$ such that $\{a, \neg a\} \cap E = \emptyset$

We also write simply sos' instead of sR(o)s'.

Definition

Let *s* and *s'* be states and *o* an operator. If sos' then s' is a successor state of *s*.

AI Planning

Motivation

Transition systems

Succinct transition systems General definition

Definition

A succinct transition system is a 5-tuple $\Pi = \langle A, I, O, G, V \rangle$ where

- A is a finite set of state variables,
- I is a formula over A describing the initial states,
- \bigcirc O is a finite set of operators over A,
- G is a formula over A describing the goal states, and
- $V \subseteq A$ is the set of observable state variables.

AI Planning

Motivation

ransition ystems

Observability Example of partition of states into observational classes

There are 8 valuations of V but the valuation $v \models \neg Aclear \land \neg Bclear \land \neg Cclear$ does not correspond to a blocks world state. Let $A = \{a_1, \ldots, a_n\}$ be the state variables. Classification of planning problems in terms of observability:

- Full observable state variables: V = Anumber of observational classes: $2^{|A|}$
- No observable state variables: $V = \emptyset$ number of observational classes: 1

Partial observable state variables: no restrictions, $\emptyset \subseteq V \subseteq A$

number of observational classes: 1 to $2^{|A|}$

AI Planning

Motivation

Transition Systems

Translation into transition systems

We can associate a transition system with every succinct transition system.

Definition

Given a succinct transition system $\Pi = \langle A, I, O, G, V \rangle$, construct the transition system $F(\Pi) = \langle S, I', O', G', P \rangle$ where

• S is the set of all Boolean valuations of A,

$$2 I' = \{s \in S | s \models I\},$$

③
$$O' = \{R(o) | o ∈ O\},$$

•
$$G' = \{s \in S | s \models G\}$$
, and

• $P = (C_1, \ldots, C_n)$ where v_1, \ldots, v_n for $n = 2^{|V|}$ are all the Boolean valuations of V and $C_i = \{s \in S | s(a) = v_i(a) \text{ for all } a \in V\}$ for all $i \in \{1, \ldots, n\}$.

AI Planning

Motivation

ransition ystems