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Length of plans

Let 〈A, I, O, G〉 be a deterministic succinct transition
system.

1 There is a plan of length 0 iff I |= G.
2 Shortest plans may not be longer than 2n − 1: If a plan

is longer, then it visits some state s more than once and
has the form σ1 s σ2 s σ3: the plan σ1σ3 is shorter.

3 Shortest plan may have length 2n − 1: Reach the goal
state 111 . . . 1 from the initial state 000 . . . 0 by an
operator that increments the corresponding binary
number 2n − 1 times.
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Deterministic planning: expressivity

Definition

The decision problem SAT: test whether a given
propositional formula φ is satisfiable.

Reduction from SAT to deterministic planning

A = the set of propositional variables occurring in φ
I = any state, e.g. all state variables have value 0
O = ({>} ×A) ∪ ({〈>,¬a〉|a ∈ A})

There is a plan for 〈A, I,O, φ〉 if and only if φ is satisfiable.
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Deterministic planning: expressivity

Because there is a polynomial-time translation from
SAT into deterministic planning, and SAT is an
NP-complete problem, there is a polynomial time
translation from every decision problem in NP into
deterministic planning. Hence the problem is NP-hard.

Does deterministic planning have the power of NP, or is
it still more powerful?

We show that it is more powerful: The decision problem
of testing whether a plan exists is PSPACE-complete.
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Turing machines

Definition

A Turing machine 〈Σ, Q, δ, q0, g〉 consists of
1 an alphabet Σ (a set of symbols),
2 a set Q of internal states,
3 a transition function δ that maps 〈q, s〉 to a tuple
〈s′, q′,m〉 where q, q′ ∈ Q, s ∈ Σ ∪ {|,�}, s′ ∈ Σ and
m ∈ {L,N,R}.

4 an initial state q0 ∈ Q, and
5 a labeling g : Q → {accept, reject,∃} of states.
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Turing machines
Example

TM accepting strings ε, a, ab, aba, abab, . . . is 〈Σ, Q, δ, q1, g〉
where

Σ = {a, b}
Q = {q1, q2, q3, q4}

g(q1) = ∃ g(q2) = ∃
g(q3) = accept g(q4) = reject

δ(q1, a) = 〈a, q2, R〉 δ(q1, b) = 〈b, q4, R〉
δ(q2, b) = 〈b, q1, R〉 δ(q2, a) = 〈a, q4, R〉

δ(q1,�) = 〈a, q3, R〉 δ(q2,�) = 〈b, q3, R〉
δ(q, s) = 〈a, q4, R〉 for all other q, s
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Turing machines
Example

What does the TM do with the string ababb?

q1 |âbabb�
q2 |ab̂abb�
q1 |abâbb�
q2 |abab̂b�
q1 |ababb̂�
q4 |ababb�̂

The label g(q4) = reject. The TM does not accept the string.



AI Planning

Plan length

NP-hardness

Turing
machines

Complexity
classes

PSPACE-
hardness

PSPACE
membership

Summary

Some complexity classes

Definition

DTIME(f) is the class of decision problems solved by a
deterministic Turing machine in O(f(n)) time when n is the
input string length. NTIME(f) is defined similarly for
nondeterministic Turing machines.
DSPACE(f) is the class of decision problems solved by a
deterministic Turing machine in O(f(n)) space when n is
the input string length.

EXPSPACE =
⋃

k≥0 DSPACE(2nk
)

NEXPTIME =
⋃

k≥0 NTIME(2nk
)

EXPTIME =
⋃

k≥0 DTIME(2nk
)

PSPACE =
⋃

k≥0 DSPACE(nk)

NP =
⋃

k≥0 NTIME(nk)

P =
⋃

k≥0 DTIME(nk)
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Some complexity classes

2-EXPSPACE

2-NEXPTIME

2-EXPTIME

EXPSPACE

NEXPTIME

EXPTIME

PSPACE

NP

P
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Simulation of PSPACE Turing machines

Close match between space-bounded Turing machines and
planning problems.

1 Turing machine configurations ∼ states
2 Turing machine transitions ∼ operators
3 initial configuration ∼ initial state
4 accepting configurations ∼ goal states

For simulation of PSPACE TMs a number of state variables
and operators that is polynomial in input string length
suffices.
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Simulation of PSPACE Turing machines

We show how polynomial-space Turing machines can be
simulated by planning.

Tape cell contents are represented in state variables.

R/W head location is represented in state variables.

Internal TM state is represented in state variables.

Transitions are represented as operators.

Theorem

A Turing machine M accepts an input string σ if and only if
T (M,σ) = 〈A, I,O,G〉 has a plan.
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Simulation of PSPACE Turing machines

Turing machine with Σ = {a, b, c}, input string of length
n = 4, space bound p(n) = n2 = 16, internal states
Q = {q1, q2, q3}.

State variables in the corresponding planning problem:

state variables for tape cells
tape cell: 0 1 2 3 · · · 15 16

R/W head: h0 h1 h2 h3 · · · h15 h16

symbol a: a0 a1 a2 a3 · · · a15 a16

symbol b: b0 b1 b2 b3 · · · b15 b16

symbol c: c0 c1 c2 c3 · · · c15 c16

symbol �: �0 �1 �2 �3 · · · �15 �16

symbol |: |0 |1 |2 |3 · · · |15 |16
state q1: q1

state q2: q2

state q3: q3
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Simulation of PSPACE Turing machines
Example

state variable values
1 2 3 4 5

TM config. abc abc abc abc abc q1q2q3q4 plan
q1|âbabb� 1̂00 010 100 010 010 1000 oa,q1,1

q2|bb̂abb� 010 0̂10 100 010 010 0100 ob,q2,2

q4|bcâbb� 010 001 1̂00 010 010 0001 oa,q4,3

q3|bcbb̂b� 010 001 010 0̂10 010 0010 ob,q3,4

q1|bcb̂cb� 010 001 0̂10 001 010 1000 ob,q1,3

q4|bĉacb� 010 0̂01 100 001 010 0001 oc,q4,2

q4 |̂baacb� 0̂10 100 100 001 010 0001 ob,q4,1

Operator os,q,h is applicable when current symbol is s,
current TM state is q, and current tape cell is h.
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PSPACE simulation

Simulate a TM 〈Σ, Q, δ, q0, g〉 that needs at most p(n) tape
cells on an input string of length n.
State variables in the succinct transition system are

1 {q1, . . . , q|Q|} = Q for the current state of the TM,
2 si for every symbol s ∈ Σ ∪ {|,�} and tape cell

i ∈ {0, . . . , p(n)},
3 hi for every i ∈ {0, . . . , p(n)} (position of the R/W head).
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PSPACE simulation
Initial state

1 I(q0) = 1 and I(q) = 0 for all q ∈ Q\{q0}.
2 I(si) = 1 if i ≤ n and input symbol i is s.
3 I(si) = 0 if i ≤ n and s ∈ S and input symbol i is not s.
4 I(�i) = 1 iff i ∈ {n + 1, . . . , p(n)− 1}
5 I(|i) = 1 iff i = 0

6 I(hi) = 1 iff i = 1
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PSPACE simulation
Goal formula

Goal formula requires that the Turing machine is in an
accepting state.

G =
∨
{q ∈ Q|g(q) = accept}.
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PSPACE simulation
Operators

For all s ∈ Σ ∪ {|,�} and q ∈ Q and i ∈ {0, . . . , p(n)} with
δ(q, s) = 〈s′, q′,m〉 such that m 6= R or i < p(n) define

os,q,i = 〈hi ∧ si ∧ q, ν ∧ χ ∧ µ〉

where
ν describes the writing operation,
χ describes the change in the internal state of the TM,
µ describes the movement of the R/W head.

The requirement m 6= R or i < p(n) means that no transition
violating the space bound is possible.

Operator os,q,i corresponds to the unique transition from a
configuration where current symbol is s, internal state is q,
and R/W head location is i.
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PSPACE simulation
Operators’ effects

symbol written onto the tape

ν =

{
> if s ∈ {|, s′}
¬si ∧ s′i otherwise

change in the internal state

χ =

{
¬q ∧ q′ if q 6= q′

> otherwise

movement of the R/W head

µ =


¬hi ∧ hi−1 if i > 0 and m = L
¬hi ∧ hi+1 if i < p(n) and m = R
> otherwise
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PSPACE simulation
Example

1 Turing machine 〈{a, b}, {q1, q2, qacc}, δ, q1, g〉 where δ is

a b | �
q1 〈a, q1, R〉 〈b, q2, N〉 〈|, q2, R〉 〈b, q1, N〉
q2 〈a, q1, L〉 〈a, qacc, N〉 〈|, q1, R〉 〈a, q2, L〉

qacc − − − −

and g(qacc) = accept, g(q1) = ∃ and g(q2) = ∃.
(This Turing machine does not do anything interesting!)

2 Input string is abaab.
3 Let the space bound be p(5) = 7 for some polynomial p.
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PSPACE simulation
Example

The succinct transition system corresponding to the Turing
machine is 〈A, I,O,G〉 where

1 A = {q1, q2, qacc, h0, . . . , h7, a0, . . . , a7, b0, . . . b7, . . .},
2 I |= h1 ∧ |0 ∧ a1 ∧ b2 ∧ a3 ∧ a4 ∧ b5 ∧�6 ∧�7 ∧ ¬h0 ∧
¬a0 ∧ ¬b0 ∧ ¬�0 ∧ · · · ,

3 operators in O are on the next slide, and
4 G = qacc.
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PSPACE simulation
Example

Only part of the about
|{0, 1, . . . , 7}| × |{q1, q2}| × |{a, b, |,�}| operators are given
below, for R/W head position 1 and input symbols a and b:

O = { 〈h1 ∧ a1 ∧ q1, ¬h1 ∧ h2〉, . . . ,
〈h1 ∧ b1 ∧ q1, ¬q1 ∧ q2〉, . . . ,
〈h1 ∧ a1 ∧ q2, ¬q2 ∧ q1 ∧ ¬h1 ∧ h0〉, . . . ,
〈h1 ∧ b1 ∧ q2, ¬b1 ∧ a1 ∧ ¬q2 ∧ qacc〉, . . .}
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Deterministic planning is solvable in PSPACE

The PSPACE-hardness result provides a lower bound
on the complexity of deterministic planning. Is the
problem hard for a complexity class more difficult than
PSPACE?
We next give an upper bound on the complexity by
showing that the problem belongs to PSPACE.
Hence the problem is PSPACE-complete, locating the
problem exactly in one complexity class.
It is not known whether NP6=PSPACE or even
P6=PSPACE, but the result is still useful because for all
practical purposes we can assume that NP6=PSPACE.
For example, we may conclude that there is no
polynomial-time translation from planning to the
satisfiability problem (the translation we gave earlier is
linear in the plan length, which may be exponential in
the problem instance size.).
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Deterministic planning is solvable in PSPACE
Proof idea

Recursive algorithm for testing m-step reachability between
two states with log m memory consumption.

s0 s1 s2 s3 s4 s5 s6 s7 s8

reach(s,s’,1)
reach(s,s’,0)

reach(s0,s8,3)
reach(s,s’,2)
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Deterministic planning is solvable in PSPACE
Algorithm

Testing whether a plan of length ≤ 2n exists:
PROCEDURE reach(s,s′,n)
IF n = 0 THEN

IF s = s’ OR s′ = appo(s) for some o ∈ O
THEN RETURN true
ELSE RETURN false;

ELSE
FOR all states s′′ DO

IF reach(s,s′′,n− 1) AND reach(s′′,s′,n− 1)
THEN RETURN true

END
RETURN false;

This algorithm does not store the plan anywhere (it could
not without violating the space bound!) but could be
modified to output it.
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Deterministic planning is solvable in PSPACE
Correctness of the algorithm

Correctness
For a succinct transition system N with n state variables, N
has a plan if and only if reach(I,s′,n) returns true for some s′

such that s′ |= G.

Memory consumption

If number of states is 2n, then recursion depth is n. At each
recursive call only one state s′′ is represented, taking space
O(n), which means that total memory consumption at any
time point is O(n2), which is polynomial in the size of the
succinct transition system.
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Summary

For n Boolean state variables shortest plans have
length ≤ 2n − 1.

Testing for the existence of a plan is PSPACE-hard:
The halting problem of every deterministic
polynomial-space Turing machine can be translated
into a deterministic planning problem.

Testing for the existence of a plan can be done in
PSPACE.
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