Invariants (May 9, 2005)
Invariants
Motivation
Definition
Example
vs. Plan existence
Algorithms
Idea
Example
Invariant test
Main procedure
Example
Applications
SAT Planning
Regression
Summary

Invariants
Motivation

Goal formulae and formulae obtained by regression from them often represent some states that are not reachable from the initial state.

- If none of the states is reachable from the initial state because there are no plans reaching the formula.
- We would like to have reachable states only, if possible.
- Same problem shows up in satisfiability planning: partial valuations considered by satisfiability algorithms may represent unreachable states, and this may result in unnecessary search.

| (Albert-Ludwigs-Universität Freiburg) | Al Planning | May 9, 2005 | $3 / 28$ |
| :---: | :---: | :---: | :---: | :---: |
| | Invariants | Definition | |

Invariants: definition

Definition

A formula ϕ is an invariant of $\langle A, I, O, G\rangle$ if

1. $I \models \phi$, and
2. for every $o \in O$ and state s such that $s \models \phi$ and s is reachable from I, also $\operatorname{app}_{o}(s) \models \phi$.

Stated differently...

ϕ is true in every state that is reachable from I by some sequence of operators.

Example
If $l \in D_{i}^{\max }$ for all $i \geq 1$ then l is an invariant.
Hence our algorithm for computing the sets $D_{i}^{\max }$ is a method for identifying a restricted class of invariants.

```
(Albert-Ludwigs-Universität Freiburg)
```

Invariants
Example: the strongest invariant for blocks world

The strongest invariant for the blocks world
Let X be the set of blocks, for example $X=\{A, B, C, D\}$.
The conjunction of the following formulae is the strongest invariant for the set of all states for the blocks X.

$$
\begin{aligned}
& \operatorname{clear}(x) \leftrightarrow \forall y \in X \backslash\{x\} . \neg \text { on }(y, x) \text { for all } x \\
& \text { ontable }(x) \leftrightarrow \forall y \in X \backslash\{x\} . \neg \text { on }(x, y) \text { for all } x \\
& \neg \text { on }(x, y) \vee \neg \text { on }(x, z) \text { for all } x, y, z \text { such that } y \neq z \\
& \neg \text { on }(y, x) \vee \neg \text { on }(z, x) \text { for all } x, y, z \text { such that } y \neq z \\
& \neg\left(\text { on }\left(x_{1}, x_{2}\right) \wedge \text { on }\left(x_{2}, x_{3}\right) \wedge \cdots \wedge \text { on }\left(x_{n-1}, x_{n}\right) \wedge \text { on }\left(x_{n}, x_{1}\right)\right) \\
& \text { for every } n \geq 1 \text { and }\left\{x_{1}, \ldots, x_{n}\right\} \subseteq X
\end{aligned}
$$

Invariants

Motivation
Example
Consider the goal formula

$$
A o n B \wedge B o n C
$$

regressed with operator
\langle Aon $C \wedge$ Aclear \wedge Bclear, Aon $B \wedge \neg$ Bclear \wedge Cclear \rangle
giving new goal

Aon $C \wedge$ Aclear \wedge Bclear \wedge BonC.

It is intuitively clear that no state satisfying this formula is reachable by any plan from a legal blocks world state.
(Albert-Ludwigs-Universität Freiburg)
AI Planning
May 9, $2005 \quad 2 / 28$

Invariants

Goal: Restriction to states that are reachable.
Problem: Testing reachability is computationally as complex as testing whether a plan exists.
Solution: Use an approximate notion of reachability.
Implementation: Compute in polynomial time formulae that characterize a superset of the reachable states.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	May 9, 2005	4/28
	Invariants \quad Definition		

Invariants: the strongest invariant

Definition
An invariant ϕ is the strongest invariant of $\langle A, I, O, G\rangle$ if for any invariant $\psi, \phi \models \psi$.
The strongest invariant exactly characterizes the set of all states that are reachable from the initial state:
For all states $s, s \models \phi$ if and only if s is reachable.
Remark
There are infinitely many strongest invariants, but they are all logically equivalent. (If ϕ is a strongest invariant, then so is $\phi \vee \phi \ldots$)

(Albert-Ludwigs-Universität Freiburg) \quad Al Planning	May 9, 2005	6/28

Invariants: connection to plan existence

Theorem
Let ϕ be the strongest invariant for $\langle A, I, O, G\rangle$. Then $\langle A, I, O, G\rangle$ has a plan if and only if $G \wedge \phi$ is satisfiable.
Proof.
Very easy!
Theorem
Computing the strongest invariant ϕ is PSPACE-hard.
Proof.
By reduction from the plan existence problem.
Fact: Testing plan existence is PSPACE-hard for $\langle A, I, O, G\rangle$ even when $G=q$ for a state variable $q \in A$. (We'll show this in two weeks!)

Invariants: connection to plan existence

Proof continues..
Let $o=\left\langle q, a_{1} \wedge \cdots \wedge a_{n}\right\rangle$ with $A=\left\{a_{1}, \ldots, a_{n}, q\right\}$.
For $\langle A, I, O, q\rangle$ a plan exists
iff for $\langle A, I, O \cup\{o\}, q\rangle$ a plan exists
iff for $\left\langle A, I, O \cup\{o\}, q \wedge a_{1} \wedge \cdots \wedge a_{n}\right\rangle$ a plan exists.
Testing satisfiability of $\phi \wedge q \wedge a_{1} \wedge \cdots \wedge a_{n}$ can be done in polynomial time: replace every state variable in the strongest invariant ϕ by \top and simplify, getting \top or \perp.
So, if we had a polynomial-time algorithm for computing the strongest invariant ϕ, we could test plan existence in polynomial time.
Hence plan existence is polynomial-time reducible to computing the strongest invariant.
Since the former is PSPACE-hard also the latter is PSPACE-hard.

Albert-Ludwigs-Universitäat Freiburg)

Al Planning

May 9, 2005 9/28

Computation of invariants: informally

1. Start with all 1-literal clauses that are true in the initial state.
2. Repeatedly test every operator vs. every clause, whether the clause can be shown to be true after applying the operator:
2.1 One of the literals in the clause is necessarily true: retain.
2.2 Otherwise, if the clause is too long: forget it.
2.3 Otherwise, replace the clause by new clauses obtained by adding literals that are now true.
3. When all clauses remain, stop: they are invariants.

Algorithms Example

Computation of invariants
 Example

Example continues..
7. For \neg Bclear and \neg Aon T we respectively get \neg Bclear \vee Aclear, \neg Bclear \vee Bclear, \neg Bclear $\vee \neg$ AonB, \neg Bclear \vee \neg BonA, \neg Bclear \vee AonT, \neg Bclear \vee BonT and \neg Aon $T \vee$ Aclear,\neg Aon $T \vee$ Bclear,\neg Aon $T \vee \neg$ AonB,\neg Aon $T \vee$ \neg BonA, \neg Aon $T \vee$ Aon T, \neg Aon $T \vee$ BonT.
8. By eliminating logically equivalent ones, tautologies, and those that follow from those in C_{0} not falsified we get $C_{1}=\{$ Aclear, \neg BonA, BonT, AonB \vee Bclear, AonB \vee AonT, \neg Bclear \vee \neg AonB, \neg Bclear \vee Aon T, \neg Aon $T \vee$ Bclear, $\neg A o n T \vee \neg A o n B\}$ for distance 1 states.
9. The precondition of
\langle Bclear $\wedge B o n T \wedge$ Aclear, BonA $\wedge \neg$ Aclear $\wedge \neg B o n T\rangle$ is satisfiable with C_{1}, and the set C_{2} contains all invariants for 2 blocks.

Computation of invariants: procedure preserved
Test whether a clause remains true when operator is applied

Computation of invariants: informally

Similar to distance estimation with $D_{i}^{\max }$: compute sets C_{i} of n-literal clauses characterizing (giving an upper bound!) the states that are reachable in i steps.

Example

```
\(C_{0}=\{a, \neg b, c\} \sim\{101\}\)
\(C_{1}=\{a \vee b, \neg a \vee \neg b, c\} \sim\{101,011\} \quad a, \neg b\) falsified
\(C_{2}=\{\neg a \vee \neg b, c\} \sim\{001,011,101\} \quad a \vee b\) falsified
\(C_{3}=\{\neg a \vee \neg b, c \vee a\} \sim\{001,011,100,101\} \quad c\) falsified
\(C_{4}=\{\neg a \vee \neg b\} \sim\{000,001,010,011,100,101\} c \vee a\) falsified
\(C_{5}=\{\neg a \vee \neg b\} \sim\{000,001,010,011,100,101\}\)
\(C_{i}=C_{5}\) for all \(i>5\)
```

$\neg a \vee \neg b$ is the only invariant found.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 9, 2005 10/28

Computation of invariants
 Example

Example
Let $C_{0}=\{$ Aclear, \neg Bclear, AonB, \neg BonA, \neg AonT, Bon $T\}$ and $o=\langle$ Aclear \wedge AonB, Bclear $\wedge \neg A o n B \wedge$ Aon $T\rangle$.

1. $C_{0} \cup\{$ Aclear $\wedge A o n B\}$ is satisfiable: o is applicable.
2. The 1 -literal clauses \neg Bclear, AonB and $\neg A o n T$ become false when o is applied.
3. They are not thrown away, like we did when computing $D_{i}^{\max }$. They are replaced by weaker clauses.
4. Literals true after applying o in state s such that $s \models C$: Aclear, Bclear, \neg AonB, \neg BonA, AonT, BonT
5. 2-literal clauses that are weaker than $A o n B$ and now true are Aon $B \vee$ Aclear, $A o n B \vee$ Bclear, Aon $B \vee \neg$ Aon B, Aon $B \vee$ $\neg B o n A$, Aon $B \vee$ AonT, AonB $\vee B o n T$.

Computation of invariants
 Example

Example
Let $C_{i}=\{\neg$ AinRome $\vee \neg$ AinNYC, \neg AinParis $\vee \neg$ AinNYC,
\neg AinParis $\vee \neg$ AinNYC\},
$o=\langle$ AinRome, AinParis $\wedge \neg$ AinRome \rangle.

1. Does o preserve truth of \neg AinParis $\vee \neg$ AinNYC?
2. Because o makes \neg AinParis false, we must show that \neg AinNYC is true after applying o.
3. But $\neg A i n N Y C$ is not even mentioned in o !
4. However, since AinRome is the precondition of o and \neg AinRome $\vee \neg$ AinNYC was true before applying o, we can infer that \neg AinNYC was true before applying o.
5. Since o does not make \neg AinNYC false, it is true also after applying o, and then so is \neg AinParis $\vee \neg$ AinNYC.

Computation of invariants: function preserved

PROCEDURE preserved $\left(l_{1} \vee \cdots \vee l_{n}, C, o\right)$;
$\langle c, e\rangle:=o$;
FOR EACH $l \in\left\{l_{1}, \ldots, l_{n}\right\} D O$
IF $C \cup\left\{E P C_{\bar{l}}(o)\right\}$ is unsatisfiable THEN GOTO OK;
FOR $E A C H l^{\prime} \in\left\{l_{1}, \ldots, l_{n}\right\} \backslash\{l\} D O$
IF $C \cup\left\{E P C_{\bar{l}}(o)\right\} \models E P C_{l^{\prime}}(e)$ THEN GOTO OK;
IF $C \cup\left\{E P C_{\bar{l}}(o)\right\} \models l^{\prime} \wedge \neg E P C_{l^{\prime}}(e)$ THEN GOTO OK;
END DO
RETURN false;
OK:
END DO
RETURN true;

$$
\begin{aligned}
& \text { 1. preserved }(a \vee b, C,\langle\neg c, c \wedge d\rangle) \text { returns true } \\
& \text { 2. preserved }(a \vee b, C,\langle\neg c, \neg a \wedge b\rangle) \text { returns true } \\
& \text { 3. preserved }(a \vee b, C,\langle b, \neg a\rangle) \text { returns true } \\
& \text { 4. preserved }(a \vee b, C,\langle\neg c, \neg a\rangle) \text { returns true } \\
& \text { 5. preserved }(a \vee b, C,\langle c, \neg a\rangle) \text { returns false }
\end{aligned}
$$

Let $C=\{c \vee b\}$.

Computation of invariants: function preserved
Correctness

Lemma

Let C be a set of clauses, $\phi=l_{1} \vee \cdots \vee l_{n}$ a clause, and o an operator. If preserved (ϕ, C, o) returns true, then $\operatorname{app}_{o}(s) \models \phi$ for every state s such that $s \models C$ and $\operatorname{app}_{o}(s)$ is defined.

Computation of invariants: the main procedure

Outline

1. $C=$ the set of 1 -literal clauses that are true in the initial state.
2. For each operator o and clause $l_{1} \vee \cdots \vee l_{m} \in C$ test if $l_{1} \vee \cdots \vee l_{m}$ remains true when o is applied.
3. If not, remove $l_{1} \vee \cdots \vee l_{m}$, and if $m<n$ add clauses $l_{1} \vee \cdots \vee l_{m} \vee a$ and $l_{1} \vee \cdots \vee l_{m} \vee \neg a$ for every $a \in A$.
4. Repeat from step 2 if C has changed.
5. Otherwise every clause in C is an invariant.

The number of iterations is $\mathcal{O}\left(m^{n}\right)$ which is polynomial in the number of state variables $m=|A|$ for any fixed n.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	May 9, 2005	19/28
Algorithms Main procedure			

Computation of invariants: the main procedure
Correctness

Theorem
The procedure invariants (A, I, O, n) returns a set C of clauses with at most n literals so that for any sequence o_{1}, \ldots, o_{m} of operators in O $\operatorname{app}_{o_{1} ; \ldots ; o_{m}}(I) \models C$.
Proof.
Let C_{0} be the value first assigned to the variable C and C_{1}, C_{2}, \ldots the values of C in the end of each iteration.
Induction hypothesis: for every $\left\{o_{1}, \ldots, o_{i}\right\} \subseteq O$ and $\phi \in C_{i}$, $\operatorname{app}_{o_{1} ; \ldots ; o_{i}}(I) \models \phi$.
Base case $i=0: \operatorname{app}_{\epsilon}(I)$ for the empty sequence is by definition I itself, and by construction C_{0} consists of only formulae that are true in the initial state.

Why is the strongest invariant not always found?

1. Practical implementations of the algorithm use polynomial time approximations of the tests for satisfiability and \models.
2. The function preserved is incomplete for operators in general (but complete for STRIPS operators.)
Making it complete makes it NP-hard.
3. The strongest invariant may require arbitrarily long clauses, so the restriction to clauses of any fixed length makes it impossible to represent it.
Example
The acyclicity of the on relation in the blocks world needs clauses of length n when there are n blocks.

Example
Let $o=\langle a, \neg b \wedge(c \triangleright d) \wedge(\neg c \triangleright e)\rangle$.
preserved $(b \vee d \vee e, \emptyset, o)$ returns false because it cannot prove for any literal in $b \vee d \vee e$ that it is true after application of o.
However, $d \vee e$ is true after applying o, and hence $b \vee d \vee e$ will be true as well.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 9, 2005 18/28

Computation of invariants: the main procedure

PROCEDURE invariants (A, I, O, n);
$C:=\{a \in A \mid I \models a\} \cup\{\neg a \mid a \in A, I \not \models a\} ;$
REPEAT
$C^{\prime}:=C$;
FOR EACH $l_{1} \vee \cdots \vee l_{m} \in C$ AND $o \in O$
such that preserved $\left(l_{1} \vee \cdots \vee l_{m}, C^{\prime}, o\right)=$ false $D O$
$C:=C \backslash\left\{l_{1} \vee \cdots \vee l_{m}\right\} ;$
IF $m<n$ THEN
$C:=C \cup \bigcup_{a \in A}\left\{l_{1} \vee \cdots \vee l_{m} \vee a, l_{1} \vee \cdots \vee l_{m} \vee \neg a\right\} ;$
END FOR
UNTIL $C=C^{\prime}$;
RETURN C;

Computation of invariants: the main procedure Correctness

Proof continues.
Inductive case $i \geq 1$: Take any $\left\{o_{1}, \ldots, o_{i}\right\} \subseteq O$ and $\phi \in C_{i}$.
A Consider the case $\phi \in C_{i-1}$. By induction hypothesis $\operatorname{app}_{o_{1} ; \ldots ; o_{i-1}}(I) \models \phi$. Since $\phi \in C_{i}$ preserved $\left(\phi, C_{i-1}, o\right)$ returns true. Hence by the Lemma $\operatorname{app}_{o_{1} ; \ldots ; o_{i}}(I) \models \phi$.
B Consider the case $\phi \notin C_{i-1}$.

1. As $\phi \notin C_{i-1}$ there is $\phi^{\prime} \in C_{i-1}$ with $\phi=\phi^{\prime} \vee l_{1}^{\prime} \vee \cdots \vee l_{m}^{\prime}$ for some $l_{1}^{\prime}, \cdots, l_{m}^{\prime}$ and preserved $\left(\phi^{\prime}, C_{i-1}, o^{\prime}\right)$ returns false for some $o^{\prime} \in O$. Hence $\phi^{\prime} \models \phi$.
2. As $\phi^{\prime} \in C_{i-1}$ by induction hypothesis $\operatorname{app}_{o_{1} ; \ldots ; o_{i-1}}(I) \models \phi^{\prime}$.

Since $\phi^{\prime} \models \phi$ also app $p_{o_{1} ; \ldots ; o_{i-1}}(I) \models \phi$.
4. Since preserved $\left(\phi, C_{i}, o\right)$ returns true $\operatorname{app}_{o_{1}, \ldots ; o_{i}}(I) \models \phi$ by the Lemma.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 9, 2005 22/28
Computation of invariants

Computation of invariants

$$
\text { Initial state: } I \models a \wedge \neg b \wedge \neg c
$$

Operators: $o_{1}=\langle a, \neg a \wedge b\rangle$,
$o_{2}=\langle b, \neg b \wedge c\rangle$,
$o_{3}=\langle c, \neg c \wedge a\rangle$
Computation: Find invariants with at most 2 literals:

$$
\begin{aligned}
& C_{0}=\{a, \neg b, \neg c\} \\
& C_{1}=\{\neg \mathrm{c}, \mathbf{a} \vee \mathbf{b}, \neg \mathbf{b} \vee \neg \mathbf{a}\} \\
& C_{2}=\{\neg b \vee \neg a, \neg \mathrm{c} \vee \neg \mathrm{a}, \neg \mathrm{c} \vee \neg \mathrm{~b}\} \\
& C_{3}=\{\neg b \vee \neg a, \neg c \vee \neg a, \neg c \vee \neg b\} \\
& C_{j}=C_{2} \text { for all } j \geq 2
\end{aligned}
$$

Invariants in satisfiability planning

Invariants in satisfiability planning
For every invariant $l_{1} \vee \cdots \vee l_{n}$ add the clauses

$$
l_{1}^{t} \vee \cdots \vee l_{n}^{t}
$$

for all time points t.

Notice that the above formulae logical consequences of $\Phi_{i}^{s e q}$ and $\Phi_{i}^{p a r}$, so the invariants do not change the set of valuations of these formulae.

Invariants are critical for the efficiency of satisfiability planning on many types of problems.
(Albert-Ludwigs-Universität Freiburg)

Invariants in backward search
Motivating example

Example

Regression of in(A,Freiburg) by
(in(A,Strassburg), ᄀin(A,Strassburg) \wedge in(A,Paris) \rangle
gives in(A,Freiburg)^in(A,Strassburg)
No state satisfying in(A,Freiburg) \wedge in(A,Strassburg) makes sense if A denotes some usual physical object.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 9, 2005 26/28

Invariants in backward search
Motivating example

Problem: Regression produces sets T of states such that

1. some states in T are not reachable from I, or
2. none of the states in T are reachable from I.

The first is not always a serious problem (but may worsen the quality of distance estimates, for example.)
Solution: Use invariants to avoid formulae that do not represent any reachable states.

1. Compute invariant ϕ.
2. Do only regression steps such that $\operatorname{regr}_{o}(\psi) \wedge \phi$ is satisfiable.

- Invariants are needed for making backward search and satisfiability planning more efficient.
- We gave an algorithm for computing a class of invariants.

1. Start with 1 -literal clauses true in the initial state.
2. Repeatedly weaken clauses that could not be shown to be invariants.
3. Stop when all clauses are guaranteed to be invariants.

- The algorithm runs in polynomial time if the satisfiability and logical consequence tests are approximated by a polynomial time algorithm.

