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Invariants Motivation

Invariants
Motivation

Example
Consider the goal formula

AonB ∧ BonC

regressed with operator

〈AonC ∧ Aclear ∧ Bclear,AonB ∧ ¬Bclear ∧ Cclear〉

giving new goal

AonC ∧ Aclear ∧ Bclear ∧ BonC.

It is intuitively clear that no state satisfying this formula is reachable by
any plan from a legal blocks world state.
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Invariants Motivation

Invariants
Motivation

I Goal formulae and formulae obtained by regression from them
often represent some states that are not reachable from the initial
state.

I If none of the states is reachable from the initial state because
there are no plans reaching the formula.

I We would like to have reachable states only, if possible.
I Same problem shows up in satisfiability planning: partial

valuations considered by satisfiability algorithms may represent
unreachable states, and this may result in unnecessary search.
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Invariants Motivation

Invariants

Goal: Restriction to states that are reachable.

Problem: Testing reachability is computationally as complex as
testing whether a plan exists.

Solution: Use an approximate notion of reachability.

Implementation: Compute in polynomial time formulae that
characterize a superset of the reachable states.
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Invariants Definition

Invariants: definition

Definition
A formula φ is an invariant of 〈A, I,O,G〉 if

1. I |= φ, and

2. for every o ∈ O and state s such that s |= φ and s is reachable
from I, also appo(s) |= φ.

Stated differently...
φ is true in every state that is reachable from I by some sequence of
operators.

Example
If l ∈ Dmax

i for all i ≥ 1 then l is an invariant.
Hence our algorithm for computing the sets Dmax

i is a method for
identifying a restricted class of invariants.
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Invariants Definition

Invariants: the strongest invariant

Definition
An invariant φ is the strongest invariant of 〈A, I,O,G〉 if for any
invariant ψ, φ |= ψ.

The strongest invariant exactly characterizes the set of all states that
are reachable from the initial state:
For all states s, s |= φ if and only if s is reachable.

Remark
There are infinitely many strongest invariants, but they are all logically
equivalent. (If φ is a strongest invariant, then so is φ ∨ φ...)
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Invariants Example

Invariants
Example: the strongest invariant for blocks world

The strongest invariant for the blocks world
Let X be the set of blocks, for example X = {A,B,C,D}.
The conjunction of the following formulae is the strongest invariant for
the set of all states for the blocks X.

clear(x) ↔ ∀y ∈ X\{x}.¬on(y, x) for all x
ontable(x) ↔ ∀y ∈ X\{x}.¬on(x, y) for all x
¬on(x, y) ∨ ¬on(x, z) for all x, y, z such that y 6= z

¬on(y, x) ∨ ¬on(z, x) for all x, y, z such that y 6= z

¬(on(x1, x2) ∧ on(x2, x3) ∧ · · · ∧ on(xn−1, xn) ∧ on(xn, x1))
for every n ≥ 1 and {x1, . . . , xn} ⊆ X
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Invariants vs. Plan existence

Invariants: connection to plan existence

Theorem
Let φ be the strongest invariant for 〈A, I,O,G〉. Then 〈A, I,O,G〉 has a
plan if and only if G ∧ φ is satisfiable.

Proof.
Very easy!

Theorem
Computing the strongest invariant φ is PSPACE-hard.

Proof.
By reduction from the plan existence problem.
Fact: Testing plan existence is PSPACE-hard for 〈A, I,O,G〉 even
when G = q for a state variable q ∈ A. (We’ll show this in two weeks!)

(Albert-Ludwigs-Universität Freiburg) AI Planning May 9, 2005 8 / 28



Invariants vs. Plan existence

Invariants: connection to plan existence

Proof continues..
Let o = 〈q, a1 ∧ · · · ∧ an〉 with A = {a1, . . . , an, q}.
For 〈A, I,O, q〉 a plan exists
iff for 〈A, I,O ∪ {o}, q〉 a plan exists
iff for 〈A, I,O ∪ {o}, q ∧ a1 ∧ · · · ∧ an〉 a plan exists.
Testing satisfiability of φ ∧ q ∧ a1 ∧ · · · ∧ an can be done in polynomial
time: replace every state variable in the strongest invariant φ by > and
simplify, getting > or ⊥.
So, if we had a polynomial-time algorithm for computing the strongest
invariant φ, we could test plan existence in polynomial time.
Hence plan existence is polynomial-time reducible to computing the
strongest invariant.
Since the former is PSPACE-hard also the latter is PSPACE-hard.
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Algorithms Idea

Computation of invariants: informally

Similar to distance estimation with Dmax
i : compute sets Ci of n-literal

clauses characterizing (giving an upper bound!) the states that are
reachable in i steps.

Example

C0 = {a,¬b, c} ∼ {101}
C1 = {a ∨ b,¬a ∨ ¬b, c} ∼ {101, 011} a,¬b falsified
C2 = {¬a ∨ ¬b, c} ∼ {001, 011, 101} a ∨ b falsified
C3 = {¬a ∨ ¬b, c ∨ a} ∼ {001, 011, 100, 101} c falsified
C4 = {¬a ∨ ¬b} ∼ {000, 001, 010, 011, 100, 101} c ∨ a falsified
C5 = {¬a ∨ ¬b} ∼ {000, 001, 010, 011, 100, 101}
Ci = C5 for all i > 5

¬a ∨ ¬b is the only invariant found.
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Algorithms Idea

Computation of invariants: informally

1. Start with all 1-literal clauses that are true in the initial state.
2. Repeatedly test every operator vs. every clause, whether the

clause can be shown to be true after applying the operator:
2.1 One of the literals in the clause is necessarily true: retain.
2.2 Otherwise, if the clause is too long: forget it.
2.3 Otherwise, replace the clause by new clauses obtained by adding

literals that are now true.

3. When all clauses remain, stop: they are invariants.
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Algorithms Example

Computation of invariants
Example

Example
Let C0 = {Aclear,¬Bclear,AonB,¬BonA,¬AonT,BonT} and
o = 〈Aclear ∧ AonB,Bclear ∧ ¬AonB ∧ AonT〉.

1. C0 ∪ {Aclear ∧ AonB} is satisfiable: o is applicable.

2. The 1-literal clauses ¬Bclear, AonB and ¬AonT become false
when o is applied.

3. They are not thrown away, like we did when computing Dmax
i .

They are replaced by weaker clauses.

4. Literals true after applying o in state s such that s |= C:
Aclear,Bclear,¬AonB,¬BonA,AonT,BonT

5. 2-literal clauses that are weaker than AonB and now true are
AonB ∨ Aclear,AonB ∨ Bclear,AonB ∨ ¬AonB,AonB ∨
¬BonA,AonB ∨ AonT,AonB ∨ BonT.
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Algorithms Example

Computation of invariants
Example

Example continues..

7. For ¬Bclear and ¬AonT we respectively get
¬Bclear ∨ Aclear,¬Bclear ∨ Bclear,¬Bclear ∨ ¬AonB,¬Bclear ∨
¬BonA,¬Bclear ∨ AonT,¬Bclear ∨ BonT and
¬AonT ∨ Aclear,¬AonT ∨ Bclear,¬AonT ∨ ¬AonB,¬AonT ∨
¬BonA,¬AonT ∨ AonT,¬AonT ∨ BonT.

8. By eliminating logically equivalent ones, tautologies, and those
that follow from those in C0 not falsified we get
C1 = {Aclear,¬BonA,BonT,AonB∨Bclear,AonB∨AonT,¬Bclear∨
¬AonB,¬Bclear ∨ AonT,¬AonT ∨ Bclear,¬AonT ∨ ¬AonB} for
distance 1 states.

9. The precondition of
〈Bclear ∧ BonT ∧ Aclear,BonA ∧ ¬Aclear ∧ ¬BonT〉 is satisfiable
with C1, and the set C2 contains all invariants for 2 blocks.
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Algorithms Example

Computation of invariants
Example

Example
Let Ci = {¬AinRome ∨ ¬AinNYC,¬AinParis ∨ ¬AinNYC,

¬AinParis ∨ ¬AinNYC},
o = 〈AinRome,AinParis ∧ ¬AinRome〉.

1. Does o preserve truth of ¬AinParis ∨ ¬AinNYC?

2. Because o makes ¬AinParis false, we must show that ¬AinNYC is
true after applying o.

3. But ¬AinNYC is not even mentioned in o!

4. However, since AinRome is the precondition of o and
¬AinRome ∨ ¬AinNYC was true before applying o, we can infer
that ¬AinNYC was true before applying o.

5. Since o does not make ¬AinNYC false, it is true also after applying
o, and then so is ¬AinParis ∨ ¬AinNYC.
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Algorithms Invariant test

Computation of invariants: procedure preserved
Test whether a clause remains true when operator is applied

PROCEDURE preserved(l1 ∨ · · · ∨ ln,C,o);
〈c, e〉 := o;
FOR EACH l ∈ {l1, . . . , ln} DO

IF C ∪ {EPC
l
(o)} is unsatisfiable THEN GOTO OK;

FOR EACH l′ ∈ {l1, . . . , ln}\{l} DO
IF C ∪ {EPC

l
(o)} |= EPCl′(e) THEN GOTO OK;

IF C ∪ {EPC
l
(o)} |= l′ ∧ ¬EPC

l′
(e) THEN GOTO OK;

END DO
RETURN false;
OK:

END DO
RETURN true;
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Algorithms Invariant test

Computation of invariants: function preserved

Let C = {c ∨ b}.

1. preserved(a ∨ b, C, 〈¬c, c ∧ d〉) returns true

2. preserved(a ∨ b, C, 〈¬c,¬a ∧ b〉) returns true

3. preserved(a ∨ b, C, 〈b,¬a〉) returns true

4. preserved(a ∨ b, C, 〈¬c,¬a〉) returns true

5. preserved(a ∨ b, C, 〈c,¬a〉) returns false
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Algorithms Invariant test

Computation of invariants: function preserved
Correctness

Lemma
Let C be a set of clauses, φ = l1 ∨ · · · ∨ ln a clause, and o an operator.
If preserved(φ,C,o) returns true, then appo(s) |= φ for every state s
such that s |= C and appo(s) is defined.
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Algorithms Invariant test

Computation of invariants: function preserved
Why is preserved incomplete?

Example
Let o = 〈a,¬b ∧ (c B d) ∧ (¬c B e)〉.
preserved(b ∨ d ∨ e,∅,o) returns false because it cannot prove for any
literal in b ∨ d ∨ e that it is true after application of o.
However, d ∨ e is true after applying o, and hence b ∨ d ∨ e will be true
as well.
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Algorithms Main procedure

Computation of invariants: the main procedure
Outline

1. C = the set of 1-literal clauses that are true in the initial state.

2. For each operator o and clause l1 ∨ · · · ∨ lm ∈ C test if l1 ∨ · · · ∨ lm
remains true when o is applied.

3. If not, remove l1 ∨ · · · ∨ lm, and if m < n add clauses
l1 ∨ · · · ∨ lm ∨ a and l1 ∨ · · · ∨ lm ∨ ¬a for every a ∈ A.

4. Repeat from step 2 if C has changed.

5. Otherwise every clause in C is an invariant.

The number of iterations is O(mn) which is polynomial in the number
of state variables m = |A| for any fixed n.
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Algorithms Main procedure

Computation of invariants: the main procedure

PROCEDURE invariants(A, I,O, n);
C := {a ∈ A|I |= a} ∪ {¬a|a ∈ A, I 6|= a};
REPEAT
C ′ := C;
FOR EACH l1 ∨ · · · ∨ lm ∈ C AND o ∈ O

such that preserved(l1 ∨ · · · ∨ lm,C ′,o)=false DO
C := C\{l1 ∨ · · · ∨ lm};
IF m < n THEN
C := C ∪

⋃
a∈A

{l1 ∨ · · · ∨ lm ∨ a, l1 ∨ · · · ∨ lm ∨ ¬a};
END FOR

UNTIL C = C ′;
RETURN C;
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Algorithms Main procedure

Computation of invariants: the main procedure
Correctness

Theorem
The procedure invariants(A, I,O, n) returns a set C of clauses with at
most n literals so that for any sequence o1, . . . , om of operators in O
appo1;...;om

(I) |= C.

Proof.
Let C0 be the value first assigned to the variable C and C1, C2, . . . the
values of C in the end of each iteration.

Induction hypothesis: for every {o1, . . . , oi} ⊆ O and φ ∈ Ci,
appo1;...;oi

(I) |= φ.

Base case i = 0: appε(I) for the empty sequence is by definition I
itself, and by construction C0 consists of only
formulae that are true in the initial state.
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Algorithms Main procedure

Computation of invariants: the main procedure
Correctness

Proof continues..
Inductive case i ≥ 1: Take any {o1, . . . , oi} ⊆ O and φ ∈ Ci.

A Consider the case φ ∈ Ci−1. By induction hypothesis
appo1;...;oi−1

(I) |= φ. Since φ ∈ Ci preserved(φ,Ci−1,o) returns
true. Hence by the Lemma appo1;...;oi

(I) |= φ.
B Consider the case φ 6∈ Ci−1.

1. As φ 6∈ Ci−1 there is φ′ ∈ Ci−1 with φ = φ′ ∨ l′1 ∨ · · · ∨ l′m for some
l′1, · · · , l

′

m and preserved(φ′,Ci−1,o′) returns false for some o′ ∈ O.
Hence φ′ |= φ.

2. As φ′ ∈ Ci−1 by induction hypothesis appo1;...;oi−1
(I) |= φ′.

3. Since φ′ |= φ also appo1;...;oi−1
(I) |= φ.

4. Since preserved(φ,Ci,o) returns true appo1;...;oi
(I) |= φ by the

Lemma.
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Algorithms Main procedure

Why is the strongest invariant not always found?

1. Practical implementations of the algorithm use polynomial time
approximations of the tests for satisfiability and |=.

2. The function preserved is incomplete for operators in general (but
complete for STRIPS operators.)
Making it complete makes it NP-hard.

3. The strongest invariant may require arbitrarily long clauses, so the
restriction to clauses of any fixed length makes it impossible to
represent it.

Example
The acyclicity of the on relation in the blocks world needs clauses of
length n when there are n blocks.
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Algorithms Example

Computation of invariants
Example

Initial state: I |= a ∧ ¬b ∧ ¬c

Operators: o1 = 〈a,¬a ∧ b〉,
o2 = 〈b,¬b ∧ c〉,
o3 = 〈c,¬c ∧ a〉

Computation: Find invariants with at most 2 literals:

C0 = {a,¬b,¬c}
C1 = {¬c,a ∨ b,¬b ∨ ¬a}
C2 = {¬b ∨ ¬a,¬c ∨ ¬a,¬c ∨ ¬b}
C3 = {¬b ∨ ¬a,¬c ∨ ¬a,¬c ∨ ¬b}
Cj = C2 for all j ≥ 2
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Applications SAT Planning

Invariants in satisfiability planning

Invariants in satisfiability planning
For every invariant l1 ∨ · · · ∨ ln add the clauses

lt1 ∨ · · · ∨ ltn

for all time points t.

Notice that the above formulae logical consequences of Φseq
i and Φpar

i ,
so the invariants do not change the set of valuations of these formulae.

Invariants are critical for the efficiency of satisfiability planning on many
types of problems.
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Applications Regression

Invariants in backward search
Motivating example

Example
Regression of in(A,Freiburg) by
〈in(A,Strassburg), ¬in(A,Strassburg)∧in(A,Paris)〉
gives in(A,Freiburg)∧in(A,Strassburg)
No state satisfying in(A,Freiburg)∧in(A,Strassburg) makes sense if A
denotes some usual physical object.
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Applications Regression

Invariants in backward search
Motivating example

Problem: Regression produces sets T of states such that
1. some states in T are not reachable from I, or
2. none of the states in T are reachable from I.

The first is not always a serious problem (but may worsen
the quality of distance estimates, for example.)

Solution: Use invariants to avoid formulae that do not represent any
reachable states.

1. Compute invariant φ.
2. Do only regression steps such that regro(ψ) ∧ φ is

satisfiable.
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Summary

Summary

I Invariants are needed for making backward search and
satisfiability planning more efficient.

I We gave an algorithm for computing a class of invariants.
1. Start with 1-literal clauses true in the initial state.
2. Repeatedly weaken clauses that could not be shown to be

invariants.
3. Stop when all clauses are guaranteed to be invariants.

I The algorithm runs in polynomial time if the satisfiability and
logical consequence tests are approximated by a polynomial time
algorithm.
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