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Example

Consider the goal formula

AonB ∧ BonC

regressed with operator

〈AonC ∧ Aclear ∧ Bclear,AonB ∧ ¬Bclear ∧ Cclear〉

giving new goal

AonC ∧ Aclear ∧ Bclear ∧ BonC.

It is intuitively clear that no state satisfying this formula is
reachable by any plan from a legal blocks world state.
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Goal formulae and formulae obtained by regression
from them often represent some states that are not
reachable from the initial state.

If none of the states is reachable from the initial state
because there are no plans reaching the formula.

We would like to have reachable states only, if possible.

Same problem shows up in satisfiability planning:
partial valuations considered by satisfiability algorithms
may represent unreachable states, and this may result
in unnecessary search.
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Goal: Restriction to states that are reachable.

Problem: Testing reachability is computationally as
complex as testing whether a plan exists.

Solution: Use an approximate notion of reachability.

Implementation: Compute in polynomial time formulae that
characterize a superset of the reachable
states.
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Invariants: definition

Definition

A formula φ is an invariant of 〈A, I,O,G〉 if
1 I |= φ, and
2 for every o ∈ O and state s such that s |= φ and s is

reachable from I, also appo(s) |= φ.

Stated differently...

φ is true in every state that is reachable from I by some
sequence of operators.

Example

If l ∈ Dmax
i for all i ≥ 1 then l is an invariant.

Hence our algorithm for computing the sets Dmax
i is a

method for identifying a restricted class of invariants.
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Invariants: the strongest invariant

Definition

An invariant φ is the strongest invariant of 〈A, I,O,G〉 if for
any invariant ψ, φ |= ψ.

The strongest invariant exactly characterizes the set of all
states that are reachable from the initial state:
For all states s, s |= φ if and only if s is reachable.

Remark

There are infinitely many strongest invariants, but they are
all logically equivalent. (If φ is a strongest invariant, then so
is φ ∨ φ...)
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Example: the strongest invariant for blocks world

The strongest invariant for the blocks world

Let X be the set of blocks, for example X = {A,B,C,D}.
The conjunction of the following formulae is the strongest
invariant for the set of all states for the blocks X.

clear(x) ↔ ∀y ∈ X\{x}.¬on(y, x) for all x
ontable(x) ↔ ∀y ∈ X\{x}.¬on(x, y) for all x
¬on(x, y) ∨ ¬on(x, z) for all x, y, z such that y 6= z
¬on(y, x) ∨ ¬on(z, x) for all x, y, z such that y 6= z
¬(on(x1, x2) ∧ on(x2, x3) ∧ · · · ∧ on(xn−1, xn) ∧ on(xn, x1))
for every n ≥ 1 and {x1, . . . , xn} ⊆ X
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Invariants: connection to plan existence

Theorem

Let φ be the strongest invariant for 〈A, I,O,G〉. Then
〈A, I,O,G〉 has a plan if and only if G ∧ φ is satisfiable.

Proof.
Very easy!

Theorem

Computing the strongest invariant φ is PSPACE-hard.

Proof.

By reduction from the plan existence problem.
Fact: Testing plan existence is PSPACE-hard for 〈A, I,O,G〉
even when G = q for a state variable q ∈ A. (We’ll show this
in two weeks!)
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Invariants: connection to plan existence

Proof continues..

Let o = 〈q, a1 ∧ · · · ∧ an〉 with A = {a1, . . . , an, q}.
For 〈A, I,O, q〉 a plan exists
iff for 〈A, I,O ∪ {o}, q〉 a plan exists
iff for 〈A, I,O ∪ {o}, q ∧ a1 ∧ · · · ∧ an〉 a plan exists.
Testing satisfiability of φ ∧ q ∧ a1 ∧ · · · ∧ an can be done in
polynomial time: replace every state variable in the
strongest invariant φ by > and simplify, getting > or ⊥.
So, if we had a polynomial-time algorithm for computing the
strongest invariant φ, we could test plan existence in
polynomial time.
Hence plan existence is polynomial-time reducible to
computing the strongest invariant.
Since the former is PSPACE-hard also the latter is
PSPACE-hard.



AI Planning

Invariants
Motivation

Definition

Example

vs. Plan existence

Algorithms

Applications

Summary

Invariants: connection to plan existence

Proof continues..

Let o = 〈q, a1 ∧ · · · ∧ an〉 with A = {a1, . . . , an, q}.
For 〈A, I,O, q〉 a plan exists
iff for 〈A, I,O ∪ {o}, q〉 a plan exists
iff for 〈A, I,O ∪ {o}, q ∧ a1 ∧ · · · ∧ an〉 a plan exists.
Testing satisfiability of φ ∧ q ∧ a1 ∧ · · · ∧ an can be done in
polynomial time: replace every state variable in the
strongest invariant φ by > and simplify, getting > or ⊥.
So, if we had a polynomial-time algorithm for computing the
strongest invariant φ, we could test plan existence in
polynomial time.
Hence plan existence is polynomial-time reducible to
computing the strongest invariant.
Since the former is PSPACE-hard also the latter is
PSPACE-hard.



AI Planning

Invariants
Motivation

Definition

Example

vs. Plan existence

Algorithms

Applications

Summary

Invariants: connection to plan existence

Proof continues..

Let o = 〈q, a1 ∧ · · · ∧ an〉 with A = {a1, . . . , an, q}.
For 〈A, I,O, q〉 a plan exists
iff for 〈A, I,O ∪ {o}, q〉 a plan exists
iff for 〈A, I,O ∪ {o}, q ∧ a1 ∧ · · · ∧ an〉 a plan exists.
Testing satisfiability of φ ∧ q ∧ a1 ∧ · · · ∧ an can be done in
polynomial time: replace every state variable in the
strongest invariant φ by > and simplify, getting > or ⊥.
So, if we had a polynomial-time algorithm for computing the
strongest invariant φ, we could test plan existence in
polynomial time.
Hence plan existence is polynomial-time reducible to
computing the strongest invariant.
Since the former is PSPACE-hard also the latter is
PSPACE-hard.



AI Planning

Invariants
Motivation

Definition

Example

vs. Plan existence

Algorithms

Applications

Summary

Invariants: connection to plan existence

Proof continues..

Let o = 〈q, a1 ∧ · · · ∧ an〉 with A = {a1, . . . , an, q}.
For 〈A, I,O, q〉 a plan exists
iff for 〈A, I,O ∪ {o}, q〉 a plan exists
iff for 〈A, I,O ∪ {o}, q ∧ a1 ∧ · · · ∧ an〉 a plan exists.
Testing satisfiability of φ ∧ q ∧ a1 ∧ · · · ∧ an can be done in
polynomial time: replace every state variable in the
strongest invariant φ by > and simplify, getting > or ⊥.
So, if we had a polynomial-time algorithm for computing the
strongest invariant φ, we could test plan existence in
polynomial time.
Hence plan existence is polynomial-time reducible to
computing the strongest invariant.
Since the former is PSPACE-hard also the latter is
PSPACE-hard.



AI Planning

Invariants

Algorithms
Idea

Example

Invariant test

Main procedure

Example

Applications

Summary

Computation of invariants: informally

Similar to distance estimation with Dmax
i : compute sets Ci

of n-literal clauses characterizing (giving an upper bound!)
the states that are reachable in i steps.

Example

C0 = {a,¬b, c} ∼ {101}
C1 = {a ∨ b,¬a ∨ ¬b, c} ∼ {101, 011} a,¬b falsified
C2 = {¬a ∨ ¬b, c} ∼ {001, 011, 101} a ∨ b falsified
C3 = {¬a ∨ ¬b, c ∨ a} ∼ {001, 011, 100, 101} c falsified
C4 = {¬a ∨ ¬b} ∼ {000, 001, 010, 011, 100, 101} c ∨ a falsified
C5 = {¬a ∨ ¬b} ∼ {000, 001, 010, 011, 100, 101}
Ci = C5 for all i > 5

¬a ∨ ¬b is the only invariant found.
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Computation of invariants: informally

1 Start with all 1-literal clauses that are true in the initial
state.

2 Repeatedly test every operator vs. every clause,
whether the clause can be shown to be true after
applying the operator:

1 One of the literals in the clause is necessarily true:
retain.

2 Otherwise, if the clause is too long: forget it.
3 Otherwise, replace the clause by new clauses obtained

by adding literals that are now true.

3 When all clauses remain, stop: they are invariants.
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Example

Let C0 = {Aclear,¬Bclear,AonB,¬BonA,¬AonT,BonT}
and o = 〈Aclear ∧ AonB,Bclear ∧ ¬AonB ∧ AonT〉.

1 C0 ∪ {Aclear ∧ AonB} is satisfiable: o is applicable.
2 The 1-literal clauses ¬Bclear, AonB and ¬AonT

become false when o is applied.
3 They are not thrown away, like we did when computing
Dmax

i . They are replaced by weaker clauses.
4 Literals true after applying o in state s such that s |= C:

Aclear,Bclear,¬AonB,¬BonA,AonT,BonT
5 2-literal clauses that are weaker than AonB and now

true are AonB ∨ Aclear,AonB ∨ Bclear,AonB ∨
¬AonB,AonB ∨ ¬BonA,AonB ∨ AonT,AonB ∨ BonT.
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Example continues..

7 For ¬Bclear and ¬AonT we respectively get ¬Bclear ∨
Aclear,¬Bclear ∨ Bclear,¬Bclear ∨ ¬AonB,¬Bclear ∨
¬BonA,¬Bclear ∨ AonT,¬Bclear ∨ BonT and
¬AonT ∨ Aclear,¬AonT ∨ Bclear,¬AonT ∨
¬AonB,¬AonT∨¬BonA,¬AonT∨AonT,¬AonT∨BonT.

8 By eliminating logically equivalent ones, tautologies,
and those that follow from those in C0 not falsified we
get C1 = {Aclear,¬BonA,BonT,AonB ∨ Bclear,AonB ∨
AonT,¬Bclear ∨ ¬AonB,¬Bclear ∨ AonT,¬AonT ∨
Bclear,¬AonT ∨ ¬AonB} for distance 1 states.

9 The precondition of
〈Bclear ∧ BonT ∧ Aclear,BonA ∧ ¬Aclear ∧ ¬BonT〉 is
satisfiable with C1, and the set C2 contains all invariants
for 2 blocks.
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Let Ci = {¬AinRome ∨ ¬AinNYC,¬AinParis ∨ ¬AinNYC,
¬AinParis ∨ ¬AinNYC},

o = 〈AinRome,AinParis ∧ ¬AinRome〉.
1 Does o preserve truth of ¬AinParis ∨ ¬AinNYC?
2 Because o makes ¬AinParis false, we must show that
¬AinNYC is true after applying o.

3 But ¬AinNYC is not even mentioned in o!
4 However, since AinRome is the precondition of o and
¬AinRome ∨ ¬AinNYC was true before applying o, we
can infer that ¬AinNYC was true before applying o.

5 Since o does not make ¬AinNYC false, it is true also
after applying o, and then so is ¬AinParis ∨ ¬AinNYC.
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Computation of invariants: procedure
preserved
Test whether a clause remains true when operator is applied

PROCEDURE preserved(l1 ∨ · · · ∨ ln,C,o);
〈c, e〉 := o;
FOR EACH l ∈ {l1, . . . , ln} DO

IF C ∪ {EPCl(o)} is unsatisfiable THEN GOTO OK;
FOR EACH l′ ∈ {l1, . . . , ln}\{l} DO

IF C ∪ {EPCl(o)} |= EPCl′(e) THEN GOTO OK;
IF C ∪ {EPCl(o)} |= l′ ∧ ¬EPCl′(e) THEN GOTO OK;

END DO
RETURN false;
OK:

END DO
RETURN true;
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Computation of invariants: function preserved

Let C = {c ∨ b}.
1 preserved(a ∨ b, C, 〈¬c, c ∧ d〉) returns true
2 preserved(a ∨ b, C, 〈¬c,¬a ∧ b〉) returns true
3 preserved(a ∨ b, C, 〈b,¬a〉) returns true
4 preserved(a ∨ b, C, 〈¬c,¬a〉) returns true
5 preserved(a ∨ b, C, 〈c,¬a〉) returns false
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Computation of invariants: function preserved
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Computation of invariants: function preserved
Correctness

Lemma

Let C be a set of clauses, φ = l1 ∨ · · · ∨ ln a clause, and o
an operator.
If preserved(φ,C,o) returns true, then appo(s) |= φ for every
state s such that s |= C and appo(s) is defined.
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Computation of invariants: function preserved
Why is preserved incomplete?

Example

Let o = 〈a,¬b ∧ (c B d) ∧ (¬c B e)〉.
preserved(b∨ d∨ e,∅,o) returns false because it cannot prove
for any literal in b ∨ d ∨ e that it is true after application of o.
However, d ∨ e is true after applying o, and hence b ∨ d ∨ e
will be true as well.
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Computation of invariants: the main procedure
Outline

1 C = the set of 1-literal clauses that are true in the initial
state.

2 For each operator o and clause l1 ∨ · · · ∨ lm ∈ C test if
l1 ∨ · · · ∨ lm remains true when o is applied.

3 If not, remove l1 ∨ · · · ∨ lm, and if m < n add clauses
l1 ∨ · · · ∨ lm ∨ a and l1 ∨ · · · ∨ lm ∨ ¬a for every a ∈ A.

4 Repeat from step 2 if C has changed.
5 Otherwise every clause in C is an invariant.

The number of iterations is O(mn) which is polynomial in
the number of state variables m = |A| for any fixed n.
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Computation of invariants: the main procedure

PROCEDURE invariants(A, I,O, n);
C := {a ∈ A|I |= a} ∪ {¬a|a ∈ A, I 6|= a};
REPEAT
C ′ := C;
FOR EACH l1 ∨ · · · ∨ lm ∈ C AND o ∈ O

such that preserved(l1 ∨ · · · ∨ lm,C ′,o)=false DO
C := C\{l1 ∨ · · · ∨ lm};
IF m < n THEN
C := C ∪

⋃
a∈A{l1 ∨ · · · ∨ lm ∨ a, l1 ∨ · · · ∨ lm ∨ ¬a};

END FOR
UNTIL C = C ′;
RETURN C;
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Computation of invariants: the main procedure
Correctness

Theorem

The procedure invariants(A, I,O, n) returns a set C of
clauses with at most n literals so that for any sequence
o1, . . . , om of operators in O appo1;...;om(I) |= C.

Proof.

Let C0 be the value first assigned to the variable C and
C1, C2, . . . the values of C in the end of each iteration.

Induction hypothesis: for every {o1, . . . , oi} ⊆ O and φ ∈ Ci,
appo1;...;oi(I) |= φ.

Base case i = 0: appε(I) for the empty sequence is by
definition I itself, and by construction
C0 consists of only formulae that are
true in the initial state.
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Computation of invariants: the main procedure
Correctness

Proof continues..

Inductive case i ≥ 1: Take any {o1, . . . , oi} ⊆ O and φ ∈ Ci.

A Consider the case φ ∈ Ci−1. By induction hypothesis
appo1;...;oi−1(I) |= φ. Since φ ∈ Ci preserved(φ,Ci−1,o)
returns true. Hence by the Lemma appo1;...;oi(I) |= φ.

B Consider the case φ 6∈ Ci−1.
1 As φ 6∈ Ci−1 there is φ′ ∈ Ci−1 with φ = φ′ ∨ l′1 ∨ · · · ∨ l′m

for some l′1, · · · , l′m and preserved(φ′,Ci−1,o′) returns
false for some o′ ∈ O. Hence φ′ |= φ.

2 As φ′ ∈ Ci−1 by induction hypothesis
appo1;...;oi−1(I) |= φ′.

3 Since φ′ |= φ also appo1;...;oi−1(I) |= φ.
4 Since preserved(φ,Ci,o) returns true appo1;...;oi(I) |= φ

by the Lemma.
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Correctness
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Why is the strongest invariant not always
found?

1 Practical implementations of the algorithm use
polynomial time approximations of the tests for
satisfiability and |=.

2 The function preserved is incomplete for operators in
general (but complete for STRIPS operators.)
Making it complete makes it NP-hard.

3 The strongest invariant may require arbitrarily long
clauses, so the restriction to clauses of any fixed length
makes it impossible to represent it.

Example

The acyclicity of the on relation in the blocks world needs
clauses of length n when there are n blocks.
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Computation of invariants
Example

Initial state: I |= a ∧ ¬b ∧ ¬c
Operators: o1 = 〈a,¬a ∧ b〉,

o2 = 〈b,¬b ∧ c〉,
o3 = 〈c,¬c ∧ a〉

Computation: Find invariants with at most 2 literals:

C0 = {a,¬b,¬c}
C1 = {¬c,a ∨ b,¬b ∨ ¬a}
C2 = {¬b ∨ ¬a,¬c ∨ ¬a,¬c ∨ ¬b}
C3 = {¬b ∨ ¬a,¬c ∨ ¬a,¬c ∨ ¬b}
Cj = C2 for all j ≥ 2
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Invariants in satisfiability planning

Invariants in satisfiability planning

For every invariant l1 ∨ · · · ∨ ln add the clauses

lt1 ∨ · · · ∨ ltn

for all time points t.

Notice that the above formulae logical consequences of
Φseq

i and Φpar
i , so the invariants do not change the set of

valuations of these formulae.

Invariants are critical for the efficiency of satisfiability
planning on many types of problems.
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Invariants in backward search
Motivating example

Example

Regression of in(A,Freiburg) by
〈in(A,Strassburg), ¬in(A,Strassburg)∧in(A,Paris)〉
gives in(A,Freiburg)∧in(A,Strassburg)
No state satisfying in(A,Freiburg)∧in(A,Strassburg) makes
sense if A denotes some usual physical object.
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Invariants in backward search
Motivating example

Problem: Regression produces sets T of states such that
1 some states in T are not reachable from I, or
2 none of the states in T are reachable from I.

The first is not always a serious problem (but may
worsen the quality of distance estimates, for
example.)

Solution: Use invariants to avoid formulae that do not
represent any reachable states.

1 Compute invariant φ.
2 Do only regression steps such that

regro(ψ) ∧ φ is satisfiable.
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Summary

Invariants are needed for making backward search and
satisfiability planning more efficient.
We gave an algorithm for computing a class of
invariants.

1 Start with 1-literal clauses true in the initial state.
2 Repeatedly weaken clauses that could not be shown to

be invariants.
3 Stop when all clauses are guaranteed to be invariants.

The algorithm runs in polynomial time if the satisfiability
and logical consequence tests are approximated by a
polynomial time algorithm.
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