

This action rotates the value of the state variables a_1, a_2, a_3 one step forward.

Al Planning

1 1 0 1 0

Planning as satisfiability Relations in CPC

Deterministic vs. nondeterministic actions

Expressiveness of propositional logic

- > For every operator there is a corresponding formula (see next slides!)
- Our current definition of operators does not allow expressing nondeterministic actions.
- In the propositional logic they can be expressed.

Example (A nondeterministic action)

The formula \top describes the relation in which any state can be reached from any other state by this action.

A sufficient (but not necessary) condition for determinism Formula has the form $(\phi_1 \leftrightarrow a'_1) \land \cdots \land (\phi_n \leftrightarrow a'_n)$ where $A = \{a_1, \ldots, a_n\}$ and ϕ_i have no occurrences of propositions in A'.

Al Planning

May 2, 2005 9 / 52

May 2, 2005 11 / 52

(Albert-Ludwigs-Universität Freiburg)

(Albert-Ludwigs-Universität Freiburg)

Example

Example

Planning as satisfiability Ops in CPC

Translating operators into formulae

- Any operator can be translated into a propositional formula.
- Translation takes polynomial time.
- Resulting formula has polynomial size.

Translating operators into formulae

Consider operator $\langle a \lor b, (b \rhd a) \land (c \rhd \neg a) \land (a \rhd b) \rangle$.

Let the state variables be $A = \{a, b, c\}$.

The corresponding propositional formula is

- Use in planning algorithms. Two main applications are 1. Planning as Satisfiability
 - 2. Progression & regression for state sets as used in symbolic state-space traversal, as typically implemented with the help of binary decision diagrams.

Al Planning

Planning as satisfiability Ops in CPC

Deterministic vs. nondeterministic actions Example

Example

An action that is applicable if a is false, and that randomly sets values to state variables b and c:

	a'b'c'							
abc	000	001	010	011	100	101	110	111
000	1	1	1	1	0	0	0	0
001	1	1	1	1	0	0	0	0
010	1	1	1	1	0	0	0	0
011	1	1	1	1	0	0	0	0
100	0	0	0	0	0	0	0	0
101	0	0	0	0	0	0	0	0
110	0	0	0	0	0	0	0	0
111	0	0	0	0	0	0	0	0

Corresponding formula: $\neg a \land \neg a'$ Al Planning

(Albert-Ludwigs-Universität Freiburg)

May 2, 2005 10 / 52

May 2, 2005 12 / 52

May 2, 2005 14 / 52

Planning as satisfiability Ops in CPC

Translating operators into formulae

Definition

Let $o = \langle c, e \rangle$ be an operator and A a set of state variables. Define $\tau_A(o)$ as the conjunction of

$$c \qquad (1) \\ \bigwedge_{a \in A} (EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))) \leftrightarrow a' (2) \\ \bigwedge_{a \in A} \neg (EPC_a(e) \land EPC_{\neg a}(e)) \qquad (3)$$

(2) says that the new value of a, represented by a', is 1 if the old value was 1 and it did not become 0, or it became 1. (3) says that none of the state variables is assigned both 0 and 1. This

together with c determine whether the operator is applicable.

Al Planning

Planning as satisfiability Ops in CPC

Translating operators into formulae Example

Example

(Albert-Ludwigs-Universität Freiburg)

(Albert-Ludwigs-Universität Freiburg)

Planning as satisfiability

Let $A = \{a, b, c, d, e\}$ be the state variables. Consider operator $\langle a \wedge b, c \wedge (d \triangleright e) \rangle$. The formula $\tau_A(o)$ after simplifications is

$$(a \land b) \land (a \leftrightarrow a') \land (b \leftrightarrow b') \land c' \land (d \leftrightarrow d') \land ((d \lor e) \leftrightarrow e')$$

AI Planning

Planning as satisfiability Plans in CPC

 $\wedge \neg (b \wedge c) \wedge \neg (a \wedge \bot) \wedge \neg (\bot \wedge \bot)$ = $(a \lor b) \land ((b \lor (a \land \neg c)) \leftrightarrow a')$ $\wedge ((a \lor b) \leftrightarrow b')$ $\wedge (c \leftrightarrow c')$ $\wedge \neg (b \wedge c)$

 $(a \lor b) \land ((b \lor (a \land \neg c)) \leftrightarrow a')$

 $\wedge ((a \lor (b \land \neg \bot)) \leftrightarrow b')$

 $\wedge ((\bot \lor (c \land \neg \bot)) \leftrightarrow c')$

AI Planning

(Albert-Ludwigs-Universität Freiburg)

May 2, 2005 13 / 52

Planning as satisfiability Ops in CPC

Correctness

Lemma

Let *s* and *s'* be states and *o* an operator. Let $v : A \cup A' \rightarrow \{0, 1\}$ be a valuation such that

1. for all $a \in A$, v(a) = s(a), and

2. for all $a \in A$, v(a') = s'(a).

Then $v \models \tau_A(o)$ if and only if $s' = app_o(s)$.

- 1. Encode operator sequences of length 0, 1, 2, ... as formulae Φ_0^{seq} , $\Phi_1^{seq}, \Phi_2^{seq}, \dots$ (see next slide...)
- 2. Test satisfiability of $\Phi_0^{\mathit{seq}}, \, \Phi_1^{\mathit{seq}}, \, \Phi_2^{\mathit{seq}}, \, \ldots$
- 3. If a satisfying valuation v is found, a plan can constructed from v.

Planning as satisfiability

Definition (Transition relation in CPC) For $\langle A, I, O, G \rangle$ define

$$\mathcal{R}_1(A, A') = \bigvee_{o \in O} \tau_A(o).$$

Definition (Bounded-length plans in CPC) Existence of plans length \check{t} is represented by a formula over propositions $A^0 \cup \cdots \cup A^t$ where $A^i = \{a^i | a \in A\}$ for all $i \in \{0, \dots, t\}$ as

$$\Phi_t^{seq} = \iota^0 \land \mathcal{R}_1(A^0, A^1) \land \mathcal{R}_1(A^1, A^2) \land \dots \land \mathcal{R}_1(A^{t-1}, A^t) \land G^t$$

where $\iota^0 = \bigwedge \{a^0 | a \in A, I(a) = 1\} \cup \{\neg a^0 | a \in A, I(a) = 0\}$ and G^t is G with propositions a replaced by a^t .

AI Planning

(Albert-Ludwigs-Universität Freiburg)

May 2, 2005 17 / 52

Planning as satisfiability Plans in CPC

Planning as satisfiability Existence of (optimal) plans

Theorem Let Φ_t^{seq} be the formula for $\langle A, I, O, G \rangle$ and plan length t. The formula Φ^{seq}_t is satisfiable if and only if there is a sequence of states s_0,\ldots,s_t and operators o_1, \ldots, o_t such that $s_0 = I$, $s_t \models G$ and $s_i = app_{o_i}(s_{i-1})$ for all $i \in \{1, ..., t\}$.

Consequence

If $\Phi_0^{seq}, \Phi_1^{seq}, \dots, \Phi_{i-1}^{seq}$ are unsatisfiable and Φ_i^{seq} is satisfiable, then the length of shortest plans is *i*.

Satisfiability planning with Φ_i^{seq} yields optimal plans, like heuristic search with admissible heuristics and optimal algorithms like A* or IDA*.

(Albert-Ludwigs-Universität Freiburg)

May 2, 2005 19 / 52

Planning as satisfiability Plans in CPC

Al Planning

Planning as satisfiability Example, continued

Example

One valuation that satisfies Φ_3^{seq} :

	time i						
	0	1	2	3			
b^i	1	1	0	0			
c^i	1	0	0	1			

Notice:

1. Also a plan of length 1 exists.

- 2. Plans of length 2 do not exist.

(Albert-Ludwigs-Universität Freiburg)

Planning as satisfiability Plans in CPC

AI Planning

The unit resolution rule

Unit resolution

From $l_1 \vee l_2 \vee \cdots \vee l_n$ (here n > 1) and $\overline{l_1}$ infer $l_2 \vee \cdots \vee l_n$.

Example

From $a \lor b \lor c$ and $\neg a$ infer $b \lor c$.

Unit resolution: a special case

From A and $\neg A$ we get the empty clause \bot ("disjunction consisting of zero disjuncts").

Unit subsumption

The clause $l_1 \lor l_2 \lor \cdots \lor l_n$ can be eliminated if we have the unit clause l_1 .

Planning as satisfiability Plans in CPC

Planning as satisfiability

Example Consider

Example

$$\begin{split} I &\models b \land c \\ G &= (b \land \neg c) \lor (\neg b \land c) \\ o_1 &= \langle \top, (c \vartriangleright \neg c) \land (\neg c \vartriangleright c) \rangle \\ o_2 &= \langle \top, (b \vartriangleright \neg b) \land (\neg b \vartriangleright b) \rangle \end{split}$$

Formula for plans of length 3 is

$$\begin{array}{l} (b^0 \wedge c^0) \\ \wedge (((b^0 \leftrightarrow b^1) \wedge (c^0 \leftrightarrow \neg c^1)) \vee ((b^0 \leftrightarrow \neg b^1) \wedge (c^0 \leftrightarrow c^1))) \\ \wedge (((b^1 \leftrightarrow b^2) \wedge (c^1 \leftrightarrow \neg c^2)) \vee ((b^1 \leftrightarrow \neg b^2) \wedge (c^1 \leftrightarrow c^2))) \\ \wedge (((b^2 \leftrightarrow b^3) \wedge (c^2 \leftrightarrow \neg c^3)) \vee ((b^2 \leftrightarrow \neg b^3) \wedge (c^2 \leftrightarrow c^3))) \\ \wedge ((b^3 \wedge \neg c^3) \vee (\neg b^3 \wedge c^3)). \end{array}$$

Al Planning

(Albert-Ludwigs-Universität Freiburg)

Planning as satisfiability Plans in CPC

Planning as satisfiability Plan extraction

All satisfiability algorithms give a valuation v that satisfies Φ_i^{seq} upon finding out that Φ_i^{seq} is satisfiable. This makes it possible to construct a plan.

Constructing a plan from a satisfying valuation Let v be a valuation so that $v \models \Phi_t^{seq}$. Then define $s_i(a) = v(a^i)$ for all $a \in A \text{ and } i \in \{0, ..., t\}.$ The *i*th operator in the plan is $o \in O$ if $app_o(s_{i-1}) = s_i$. Notice: There

may be more than one such operator, any of them may be chosen.

Al Planning

Planning as satisfiability Plans in CPC

Conjunctive normal form

(Albert-Ludwigs-Universität Freiburg)

Many satisfiability algorithms require formulas in the conjunctive normal form: transformation by repeated applications of the following equivalences.

$$\begin{array}{l} \neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi \\ \neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi \\ \neg\neg\phi \equiv \phi \\ \phi \lor (\psi_1 \land \psi_2) \equiv (\phi \lor \psi_1) \land (\phi \lor \psi_2) \end{array}$$

The formula is conjunction of clauses (disjunctions of literals).

Example

 $(A \lor \neg B \lor C) \land (\neg C \lor \neg B) \land A$

(Albert-Ludwigs-Universität Freiburg)

Al Planning

May 2, 2005 18 / 52

May 2, 2005 20 / 52

Planning as satisfiability Plans in CPC

The Davis-Putnam procedure

- > The first efficient decision procedure for any logic (Davis, Putnam, Logemann & Loveland, 1960/62).
- Based on binary search through the valuations of a formula.
- Unit resolution and unit subsumption help pruning the search tree.
- The currently most efficient satisfiability algorithms are variants of the Davis-Putnam procedure (Although there is currently a shift toward viewing these procedures as performing more general resolution: clause-learning.)

May 2, 2005 22 / 52

May 2, 2005 21 / 52

Satisfiability test by the Davis-Putnam procedure

- 1. Let C be a set of clauses.
- 2. For all clauses $l_1 \vee l_2 \vee \cdots \vee l_n \in C$ and $\overline{l_1} \in C$,
- remove $l_1 \vee l_2 \vee \cdots \vee l_n$ from C and add $l_2 \vee \cdots \vee l_n$ to C.
- 3. For all clauses $l_1 \vee l_2 \vee \cdots \vee l_n \in C$ and $l_1 \in C$, remove $l_1 \vee l_2 \vee \cdots \vee l_n$ from *C*. (UNIT SUBSUMPTION)
- 4. If $\bot \in C$, return FALSE.
- 5. If C contains only unit clauses, return TRUE.
- 6. Pick some $a \in A$ such that $\{a, \neg a\} \cap C = \emptyset$
- 7. Recursive call: if $C \cup \{a\}$ is satisfiable, return TRUE.
- 8. Recursive call: if $C \cup \{\neg a\}$ is satisfiable, return TRUE.
- 9. Return FALSE.

 b^0 $c^{\mathbf{0}}$ $o_1^1 \vee o_2^1$ $o_1^2 \lor o_2^2 \\ o_1^3 \lor o_2^3$

(Albert-Ludwigs-Universität Freiburg))	Al Plan	ning	
	Planning as satisfiab	oility	Example	

 o_2^i for $i \in \{1, 2, 3\}$ denoting operator applications.

To obtain a short CNF formula, we introduce auxiliary variables o_1^i and

Al Planning

Efficiency of satisfiability planning is strongly dependent on the

where n is the formula size, and formula sizes are linearly

Formula sizes can be reduced by allowing several operators in

Al Planning

plan length because satisfiability algorithms have runtime $O(2^n)$

Parallel plans

Planning as satisfiability with parallel plans

On many problems this leads to big speed-ups.

However there are no guarantees of optimality.

 $\begin{array}{c} o_1^1 \rightarrow ((b^0 \leftrightarrow b^1) \wedge (c^0 \leftrightarrow \neg c^1)) \\ o_2^1 \rightarrow ((b^0 \leftrightarrow \neg b^1) \wedge (c^0 \leftrightarrow c^1)) \\ o_1^2 \rightarrow ((b^1 \leftrightarrow b^2) \wedge (c^1 \leftrightarrow \neg c^2)) \\ o_2^2 \rightarrow ((b^1 \leftrightarrow \neg b^2) \wedge (c^1 \leftrightarrow c^2)) \\ o_1^3 \rightarrow ((b^2 \leftrightarrow b^3) \wedge (c^2 \leftrightarrow \neg c^3)) \\ o_2^3 \rightarrow ((b^2 \leftrightarrow \neg b^3) \wedge (c^2 \leftrightarrow c^3)) \\ \end{array}$

Planning as satisfiability Example: plan search with Davis-Putnam

 $(b^3 \wedge \neg c^3) \vee (\neg b^3 \wedge c^3)$

(Albert-Ludwigs-Universität Freiburg)

Planning as satisfiability Example

Planning as satisfiability Example: plan search with Davis-Putnam

Consider the problem from a previous slide, with two operators each inverting the value of one state variable, for plan length 3.

$$\begin{array}{l} (b^0 \wedge c^0) \\ \wedge (((b^0 \leftrightarrow b^1) \wedge (c^0 \leftrightarrow \neg c^1)) \vee ((b^0 \leftrightarrow \neg b^1) \wedge (c^0 \leftrightarrow c^1))) \\ \wedge (((b^1 \leftrightarrow b^2) \wedge (c^1 \leftrightarrow \neg c^2)) \vee ((b^1 \leftrightarrow \neg b^2) \wedge (c^1 \leftrightarrow c^2))) \\ \wedge (((b^2 \leftrightarrow b^3) \wedge (c^2 \leftrightarrow \neg c^3)) \vee ((b^2 \leftrightarrow \neg b^3) \wedge (c^2 \leftrightarrow c^3))) \\ \wedge ((b^3 \wedge \neg c^3) \vee (\neg b^3 \wedge c^3)). \end{array}$$

AI Planning

Planning as satisfiability Example

Planning as satisfiability Example: plan search with Davis-Putnam

(Albert-Ludwigs-Universität Freiburg)

We rewrite the formulae for operator applications by using the equivalence $\phi \rightarrow (l \leftrightarrow l') \equiv ((\phi \land l \rightarrow l') \land (\phi \land \overline{l} \rightarrow \overline{l'})).$

10	$o_1^1 \wedge b^0 \rightarrow b^1$	$o_1^2 \wedge b^1 \rightarrow b^2$	$o_1^3 \wedge b^2 \rightarrow b^3$
0	$o_1^{\overline{1}} \land \neg b^0 \rightarrow \neg b^1$	$o_1^2 \wedge \neg b^1 \rightarrow \neg b^2$	$o_1^{\bar{3}} \land \neg b^2 \rightarrow \neg b^3$
<i>c</i> ⁵	$o_1^{1} \wedge c^0 \rightarrow \neg c^1$	$o_1^{\frac{1}{2}} \wedge c^1 \rightarrow \neg c^2$	$o_1^{\frac{1}{3}} \wedge c^2 \rightarrow \neg c^3$
$o_1 \vee o_2$	$o_1^{\dagger} \wedge \neg c^0 \rightarrow c^1$	$o_1^{\frac{1}{2}} \wedge \neg c^1 \rightarrow c^2$	$o_1^{\frac{1}{3}} \wedge \neg c^2 \rightarrow c^3$
$o_1^2 \vee o_2^2$	$o_{2}^{\dagger} \wedge b^{0} \rightarrow \neg b^{1}$	$o_2^{\frac{1}{2}} \wedge b^1 \rightarrow \neg b^2$	$o_2^{\frac{1}{3}} \wedge b^2 \rightarrow \neg b^3$
$o_1^3 \lor o_2^3$	$o_{2}^{2} \wedge \neg b^{0} \rightarrow b^{1}$	$o_2^2 \wedge \neg b^1 \rightarrow b^2$	$o_2^{\frac{2}{3}} \wedge \neg b^2 \rightarrow b^3$
$b^3 \vee c^3$	$a_{1}^{2} \wedge c^{0} \rightarrow c^{1}$	$a_{2}^{2} \wedge c^{1} \rightarrow c^{2}$	$a_{2}^{\frac{2}{3}} \wedge c^{2} \rightarrow c^{3}$
$\neg c^{\mathfrak{s}} \vee \neg b^{\mathfrak{s}}$	$o_2^1 \wedge \neg c^0 \rightarrow c^1$	$o_2^2 \wedge \neg c^1 \rightarrow c^2$	$o_2^{\frac{2}{3}} \wedge \neg c^2 \rightarrow c^3$
	4	4	4

May 2, 2005 25 / 52

May 2, 2005 27 / 52

May 2, 2005 30 / 52

Al Planning

Parallel plans

Parallel operator application Formal definition

(Albert-Ludwigs-Universität Freiburg)

We consider the possibility of executing several operators simultaneously.

Definition

Let T be a set of operators and s a state. Define $app_T(s)$ as the state that is obtained from s by making the literals in $\bigcup_{\langle c,e\rangle \in T} [e]_s$ true. For $app_T(s)$ to be defined, we require that $s \models c$ for all $o = \langle c, e \rangle \in T$ and $\bigcup_{(c,e)\in T} [e]_s$ is consistent.

(Albert-Ludwigs-Universität Freiburg)

parallel.

Parallel plans

Parallel operator application Representation in CPC

c

proportional to plan length.

Consider the formula $\tau_A(o)$ representing operator $o = \langle c, e \rangle$

$$\begin{array}{l} c \wedge \\ \bigwedge_{a \in A} ((\textit{EPC}_{a}(e) \lor (a \land \neg \textit{EPC}_{\neg a}(e))) \leftrightarrow a') \wedge \\ \bigwedge_{a \in A} \neg (\textit{EPC}_{a}(e) \land \textit{EPC}_{\neg a}(e)). \end{array}$$

This can be logically equivalently be written as follows.

$$\begin{array}{l} & \bigwedge_{a \in A} (EPC_a(e) \to a') \land \\ & \bigwedge_{a \in A} (EPC_{\neg a}(e) \to \neg a') \land \\ & \bigwedge_{a \in A} ((a \land \neg EPC_{\neg a}(e)) \to a') \land \\ & \bigwedge_{a \in A} ((\neg a \land \neg EPC_a(e)) \to \neg a') \end{array}$$

This separates the changes from non-changes. This is the basis of the translation for parallel actions for which we do not say that executing a given operator directly means that unrelated state variables retain their old value. Al Planning

(Albert-Ludwigs-Universität Freiburg)

May 2, 2005 32 / 52

(Albert-Ludwigs-Universität Freiburg)

(Albert-Ludwigs-Universität Freiburg)

AI Planning

May 2, 2005 31 / 52

May 2, 2005 26 / 52

May 2, 2005 28 / 52

Parallel plans

The explanatory frame axioms

The formulae say that the only explanation for *a* changing its value is the application of one operator.

$$\bigwedge_{a \in A} ((a \land \neg a') \to EPC_{\neg a}(e)) \bigwedge_{a \in A} ((\neg a \land a') \to EPC_a(e))$$

When several operators could be applied in parallel, we have to consider all operators as possible explanations.

$$\bigwedge_{a \in A} ((a \land \neg a') \to ((o_1 \land EPC_{\neg a}(e_1)) \lor \dots \lor (o_n \land EPC_{\neg a}(e_n)) \land (o_1 \land EPC_a(e_1)) \lor \dots \lor (o_n \land EPC_a(e_n)))$$

where $T = \{o_1, \ldots, o_n\}$ and e_1, \ldots, e_n are the respective effects.

AI Planning

Parallel plans

Parallel actions Formula in CPC

Definition

Let T be a set of operators. Let $\tau_A(T)$ denote the conjunction of formulae .) ^ (

for all $\langle c, e \rangle \in T$ and

 $\begin{array}{l} \bigwedge_{a \in A} ((a \land \neg a') \rightarrow ((o_1 \land \textit{EPC}_{\neg a}(e_1)) \lor \cdots \lor (o_n \land \textit{EPC}_{\neg a}(e_n)) \\ \bigwedge_{a \in A} ((\neg a \land a') \rightarrow ((o_1 \land \textit{EPC}_a(e_1)) \lor \cdots \lor (o_n \land \textit{EPC}_a(e_n))) \end{array}$

where $T = \{o_1, \ldots, o_n\}$ and e_1, \ldots, e_n are the respective effects.

(Albert-Ludwigs-Universität Freiburg)	AI Planning	May 2, 2005	34/52	(Albert-Ludwigs-Universität Freiburg)	AI Planning	May 2, 2005	35 / 52
Parallel plans Parallel actions Meaning in terms of interleavings				Para Step plans Formal definition	lel plans		

Example

The operators $\langle a, \neg b \rangle$ and $\langle b, \neg a \rangle$ may be executed simultaneously resulting in a state satisfying $\neg a \land \neg b$.

But this state is not reachable by the two operators sequentially, because executing any one operator makes the precondition of the other false.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	May 2, 2005	36 / 52
	Parallel plans		

Step plans Tractable subclass

- Finding arbitrary step plans is difficult: even testing whether a set T of operators is executable in all orders is co-NP-hard.
- Representing the executability test exactly as a propositional formula seems complicated: doing this test exactly would seem to cancel the benefits of parallel plans.
- Instead, all work on parallel plans so far has used a sufficient but not necessary condition that can be tested in polynomial-time.
- ▶ This is a simple syntactic test: is the result of executing o₁ and o₂ in any state both in order o_1 ; o_2 and in o_2 ; o_1 the same.

(Albert-Ludwigs-Universität Freiburg)	AI Planning	May 2, 2005 38 / 52
	Parallel plans Interference	
Interference		

Auxiliary definition: affects

Definition (Affect)

Let A be a set of state variables and $o = \langle c, e \rangle$ and $o' = \langle c', e' \rangle$

- operators over A. Then o affects o' if there is $a \in A$ such that
- 1. a is an atomic effect in e and a occurs in a formula in e' or it occurs negatively in c', or
- $\neg a$ is an atomic effect in e and a occurs in a formula in e' or it 2. occurs positively in c'.

Al Planning

Example

 $\langle c, d \rangle$ affects $\langle \neg d, e \rangle$ and $\langle e, d \succ f \rangle$.

 $\langle c, d \rangle$ does not affect $\langle d, e \rangle$ nor $\langle e, \neg c \rangle$.

Correctness

The formula $\tau_A(T)$ exactly matches the definition of $app_T(s)$.

Parallel plans

Lemma

- Let s and s' be states and T a set of operators. Let
- $v: A \cup A' \cup T \rightarrow \{0,1\}$ be a valuation such that
- 1. for all $o \in T$, v(o) = 1, 2. for all $a \in A$, v(a) = s(a), and
- 3. for all $a \in A$, v(a') = s'(a).
- Then $v \models \tau_A(T)$ if and only if $s' = app_T(s)$.

Definition (Step plans)

For a set of operators O and an initial state I, a step plan for O and I is a sequence $T = \langle T_0, \ldots, T_{l-1} \rangle$ of sets of operators for some $l \ge 0$ such that there is a sequence of states s_0, \ldots, s_l (the execution of T) such that

1. $s_0 = I$,

(Albert-Ludwigs-U

2. for all $i \in \{0, \ldots, l-1\}$ and every total ordering o_1, \ldots, o_n of T_i , $app_{o_1;...;o_n}(s_i)$ is defined and equals s_{i+1} .

Jniversität Freiburg)	Al Pla	nning	May 2, 2005			
	Parallel plans	Interference				

Interference Example

Actions do not interfere

Actions can be taken simultaneously.

Actions interfe	ere
AB	CD

If A is moved first, B won't be clear and cannot be moved.

(Albert-Ludwigs-Universität Freiburg)

Interference

Definition (Interference)

Operators o and o' interfere if o affects o' or o' affects o.

Example

 $\langle c, d \rangle$ and $\langle \neg d, e \rangle$ interfere. $\langle c, d \rangle$ and $\langle e, f \rangle$ do not interfere.

Al Planning

May 2, 2005

Parallel plans Interference

The translation for parallel plans in CPC

I emma

Let s be a state and T a set of operators so that $app_T(s)$ is defined and no two operators interfere.

Then $app_T(s) = app_{o_1;...;o_n}(s)$ for any total ordering $o_1, ..., o_n$ of T.

Definition

(Albert-Ludwigs-Universität Freiburg)

Planning as satisfiability

Define $\mathcal{R}_2(A, A', O)$ as the conjunction of $\tau_A(O)$ and

 $\neg (o \land o')$

Al Planning

Parallel plans Translatio

for all $o \in O$ and $o' \in O$ such that o and o' interfere and $o \neq o'$.

(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 42 / 52 Parallel plans Translatio Planning as satisfiability Existence of plans

Definition (Bounded-length plans in CPC)

Existence of parallel plans length t is represented by a formula over propositions $A^0 \cup \cdots \cup A^t \cup O^1 \cup \cdots \cup O^t$ where $A^i = \{a^i | a \in A\}$ for all $i \in \{0, \dots, t\}$ and $O^i = \{o^i | o \in O\}$ for all $i \in \{1, \dots, t\}$ as

$$\Phi_t^{par} = \iota^0 \land \mathcal{R}_2(A^0, A^1, O^1) \land \dots \land \mathcal{R}_2(A^{t-1}, A^t, O^t) \land G^t$$

where $\iota^{0} = \bigwedge \{a^{0} | a \in A, I(a) = 1\} \cup \{\neg a^{0} | a \in A, I(a) = 0\}$ and G^{t} is G with propositions a replaced by a^t .

(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 44 / 52

Parallel plans Optimality

Why is optimality lost?

(Albert-Ludwigs-Universität Freiburg)

For parallel plans there is no guarantee for smallest number of operators

That a plan has the smallest number of time points does not guarantee that it has the smallest number of actions.

- Satisfiability algorithms return any satisfying valuation of Φ_i^{par} , and this does not have to be the one with the smallest number of operators.
- ► There could be better solutions with more time points.

(Albert-Ludwigs-Universität Freiburg) AI Planning Parallel plans Example Planning as satisfiability Example goal state initial state The Davis-Putnam procedure solves the problem quickly: Formulae for lengths 1 to 4 shown unsatisfiable without any search.

- ▶ Formula for plan length 5 is satisfiable: 3 nodes in the search tree. Plans have 5 to 7 operators, optimal plan has 5.
 - Al Planning

May 2, 2005 48 / 52

Existence of plans

Theorem Let Φ_t^{par} be the formula for $\langle A, I, O, G\rangle$ and plan length t. The formula Φ_t^{par} is satisfiable if and only if there is a sequence of states s_0, \ldots, s_t and sets O_1, \ldots, O_t of non-interfering operators such that $s_0 = I$, $s_t \models G \text{ and } s_i = \operatorname{app}_{O_i}(s_{i-1}) \text{ for all } i \in \{1, \ldots, t\}.$

Al Planning

Parallel plans Optimality

Why is optimality lost?

(Albert-Ludwigs-Universität Freiburg)

Let I be a state such that $s \models \neg c \land \neg d \land \neg e \land \neg f$. Let $G = c \wedge d \wedge e$. $o_1 = \langle \top, c \rangle$

 $o_2 = \langle \top, d \rangle$ $o_{3} = \langle \top, e \rangle$ $o_{4} = \langle \top, f \rangle$ $o_{5} = \langle f, c \land d \land e \rangle$

Now $\{o_1, o_2, o_3\}$ is a plan with one step, and $\{o_4\}$; $\{o_5\}$ is a plan with two steps. The first one has less time steps and corresponds to a satisfying valuation of both Φ_1^{par} and Φ_2^{par} .

(Albert-Ludwigs-Universität Freiburg)

(Albert-Ludwigs-Universität Freiburg)

AI Planning

May 2, 2005 47 / 52

May 2, 2005 43 / 52

May 2, 2005 45 / 52

Parallel plans Example

Al Planning

Planning as satisfiability Example

v0.9 13/08/1997 19:32:47 30 propositions 100 operators Length 1 Length 2 Length 3 Length 4 Length 5 branch on -clear(b)[1] depth 0 branch on clear(a)[3] depth 1 Found a plan. 0 totable(e,d) 1 totable(c,b) fromtable(d,e) 2 totable(b,a) fromtable(c,d) 3 fromtable(b,c) 4 fromtable(a,b) Branches 2 last 2 failed 0; time 0.0

Example Let May 2, 2005 46 / 52

Parallel plans Example

Planning as satisfiability Example: valuations after unit propagation, after branching

Parallel plans Example

Planning as satisfiability Example: valuations after unit propagation, after branching

				012345	012345	012345			
UN UN				clear(a) FF	FFF TT	FFFTTT			
CLEARaaaabbbbbccccddddeeeeTABLE				clear(b) F F	FF TTF	FFTTTF			
abcdebcdeacdeabdeabceabcdabcde				clear(c) TT FF	TTTTFF	TTTTFF			
				clear(d) FTTFFF	FTTFFF	FTTFFF			
0 FFTFTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF				clear(e) TTFFFF	TTFFFF	TTFFFF			
1 F TTTFFFFTFFFF FFFFFFFFFFFFFFFFFFFFFF				on(a,b) FFF T	FFFFFT	FFFFFT			
2 TEFFFE FFE FFFFFFFFFFFFFFFFFFFFFFFFFFF				on(a,c) FFFFFF	FFFFFF	FFFFFF			
2 PP PPP PPPPPPPPPP PPT				on(a,d) FFFFFF	FFFFFF	PFFFFF			
A DDD DDDDDDDDDDDDDDDDDDDDDDDD				on(a,e) FFFFFF	FFFFFF	PFFFFF			
				on(b,a) TT FF	TTT FF	TTTFFF			
5 FFFFTFFFFFFFFFFFFFFFFFFFFFF				on(b,c) FF TT	FFFFT	FFFFTT			
				on(D,d) FFFFFF	FFFFFF	FFFFFF			
				On(D,e) FFFFFF	PPPPPP	PPPPPP			
0 FFTFTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF				on(c, h) T FFF	TT PPP	TTTTTTT			
1 FFTTTFFFFTFFFFFFFFFFFFFFFFFF				on(c,d) FFFTTT	FFFTTT	FFFTTT			
2 F TTFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFF				on(c.e) FFFFFF	FFFFFF	FFFFFF			
3 TTEFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFF				on(d.a) FFFFFF	FFFFFF	FFFFFF			
/ TTEEFFFFFFFFFFFFFFFFFFFFFFFF				on(d,b) FFFFFF	FFFFFF	FFFFFF			
				on(d,c) FFFFFF	FFFFFF	FFFFFF			
5 TEFFFTEFFFTEFFFTFFFFFFFFF				on(d,e) FFTTTT	FFTTTT	FFTTTT			
				on(e,a) FFFFFF	FFFFFF	FFFFFF			
				on(e,b) FFFFFF	FFFFFF	FFFFFF			
0 FFTFTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF				on(e,c) FFFFFF	FFFFFF	FFFFFF			
1 FFTTTFFFFFFFFFFFFFFFFFFFFFFF				on(e,d) TFFFFF	TFFFFF	TFFFFF			
2 FTTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF				ontable(a) TTT F	TTTTTF	TTTTTF			
3 TTTEFFFFFFFFFFFFFFFFFFFFFFFFFFFF				ontable(b) FF FF	FFF FF	FFFTFF			
/ ************************************				ontable(c) F FFF	FF FFF	FFTFFF			
				ontable(d) TTFFFF	TTFFFF	TTFFFF			
5 IFFFFIFFFFFFFFFFFFFFFFFFFFFFF				ontable(e) FTTTTT	FTTTTT	FTTTTT			
(Albert-Ludwigs-Universität Freiburg)	AI Planning	May 2, 2005	50 / 52	(Albert-Ludwigs-Universit	ät Freiburg	1)	Al Planning	May 2, 2005	51 / 52

Parallel plans Example

Planning as satisfiability Example: valuation for operators after plan has been found

	01234
<pre>fromtable(a,b)</pre>	T
<pre>fromtable(b,c)</pre>	т.
<pre>fromtable(c,d)</pre>	T
fromtable(d,e)	.T
<pre>totable(b,a)</pre>	T
<pre>totable(c,b)</pre>	.T
<pre>totable(e,d)</pre>	Τ

(Albert-Ludwigs-Universität Freiburg)

AI Planning

May 2, 2005 52 / 52