Planning by satisfiability testing (May 2, 2005)

Planning as satisfiability
Relations in CPC
Ops in CPC
Plans in CPC
Example
Parallel plans
Interference
Translation
Optimality
Example

Albert-Ludwigs-Universität Freiburg)
1/52

Planning in the propositional logic
Abstractly

1. Represent actions (= binary relations) as propositional formulae.
2. Construct a formula saying "execute one of the actions".
3. Construct a formula saying "execute a sequence of n actions, starting from the initial state, ending in a goal state."
4. Test the satisfiability of this formula by a satisfiability algorithm.
5. If the formula is satisfiable, construct a plan from a satisfying valuation.

Relations/actions as formulae

Formulae on $A \cup A^{\prime}$ as binary relations
Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ represent state variables in the current state, and $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}$ state variables in the successor state. Formulae ϕ on $A \cup A^{\prime}$ represent binary relations on states: a valuation of $A \cup A^{\prime} \rightarrow\{0,1\}$ represents a pair of states $s: A \rightarrow\{0,1\}$, $s^{\prime}: A^{\prime} \rightarrow\{0,1\}$.

Example
Formula $\left(a \rightarrow a^{\prime}\right) \wedge\left(\left(a^{\prime} \vee b\right) \rightarrow b^{\prime}\right)$ on $a, b, a^{\prime}, b^{\prime}$ represents the binary relation $\{(00,00),(00,01),(00,11),(01,01),(01,11),(10,11),(11,11)\}$.

Actions/relations as propositional formulae Example

					a_{1} a_{2} a_{1}^{\prime} $a_{2}^{\prime}$$\| \phi$					
					0	0	0			ϕ
					0	0	0			0
$\phi=\left(a_{1} \leftrightarrow \neg a_{1}^{\prime}\right) \wedge\left(a_{2} \leftrightarrow \neg a_{2}^{\prime}\right)$ as a matrix					0	0	1			0
					0	0	1			1
$a_{1}^{\prime} a_{2}^{\prime} \quad a_{1}^{\prime} a_{2}^{\prime} \quad a_{1}^{\prime} a_{2}^{\prime} a_{1}^{\prime} a_{2}^{\prime}$					0	1	0			0
$a_{1} a_{2}$	00	01	10		0	1	0			0
00	0	0	0	1		1	1			1
01	0	0	1	0	1	0	0			0
10	0	1	0	0		0	0			1
11	1	0	0	0	1	0	1			0
					1	0	1			0
and as a conventional truth-table:					1	1	0			1
					1	1	0			0
					1	1	1			0
					1	1	1			0

Formulae on A as sets of states
We view formulae ϕ as representing sets of states $s: A \rightarrow\{0,1\}$.
Example
Formula $a \vee b$ on the state variables a, b, c represents the set $\{010,011,100,101,110,111\}$.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	May 2, 2005	$4 / 52$
	Planning as satisfiability	Relations in CPC	

Matrices as formulae

Example (Formulae as relations as matrices)

Binary relation $\{(00,00),(00,01)$,		$a^{\prime} b^{\prime}$	$a^{\prime} b^{\prime}$	$a^{\prime} b^{\prime}$	$a^{\prime} b^{\prime}$
$(00,11),(01,01),(01,11),(10,11)$,	$a b$	00	01	10	11
(11,11)\} can be represented as	00	1	1	0	1
the adjacency matrix:	01	0	1	0	1
	10	0	0	0	1
	11	0	0	0	1

Representation of big matrices is possible
For n state variables a formula (over $2 n$ variables) represents an adjacency matrix of size $2^{n} \times 2^{n}$.
For $n=20$, matrix size is $2^{20} \times 2^{20} \sim 10^{6} \times 10^{6}$.

Actions/relations as propositional formulae Example

$\left(a_{1} \leftrightarrow a_{2}^{\prime}\right) \wedge\left(a_{2} \leftrightarrow a_{3}^{\prime}\right) \wedge\left(a_{3} \leftrightarrow a_{1}^{\prime}\right)$ represents the matrix:

| | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 001 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 010 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 011 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 100 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 101 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 110 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 111 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

This action rotates the value of the state variables a_{1}, a_{2}, a_{3} one step forward.

Deterministic vs. nondeterministic actions

Expressiveness of propositional logic

- For every operator there is a corresponding formula (see next slides!)
- Our current definition of operators does not allow expressing nondeterministic actions.
- In the propositional logic they can be expressed.

Example (A nondeterministic action)
The formula T describes the relation in which any state can be reached from any other state by this action.
A sufficient (but not necessary) condition for determinism Formula has the form $\left(\phi_{1} \leftrightarrow a_{1}^{\prime}\right) \wedge \cdots \wedge\left(\phi_{n} \leftrightarrow a_{n}^{\prime}\right)$ where $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and ϕ_{i} have no occurrences of propositions in A^{\prime}.

```
(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 9/52
```

Translating operators into formulae

- Any operator can be translated into a propositional formula.
- Translation takes polynomial time.
- Resulting formula has polynomial size.
- Use in planning algorithms. Two main applications are

1. Planning as Satisfiability
2. Progression \& regression for state sets as used in symbolic state-space traversal, as typically implemented with the help of binary decision diagrams.
(Albert-Ludwigs-Universität Freiburg)

Planning as satisfiability Ops in CPC
Translating operators into formulae
Example

Example

Let the state variables be $A=\{a, b, c\}$.
Consider operator $\langle a \vee b,(b \triangleright a) \wedge(c \triangleright \neg a) \wedge(a \triangleright b)\rangle$.
The corresponding propositional formula is

$$
\begin{aligned}
(a \vee b) & \wedge\left((b \vee(a \wedge \neg c)) \leftrightarrow a^{\prime}\right) \\
& \wedge\left((a \vee(b \wedge \neg \perp)) \leftrightarrow b^{\prime}\right) \\
& \wedge\left((\perp \vee(c \wedge \neg \neg)) \leftrightarrow c^{\prime}\right) \\
& \wedge \neg(b \wedge c) \wedge \neg(a \wedge \perp) \wedge \neg(\perp \wedge \perp) \\
\equiv & \\
(a \vee b) & \wedge\left((b \vee(a \wedge \neg c)) \leftrightarrow a^{\prime}\right) \\
& \wedge\left((a \vee b) \leftrightarrow b^{\prime}\right) \\
& \wedge\left(c \leftrightarrow c^{\prime}\right) \\
& \wedge \neg(b \wedge c)
\end{aligned}
$$

(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 13/52

Correctness

Lemma
Let s and s^{\prime} be states and o an operator. Let $v: A \cup A^{\prime} \rightarrow\{0,1\}$ be a valuation such that

1. for all $a \in A, v(a)=s(a)$, and
2. for all $a \in A, v\left(a^{\prime}\right)=s^{\prime}(a)$.

Then $v \models \tau_{A}(o)$ if and only if $s^{\prime}=\operatorname{app}_{o}(s)$.

Deterministic vs. nondeterministic actions
Example
Example
An action that is applicable if a is false, and that randomly sets values to state variables b and c :

	$a^{\prime} b^{\prime} c^{\prime}$							
$a b c$	000	001	010	011	100	101	110	111
000	1	1	1	1	0	0	0	0
001	1	1	1	1	0	0	0	0
010	1	1	1	1	0	0	0	0
011	1	1	1	1	0	0	0	0
100	0	0	0	0	0	0	0	0
101	0	0	0	0	0	0	0	0
110	0	0	0	0	0	0	0	0
111	0	0	0	0	0	0	0	0

Corresponding formula: $\neg a \wedge \neg a^{\prime}$
$\begin{array}{llll}\text { (Albert-Ludwigs-Universität Freiburg) Al Planning } & \text { May 2, 2005 } & \text { 10/52 }\end{array}$

Translating operators into formulae

Definition
Let $o=\langle c, e\rangle$ be an operator and A a set of state variables.
Define $\tau_{A}(o)$ as the conjunction of

$$
\begin{aligned}
& c \\
& \bigwedge_{a \in A}\left(E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)\right) \leftrightarrow a^{\prime} \text { (1) } \\
& \bigwedge_{a \in A} \neg\left(E P C_{a}(e) \wedge E P C_{\neg a}(e)\right)
\end{aligned}
$$

(2) says that the new value of a, represented by a^{\prime}, is 1 if the old value was 1 and it did not become 0 , or it became 1 .
(3) says that none of the state variables is assigned both 0 and 1 . This together with c determine whether the operator is applicable.

Translating operators into formulae
Example

Example
Let $A=\{a, b, c, d, e\}$ be the state variables.
Consider operator $\langle a \wedge b, c \wedge(d \triangleright e)\rangle$.
The formula $\tau_{A}(o)$ after simplifications is

$$
(a \wedge b) \wedge\left(a \leftrightarrow a^{\prime}\right) \wedge\left(b \leftrightarrow b^{\prime}\right) \wedge c^{\prime} \wedge\left(d \leftrightarrow d^{\prime}\right) \wedge\left((d \vee e) \leftrightarrow e^{\prime}\right)
$$

(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 14/52

Planning as satisfiability

1. Encode operator sequences of length $0,1,2, \ldots$ as formulae $\Phi_{0}^{s e q}$, $\Phi_{1}^{\text {seq }}, \Phi_{2}^{\text {seq }}, \ldots$ (see next slide...)
2. Test satisfiability of $\Phi_{0}^{\text {seq }}, \Phi_{1}^{\text {seq }}, \Phi_{2}^{\text {seq }}, \ldots$.
3. If a satisfying valuation v is found, a plan can constructed from v.

Planning as satisfiability

Definition (Transition relation in CPC)
For $\langle A, I, O, G\rangle$ define

$$
\mathcal{R}_{1}\left(A, A^{\prime}\right)=\bigvee_{o \in O} \tau_{A}(o)
$$

Definition (Bounded-length plans in CPC)
Existence of plans length t is represented by a formula over propositions $A^{0} \cup \cdots \cup A^{t}$ where $A^{i}=\left\{a^{i} \mid a \in A\right\}$ for all $i \in\{0, \ldots, t\}$ as

$$
\Phi_{t}^{s e q}=\iota^{0} \wedge \mathcal{R}_{1}\left(A^{0}, A^{1}\right) \wedge \mathcal{R}_{1}\left(A^{1}, A^{2}\right) \wedge \cdots \wedge \mathcal{R}_{1}\left(A^{t-1}, A^{t}\right) \wedge G^{t}
$$

where $\iota^{0}=\bigwedge\left\{a^{0} \mid a \in A, I(a)=1\right\} \cup\left\{\neg a^{0} \mid a \in A, I(a)=0\right\}$ and G^{t} is G with propositions a replaced by a^{t}.

```
(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 17/52
    Planning as satisfiability Plans in CPC
```

Planning as satisfiability Existence of (optimal) plans

Theorem
Let $\Phi_{t}^{s e q}$ be the formula for $\langle A, I, O, G\rangle$ and plan length t. The formula $\Phi_{t}^{\text {seq }}$ is satisfiable if and only if there is a sequence of states s_{0}, \ldots, s_{t} and operators o_{1}, \ldots, o_{t} such that $s_{0}=I, s_{t} \models G$ and $s_{i}=\operatorname{app}_{o_{i}}\left(s_{i-1}\right)$ for all $i \in\{1, \ldots, t\}$.

Consequence
If $\Phi_{0}^{\text {seq }}, \Phi_{1}^{\text {seq }}, \ldots, \Phi_{i-1}^{\text {seq }}$ are unsatisfiable and $\Phi_{i}^{\text {seq }}$ is satisfiable, then the length of shortest plans is i.
Satisfiability planning with $\Phi_{i}^{s e q}$ yields optimal plans, like heuristic search with admissible heuristics and optimal algorithms like $A *$ or IDA*.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	May 2, 2005	19/52

Planning as satisfiability
Example, continued

Example

One valuation that satisfies $\Phi_{3}^{s e q}$:

$$
\begin{array}{c|lllll}
& \mid t i m e & i \\
& 0 & 1 & 2 & 3 \\
\hline b^{i} & 1 & 1 & 0 & 0 \\
c^{i} & 1 & 0 & 0 & 1
\end{array}
$$

Notice:

1. Also a plan of length 1 exists.
2. Plans of length 2 do not exist.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	May 2, 2005
	$21 / 52$	

The unit resolution rule

Unit resolution

From $l_{1} \vee l_{2} \vee \cdots \vee l_{n}$ (here $n \geq 1$) and $\overline{l_{1}}$ infer $l_{2} \vee \cdots \vee l_{n}$.
Example
From $a \vee b \vee c$ and $\neg a$ infer $b \vee c$.
Unit resolution: a special case
From A and $\neg A$ we get the empty clause \perp ("disjunction consisting of zero disjuncts").

Unit subsumption
The clause $l_{1} \vee l_{2} \vee \cdots \vee l_{n}$ can be eliminated if we have the unit clause l_{1}.

Planning as satisfiability
 Example

Example
Consider

$$
\begin{aligned}
& I \models b \wedge c \\
& G=(b \wedge \neg c) \vee(\neg b \wedge c) \\
& o_{1}=\langle\top,(c \triangleright \neg c) \wedge(\neg c \triangleright c)\rangle \\
& o_{2}=\langle\top,(b \triangleright \neg b) \wedge(\neg b \triangleright b)\rangle .
\end{aligned}
$$

Formula for plans of length 3 is

$$
\begin{aligned}
& \left(b^{0} \wedge c^{0}\right) \\
& \wedge\left(\left(\left(b^{0} \leftrightarrow b^{1}\right) \wedge\left(c^{0} \leftrightarrow \neg c^{1}\right)\right) \vee\left(\left(b^{0} \leftrightarrow \neg b^{1}\right) \wedge\left(c^{0} \leftrightarrow c^{1}\right)\right)\right) \\
& \left.\wedge\left(\left(b^{1} \leftrightarrow b^{2}\right) \wedge\left(c^{1} \leftrightarrow \neg c^{2}\right)\right) \vee\left(\left(b^{1} \leftrightarrow \neg b^{2}\right) \wedge\left(c^{1} \leftrightarrow c^{2}\right)\right)\right) \\
& \wedge\left(\left(\left(b^{2} \leftrightarrow b^{3}\right) \wedge\left(c^{2} \leftrightarrow \neg c^{3}\right)\right) \vee\left(\left(b^{2} \leftrightarrow \neg b^{3}\right) \wedge\left(c^{2} \leftrightarrow c^{3}\right)\right)\right) \\
& \wedge\left(\left(b^{3} \wedge \neg c^{3}\right) \vee\left(\neg b^{3} \wedge c^{3}\right)\right) .
\end{aligned}
$$

$$
\begin{array}{llll}
\text { (Albert-Ludwigs-Universität Freiburg) } & \text { Al Planning } & \text { May 2, 2005 } & \text { 18/52 }
\end{array}
$$

Planning as satisfiability
Plan extraction

All satisfiability algorithms give a valuation v that satisfies $\Phi_{i}^{s e q}$ upon finding out that $\Phi_{i}^{s e q}$ is satisfiable.
This makes it possible to construct a plan.
Constructing a plan from a satisfying valuation
Let v be a valuation so that $v \models \Phi_{t}^{s e q}$. Then define $s_{i}(a)=v\left(a^{i}\right)$ for all $a \in A$ and $i \in\{0, \ldots, t\}$.
The i th operator in the plan is $o \in O$ if $\operatorname{app}_{o}\left(s_{i-1}\right)=s_{i}$. Notice: There may be more than one such operator, any of them may be chosen.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	May 2, 2005	$20 / 52$
	Planning as satisfiability \quad Plans in CPC		

Conjunctive normal form

Many satisfiability algorithms require formulas in the conjunctive normal form: transformation by repeated applications of the following equivalences.

$$
\begin{aligned}
\neg(\phi \vee \psi) & \equiv \neg \phi \wedge \neg \psi \\
\neg(\phi \wedge \psi) & \equiv \neg \phi \vee \neg \psi \\
\neg \neg \phi & \equiv \phi \\
\phi \vee\left(\psi_{1} \wedge \psi_{2}\right) & \equiv\left(\phi \vee \psi_{1}\right) \wedge\left(\phi \vee \psi_{2}\right)
\end{aligned}
$$

The formula is conjunction of clauses (disjunctions of literals).
Example
$(A \vee \neg B \vee C) \wedge(\neg C \vee \neg B) \wedge A$
(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 22/52

The Davis-Putnam procedure

- The first efficient decision procedure for any logic (Davis, Putnam, Logemann \& Loveland, 1960/62).
- Based on binary search through the valuations of a formula.
- Unit resolution and unit subsumption help pruning the search tree.
- The currently most efficient satisfiability algorithms are variants of the Davis-Putnam procedure
(Although there is currently a shift toward viewing these procedures as performing more general resolution:
clause-learning.)

Satisfiability test by the Davis-Putnam procedure

1. Let C be a set of clauses.
2. For all clauses $l_{1} \vee l_{2} \vee \cdots \vee l_{n} \in C$ and $\overline{l_{1}} \in C$, remove $l_{1} \vee l_{2} \vee \cdots \vee l_{n}$ from C and add $l_{2} \vee \cdots \vee l_{n}$ to C.
3. For all clauses $l_{1} \vee l_{2} \vee \cdots \vee l_{n} \in C$ and $l_{1} \in C$, remove $l_{1} \vee l_{2} \vee \cdots \vee l_{n}$ from C. (UNIT SUBSUMPTION)
4. If $\perp \in C$, return FALSE.
5. If C contains only unit clauses, return TRUE.
6. Pick some $a \in A$ such that $\{a, \neg a\} \cap C=\emptyset$
7. Recursive call: if $C \cup\{a\}$ is satisfiable, return TRUE.
8. Recursive call: if $C \cup\{\neg a\}$ is satisfiable, return TRUE.
9. Return FALSE
(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 $25 / 52$

Planning as satisfiability
Example: plan search with Davis-Putnam

To obtain a short CNF formula, we introduce auxiliary variables o_{1}^{i} and o_{2}^{i} for $i \in\{1,2,3\}$ denoting operator applications.

$$
\begin{aligned}
& o_{1}^{1} \rightarrow\left(\left(b^{0} \leftrightarrow b^{1}\right) \wedge\left(c^{0} \leftrightarrow \neg c^{1}\right)\right) \\
& o_{2}^{1} \rightarrow\left(\left(b^{0} \leftrightarrow \neg b^{1}\right) \wedge\left(c^{0} \leftrightarrow c^{1}\right)\right) \\
& o_{1}^{2} \rightarrow\left(\left(b^{1} \leftrightarrow b^{2}\right) \wedge\left(c^{1} \leftrightarrow \neg c^{2}\right)\right) \\
& o_{2}^{2} \rightarrow\left(\left(b^{1} \leftrightarrow \neg b^{2}\right) \wedge\left(c^{1} \leftrightarrow c^{2}\right)\right) \\
& \left.o_{1}^{3} \rightarrow\left(b^{2} \leftrightarrow b^{3}\right) \wedge\left(c^{2} \leftrightarrow \neg c^{3}\right)\right) \\
& o_{2}^{3} \rightarrow\left(\left(b^{2} \leftrightarrow \neg b^{3}\right) \wedge\left(c^{2} \leftrightarrow c^{3}\right)\right)
\end{aligned}
$$

$\left(b^{3} \wedge \neg c^{3}\right) \vee\left(\neg b^{3} \wedge c^{3}\right)$

Planning as satisfiability
Example: plan search with Davis-Putnam

Consider the problem from a previous slide, with two operators each inverting the value of one state variable, for plan length 3.

$$
\begin{aligned}
& \left(b^{0} \wedge c^{0}\right) \\
& \wedge\left(\left(\left(b^{0} \leftrightarrow b^{1}\right) \wedge\left(c^{0} \leftrightarrow \neg c^{1}\right)\right) \vee\left(\left(b^{0} \leftrightarrow \neg b^{1}\right) \wedge\left(c^{0} \leftrightarrow c^{1}\right)\right)\right) \\
& \left.\wedge\left(\left(b^{1} \leftrightarrow b^{2}\right) \wedge\left(c^{1} \leftrightarrow \neg c^{2}\right)\right) \vee\left(\left(b^{1} \leftrightarrow \neg b^{2}\right) \wedge\left(c^{1} \leftrightarrow c^{2}\right)\right)\right) \\
& \wedge\left(\left(\left(b^{2} \leftrightarrow b^{3}\right) \wedge\left(c^{2} \leftrightarrow \neg c^{3}\right)\right) \vee\left(\left(b^{2} \leftrightarrow \neg b^{3}\right) \wedge\left(c^{2} \leftrightarrow c^{3}\right)\right)\right) \\
& \wedge\left(\left(b^{3} \wedge \neg c^{3}\right) \vee\left(\neg b^{3} \wedge c^{3}\right)\right) .
\end{aligned}
$$

$$
\text { (Albert-Ludwigs-Universität Freiburg) } \quad \text { Al Planning } \quad \text { May 2, 2005 } 26 / 52
$$

Planning as satisfiability
Example: plan search with Davis-Putnam

We rewrite the formulae for operator applications by using the equivalence $\phi \rightarrow\left(l \leftrightarrow l^{\prime}\right) \equiv\left(\left(\phi \wedge l \rightarrow l^{\prime}\right) \wedge\left(\phi \wedge \bar{l} \rightarrow \bar{l}^{\prime}\right)\right)$.

b^{0}	$o_{1}^{1} \wedge b^{0} \rightarrow b^{1}$	$o_{1}^{2} \wedge b^{1} \rightarrow b^{2}$	$o_{1}^{3} \wedge b^{2} \rightarrow b^{3}$
c^{0}	$o_{1}^{1} \wedge \neg b^{0} \rightarrow \neg b^{1}$	$o_{1}^{2} \wedge \neg b^{1} \rightarrow \neg b^{2}$	$o_{1}^{3} \wedge \neg b^{2} \rightarrow \neg b^{3}$
$o_{1}^{1} \vee o_{2}^{1}$	$o_{1}^{1} \wedge c^{0} \rightarrow \neg c^{1}$	$o_{1}^{2} \wedge c^{1} \rightarrow \neg c^{2}$	$o_{1}^{3} \wedge c^{2} \rightarrow \neg c^{3}$
$o_{1}^{2} \vee o_{2}^{2}$	$o_{1}^{1} \wedge \neg c^{0} \rightarrow c^{1}$	$o_{1}^{2} \wedge \neg c^{1} \rightarrow c^{2}$	$o_{1}^{3} \wedge \neg c^{2} \rightarrow c^{3}$
$o_{1}^{3} \vee o_{2}^{3}$	$o_{2}^{1} \wedge b^{0} \rightarrow \neg b^{1}$	$o_{2}^{2} \wedge b^{1} \rightarrow \neg b^{2}$	$o_{2}^{3} \wedge b^{2} \rightarrow \neg b^{3}$
$b^{3} \vee c^{3}$	$o_{2}^{1} \wedge \neg b^{0} \rightarrow b^{1}$	$o_{2}^{2} \wedge \neg b^{1} \rightarrow b^{2}$	$o_{2}^{3} \wedge \neg b^{2} \rightarrow b^{3}$
$\neg c^{3} \vee \neg b^{3}$	$o_{2}^{1} \wedge c^{0} \rightarrow c^{1}$	$o_{2}^{2} \wedge c^{1} \rightarrow c^{2}$	$o_{2}^{3} \wedge c^{2} \rightarrow c^{3}$
	$o_{2}^{1} \wedge \neg c^{0} \rightarrow c^{1}$	$o_{2}^{2} \wedge \neg c^{1} \rightarrow c^{2}$	$o_{2}^{3} \wedge \neg c^{2} \rightarrow c^{3}$

(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 28/52

Parallel plans

Planning as satisfiability with parallel plans

- Efficiency of satisfiability planning is strongly dependent on the plan length because satisfiability algorithms have runtime $O\left(2^{n}\right)$ where n is the formula size, and formula sizes are linearly proportional to plan length.
- Formula sizes can be reduced by allowing several operators in parallel.
- On many problems this leads to big speed-ups.
- However there are no guarantees of optimality.

Albert-Ludwigs-Universität Freiburg

$$
\text { Al Planning } \quad \text { May 2, 2005 } 30 / 52
$$

Parallel plans

Parallel operator application
 Representation in CPC

Consider the formula $\tau_{A}(o)$ representing operator $o=\langle c, e\rangle$

$$
\begin{aligned}
& c \wedge \\
& \bigwedge_{a \in A}\left(\left(E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)\right) \leftrightarrow a^{\prime}\right) \wedge \\
& \bigwedge_{a \in A} \neg\left(E P C_{a}(e) \wedge E P C_{\neg a}(e)\right) .
\end{aligned}
$$

This can be logically equivalently be written as follows.

$$
\begin{aligned}
& c \wedge \\
& \bigwedge_{a \in A}\left(E P C_{a}(e) \rightarrow a^{\prime}\right) \wedge \\
& \bigwedge_{a \in A}\left(E P C_{\neg a}(e) \rightarrow \neg a^{\prime}\right) \wedge \\
& \bigwedge_{a \in A}\left(\left(a \wedge \neg E P C_{\neg a}(e)\right) \rightarrow a^{\prime}\right) \wedge \\
& \bigwedge_{a \in A}\left(\left(\neg a \wedge \neg E P C_{a}(e)\right) \rightarrow \neg a^{\prime}\right)
\end{aligned}
$$

This separates the changes from non-changes. This is the basis of the translation for parallel actions for which we do not say that executing a given operator directly means that unrelated state variables retain their old value.

Formula in CPC

Definition
Let T be a set of operators. Let $\tau_{A}(T)$ denote the conjunction of formulae

$$
\begin{aligned}
& (o \rightarrow c) \wedge \\
& \bigwedge_{a \in A}\left(o \wedge E P C_{a}(e) \rightarrow a^{\prime}\right) \wedge \\
& \bigwedge_{a \in A}\left(o \wedge E P C_{\neg a}(e) \rightarrow \neg a^{\prime}\right)
\end{aligned}
$$

for all $\langle c, e\rangle \in T$ and

$$
\begin{aligned}
& \bigwedge_{a \in A}\left((a \wedge \neg a ^ { \prime }) \rightarrow \left(\left(o_{1} \wedge E P C_{\neg a}\left(e_{1}\right)\right) \vee \cdots \vee\left(o_{n} \wedge E P C_{\neg a}\left(e_{n}\right)\right)\right.\right. \\
& \bigwedge_{a \in A}\left(\left(\neg a \wedge a^{\prime}\right) \rightarrow\left(o_{1} \wedge E P C_{a}\left(e_{1}\right)\right) \vee \cdots \vee\left(o_{n} \wedge E P C_{a}\left(e_{n}\right)\right)\right)
\end{aligned}
$$

where $T=\left\{o_{1}, \ldots, o_{n}\right\}$ and e_{1}, \ldots, e_{n} are the respective effects.

Parallel actions

Meaning in terms of interleavings

Example
The operators $\langle a, \neg b\rangle$ and $\langle b, \neg a\rangle$ may be executed simultaneously resulting in a state satisfying $\neg a \wedge \neg b$.
But this state is not reachable by the two operators sequentially, because executing any one operator makes the precondition of the other false.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 36/52

Parallel plans

Step plans
Tractable subclass

- Finding arbitrary step plans is difficult: even testing whether a set T of operators is executable in all orders is co-NP-hard.
- Representing the executability test exactly as a propositional formula seems complicated: doing this test exactly would seem to cancel the benefits of parallel plans.
- Instead, all work on parallel plans so far has used a sufficient but not necessary condition that can be tested in polynomial-time.
- This is a simple syntactic test: is the result of executing o_{1} and o_{2} in any state both in order $o_{1} ; o_{2}$ and in $o_{2} ; o_{1}$ the same.

Interference

Auxiliary definition: affects

Definition (Affect)

Let A be a set of state variables and $o=\langle c, e\rangle$ and $o^{\prime}=\left\langle c^{\prime}, e^{\prime}\right\rangle$
operators over A. Then o affects o^{\prime} if there is $a \in A$ such that

1. a is an atomic effect in e and a occurs in a formula in e^{\prime} or it occurs negatively in c^{\prime}, or
2. $\neg a$ is an atomic effect in e and a occurs in a formula in e^{\prime} or it occurs positively in c^{\prime}.

Correctness

The formula $\tau_{A}(T)$ exactly matches the definition of $\operatorname{app}_{T}(s)$.
Lemma
Let s and s^{\prime} be states and T a set of operators. Let
$v: A \cup A^{\prime} \cup T \rightarrow\{0,1\}$ be a valuation such that

1. for all $o \in T, v(o)=1$,
2. for all $a \in A, v(a)=s(a)$, and
3. for all $a \in A, v\left(a^{\prime}\right)=s^{\prime}(a)$.

Then $v \models \tau_{A}(T)$ if and only if $s^{\prime}=\operatorname{app}_{T}(s)$.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 35/52

Step plans
Formal definition

Definition (Step plans)
For a set of operators O and an initial state I, a step plan for O and I is a sequence $T=\left\langle T_{0}, \ldots, T_{l-1}\right\rangle$ of sets of operators for some $l \geq 0$ such that there is a sequence of states s_{0}, \ldots, s_{l} (the execution of T) such that

1. $s_{0}=I$,
2. for all $i \in\{0, \ldots, l-1\}$ and every total ordering o_{1}, \ldots, o_{n} of T_{i}, $\operatorname{app}_{o_{1} ; \ldots ; o_{n}}\left(s_{i}\right)$ is defined and equals s_{i+1}.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	May 2, 2005	$37 / 52$
	Parallel plans Interference		
Interference			
Example			

Actions do not interfere

Actions can be taken simultaneously.

If A is moved first, B won't be clear and cannot be moved.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 39/52

Interference

Definition (Interference)
Operators o and o^{\prime} interfere if o affects o^{\prime} or o^{\prime} affects o.

Example

$\langle c, d\rangle$ and $\langle\neg d, e\rangle$ interfere.
$\langle c, d\rangle$ and $\langle e, f\rangle$ do not interfere.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 39/52

Example

$\langle c, d\rangle$ affects $\langle\neg d, e\rangle$ and $\langle e, d \triangleright f\rangle$.
$\langle c, d\rangle$ does not affect $\langle d, e\rangle$ nor $\langle e, \neg c\rangle$.

Lemma

Let s be a state and T a set of operators so that $\operatorname{app}_{T}(s)$ is defined and no two operators interfere.
Then $\operatorname{app}_{T}(s)=\operatorname{app}_{o_{1} ; \ldots ; o_{n}}(s)$ for any total ordering o_{1}, \ldots, o_{n} of T.

Al Planning

Planning as satisfiability Existence of plans

Definition (Bounded-length plans in CPC)
Existence of parallel plans length t is represented by a formula over propositions $A^{0} \cup \cdots \cup A^{t} \cup O^{1} \cup \cdots \cup O^{t}$ where $A^{i}=\left\{a^{i} \mid a \in A\right\}$ for all $i \in\{0, \ldots, t\}$ and $O^{i}=\left\{o^{i} \mid o \in O\right\}$ for all $i \in\{1, \ldots t\}$ as

$$
\Phi_{t}^{p a r}=\iota^{0} \wedge \mathcal{R}_{2}\left(A^{0}, A^{1}, O^{1}\right) \wedge \cdots \wedge \mathcal{R}_{2}\left(A^{t-1}, A^{t}, O^{t}\right) \wedge G^{t}
$$

where $\iota^{0}=\bigwedge\left\{a^{0} \mid a \in A, I(a)=1\right\} \cup\left\{\neg a^{0} \mid a \in A, I(a)=0\right\}$ and G^{t} is G with propositions a replaced by a^{t}.

Why is optimality lost?

For parallel plans there is no guarantee for smallest number of operators
That a plan has the smallest number of time points does not guarantee that it has the smallest number of actions.

- Satisfiability algorithms return any satisfying valuation of $\Phi_{i}^{p a r}$, and this does not have to be the one with the smallest number of operators.
- There could be better solutions with more time points.

Planning as satisfiability
Example
initial state
goal state

The Davis-Putnam procedure solves the problem quickly:

- Formulae for lengths 1 to 4 shown unsatisfiable without any search.
- Formula for plan length 5 is satisfiable: 3 nodes in the search tree.
- Plans have 5 to 7 operators, optimal plan has 5.

Definition
Define $\mathcal{R}_{2}\left(A, A^{\prime}, O\right)$ as the conjunction of $\tau_{A}(O)$ and

$$
\neg\left(o \wedge o^{\prime}\right)
$$

for all $o \in O$ and $o^{\prime} \in O$ such that o and o^{\prime} interfere and $o \neq o^{\prime}$.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 43/52

Planning as satisfiability
Existence of plans

Theorem
Let $\Phi_{t}^{\text {par }}$ be the formula for $\langle A, I, O, G\rangle$ and plan length t. The formula $\Phi_{t}^{\text {par }}$ is satisfiable if and only if there is a sequence of states s_{0}, \ldots, s_{t} and sets O_{1}, \ldots, O_{t} of non-interfering operators such that $s_{0}=I$, $s_{t} \models G$ and $s_{i}=\operatorname{app}_{O_{i}}\left(s_{i-1}\right)$ for all $i \in\{1, \ldots, t\}$.
(Albert-Ludwigs-Universität Freiburg)
Al Planni

Parallel plans Optimality
Why is optimality lost?

Example
Let I be a state such that $s \models \neg c \wedge \neg d \wedge \neg e \wedge \neg f$.
Let $G=c \wedge d \wedge e$.
Let

$$
\begin{aligned}
& o_{1}=\langle\top, c\rangle \\
& o_{2}=\langle\top, d\rangle \\
& o_{3}=\langle\top, e\rangle \\
& o_{4}=\langle\top, f\rangle \\
& o_{5}=\langle f, c \wedge d \wedge e\rangle
\end{aligned}
$$

Now $\left\{o_{1}, o_{2}, o_{3}\right\}$ is a plan with one step, and $\left\{o_{4}\right\} ;\left\{o_{5}\right\}$ is a plan with two steps. The first one has less time steps and corresponds to a satisfying valuation of both $\Phi_{1}^{\text {par }}$ and $\Phi_{2}^{\text {par }}$.
(Albert-Ludwigs-Universität Freiburg) Al Planning May 2, 2005 47/52

Planning as satisfiability
Example
v0.9 13/08/1997 19:32:47
30 propositions 100 operators
Length 1
Length 2
Length 3
Length 4
Length 5
branch on -clear(b) [1] depth 0
branch on clear(a)[3] depth 1
Found a plan.
0 totable (e, d)
1 totable(c,b) fromtable(d,e)
2 totable (b, a) fromtable (c, d)
3 fromtable (b, c)
4 fromtable (a, b)
Branches 2 last 2 failed 0; time 0.0

Planning as satisfiability
Example: valuations after unit propagation, after branching

Planning as satisfiability
Example: valuations after unit propagation, after branching

Planning as satisfiability
Example: valuation for operators after plan has been found

01234
fromtable (a,b)T
fromtable(b, c) ...T.
fromtable(c, d) ..T..
fromtable(d,e) .T...
totable(b, a) ..T..
totable (c,b) .T...
totable (e,d) T....

