Planning in the propositional logic

Abstractly

1. Represent actions (= binary relations) as propositional formulae.
2. Construct a formula saying “execute one of the actions”.
3. Construct a formula saying “execute a sequence of \(n \) actions, starting from the initial state, ending in a goal state.”
4. Test the satisfiability of this formula by a satisfiability algorithm.
5. If the formula is satisfiable, construct a plan from a satisfying valuation.

Example

Formula \((a \rightarrow a') \land \left((a' \rightarrow b') \land (a' \rightarrow b') \right) \) on \(a, a', b' \) represents the binary relation \{\{00, 00\}, \{00, 01\}, \{00, 11\}, \{01, 01\}, \{01, 11\}, \{10, 11\}, \{11, 11\}\}.

Matrices as formulae

Example (Formulae as relations as matrices)

Binary relation \(\{(00, 00), (00, 01), (00, 11), (01, 01), (01, 11), (10, 11), (11, 11)\} \) can be represented as the adjacency matrix:

\[
\begin{array}{ccccccc}
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Representation of big matrices is possible.

For \(n \) state variables a formula (over \(2n \) variables) represents an adjacency matrix of size \(2^n \times 2^n \).

For \(n = 20 \), matrix size is \(2^{20} \times 2^{20} \approx 10^8 \times 10^8 \).

Actions/relations as propositional formulae

Example

\((a_1 \rightarrow a'_1) \land (a_2 \rightarrow a'_2) \land (a_3 \rightarrow a'_3) \) represents the matrix:

\[
\begin{array}{cccccccccccccccc}
000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\
001 & 010 & 011 & 100 & 101 & 110 & 111 & 000 \\
010 & 011 & 100 & 101 & 110 & 111 & 000 & 001 \\
100 & 101 & 110 & 111 & 000 & 001 & 010 & 011 \\
101 & 110 & 111 & 000 & 001 & 010 & 011 & 100 \\
110 & 111 & 000 & 001 & 010 & 011 & 100 & 101 \\
111 & 000 & 001 & 010 & 011 & 100 & 101 & 110 \\
\end{array}
\]

and as a conventional truth-table:

\[
\begin{array}{cccccccccccccccc}
d_1 & d_2 & d_3 & d_4' & d_5' & d_6' & d_7' & d_8' & \\
00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & \\
00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & \\
00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & \\
00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & \\
00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & \\
00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & \\
00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & \\
00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & \\
\end{array}
\]

This action rotates the value of the state variables \(a_1, a_2, a_3 \) one step forward.
Deterministic vs. nondeterministic actions

Expressiveness of propositional logic

- For every operator there is a corresponding formula (see next slides!)
- Our current definition of operators does not allow expressing nondeterministic actions.
- In the propositional logic they can be expressed.

Example (A nondeterministic action)
The formula \top describes the relation in which any state can be reached from any other state by this action.

A sufficient (but not necessary) condition for determinism

Formulas have the form $(\phi_1 \iff v_1') \land \cdots \land (\phi_n \iff v_n')$ where $A = \{a_1, \ldots, a_n\}$ and ϕ_i have no occurrences of propositions in A'.

Translating operators into formulae

- Any operator can be translated into a propositional formula.
- Translation takes polynomial time.
- Resulting formula has polynomial size.
- Use in planning algorithms. Two main applications are
 1. Planning as Satisfiability
 2. Progression & regression for state sets as used in symbolic state-space traversal, as typically implemented with the help of binary decision diagrams.

Example

Let the state variables be $A = \{a, b, c\}$.
Consider operator $(a \lor b, b \land a) \land (c \lor \neg a) \land (a \lor b)$).

The corresponding propositional formula is

$$(a \lor b) \land ((b \land (a \land \neg a)) \iff a')$$
$$(a \lor (b \land (a \land \neg a))) \iff b')$$
$$(a \lor (b \land (c \land \neg a))) \iff c')$$
$$\iff (a \lor b) \land ((b \land (a \land \neg a)) \iff a')$$
$$\iff ((a \land b) \land (c \iff c')$$
$$\iff (a \land b) \land (c \iff c')$$

Correctness

Lemma

Let s and s' be states and ϕ an operator. Let $\nu : A \cup A' \rightarrow \{0, 1\}$ be a valuation such that

1. for all $a \in A$, $\nu(a) = e(a)$, and
2. for all $a \in A$, $\nu(a') = e(a')$.

Then $\nu = \tau_A(\phi)$ if and only if $s' = \text{app}._s(\phi)$.

Deterministic vs. nondeterministic actions

Example

An action that is applicable if a is false, and that randomly sets values to state variables b and c:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>011</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Corresponding formula: $\neg a \land \neg a'$

Translating operators into formulæ

Definition

Let $\phi = (c, e)$ be an operator and A a set of state variables.
Define $\tau_A(\phi)$ as the conjunction of

(1) $\bigwedge_{v \in A} (EPC(v) \lor (a \land \neg EPC(v)))$
(2) $\bigwedge_{v \in A} (EPC(v) \land EPC_{\neg v}(v))$

(2) says that the new value of a, represented by a', is 1 if the old value was 1 and it did not become 0, or it became 1.
(3) says that none of the state variables is assigned both 0 and 1. This together with c determine whether the operator is applicable.

Example

Let $A = \{a, b, c, d, e\}$ be the state variables.
Consider operator $(a \land e, (d \lor e))$.
The formula $\tau_A(\phi)$ after simplifications is

\[
(a \land b) \land ((a \iff a') \land (b \iff b') \land (d \iff d') \land ((d \lor e) \iff e'))
\]

Translating operators into formulæ

Example

Let $A = \{a, b, c, d, e\}$ be the state variables.
Consider operator $(a \land e, (d \lor e))$.
The formula $\tau_A(\phi)$ after simplifications is

\[
(a \land b) \land ((a \iff a') \land (b \iff b') \land (d \iff d') \land ((d \lor e) \iff e'))
\]

Correctness

Lemma

Let $\tau_A(\phi)$ be an operator and ϕ an operator. Let $\nu : A \cup A' \rightarrow \{0, 1\}$ be a valuation such that

1. for all $a \in A$, $\nu(a) = e(a)$, and
2. for all $a \in A$, $\nu(a') = e(a)$.

Then $\nu \models \tau_A(\phi)$ if and only if $s' = \text{app}._s(\phi)$.

Correctness

Lemma

Let s and s' be states and ϕ an operator. Let $\nu : A \cup A' \rightarrow \{0, 1\}$ be a valuation such that

1. for all $a \in A$, $\nu(a) = e(a)$, and
2. for all $a \in A$, $\nu(a') = e(a')$.

Then $\nu \models \tau_A(\phi)$ if and only if $s' = \text{app}._s(\phi)$.
Planning as satisfiability

Definition (Transition relation in CPC)
For \((A, I, O, G)\) define
\[
R_i(A, A') = \bigvee_{o \in O} \tau_i(o).
\]

Definition (Bounded-length plans in CPC)
Existence of plans length 1 is represented by a formula over propositions \(A^0 \cup \cdots \cup A^t\) where \(A^i = \{a[i] \in A\}\) for all \(i \in \{0, \ldots, t\}\) as
\[
\Phi_{eq}^i = \beta \land R_i(A^0, A^i) \land R_i(A^1, A^i) \land \cdots \land R_i(A^{i-1}, A^i) \land G^i
\]
where \(\beta = \bigwedge\{a[i] \in A, I(a) = 1\} \cup \{\neg a[0] | a \in A, I(a) = 0\}\) and \(G^i\) with propositions \(a\) replaced by \(a^i\).

Planning as satisfiability

Theorem
Let \(\Phi_{eq}^i\) be the formula for \((A, I, O, G)\) and plan length \(i\). The formula \(\Phi_{eq}^i\) is satisfiable if and only if there is a sequence of states \(s_0, \ldots, s_t\) and operators \(a_1, \ldots, a_t\) such that \(s_0 = I, s_t = G\) and \(s_i = \text{app}(a_{i-1}, s_{i-1})\) for all \(i \in \{1, \ldots, t\}\).

Consequence
If \(\Phi_{eq}^i, \Phi_{eq}^{i+1}, \ldots, \Phi_{eq}^{k-1}\) are unsatisfiable and \(\Phi_{eq}^k\) is satisfiable, then the length of shortest plans is \(k\).

Satisfiability planning with \(\Phi_{eq}^i\) yields optimal plans, like heuristic search with admissible heuristics and optimal algorithms like A\(^\ast\) or IDA\(^\ast\).

Planning as satisfiability

Example, continued

One valuation that satisfies \(\Phi_{eq}^i\):

\[
\begin{array}{cccc}
\text{time } i & 0 & 1 & 2 & 3 \\
\beta & 1 & 0 & 0 & 0 \\
\epsilon & 1 & 0 & 0 & 1 \\
\end{array}
\]

Notice:
1. Also a plan of length 1 exists.
2. Plans of length 2 do not exist.

Conjunctive normal form

Many satisfiability algorithms require formulas in the conjunctive normal form: transformation by repeated applications of the following equivalences.

\[
\begin{align*}
\neg (\phi \lor \psi) & \equiv \neg \phi \land \neg \psi \\
\neg (\phi \land \psi) & \equiv \neg \phi \lor \neg \psi \\
\neg \neg \phi & \equiv \phi \\
\phi \lor (\psi_1 \land \psi_2) & \equiv (\phi \lor \psi_1) \land (\phi \lor \psi_2)
\end{align*}
\]

The formula is conjunction of clauses (disjunctions of literals).

Example
\((A \lor \neg B \lor C) \land (\neg C \lor \neg B) \land A\)

The Davis-Putnam procedure

- The first efficient decision procedure for any logic (Davis, Putnam, Logemann & Loveland, 1960/62).
- Based on binary search through the valuations of a formula.
- Unit resolution and unit subsumption help pruning the search tree.
- The currently most efficient satisfiability algorithms are variants of the Davis-Putnam procedure (Although there is currently a shift toward viewing these procedures as performing more general resolution: clause-learning.)
Satisfiability test by the Davis-Putnam procedure

1. Let C be a set of clauses.
2. For all clauses $I_1 \vee I_2 \vee \cdots \vee I_m \in C$ and $T \in C$, remove $I_1 \vee I_2 \vee \cdots \vee I_m$ from C and add $I_1 \vee I_2 \vee \cdots \vee I_m \vee T$ to C.
3. For all clauses $I_1 \vee I_2 \vee \cdots \vee I_m \in C$ and $T \in C$, remove $I_1 \vee I_2 \vee \cdots \vee I_m$ from C. (UNIT SUBSUMPON)
4. If $\bot \in C$, return FALSE.
5. If C contains only unit clauses, return TRUE.
6. Pick some $a \in A$ such that $\{a, \neg a\} \cap C = \emptyset$
7. Recursive call: if $C \cup \{a\}$ is satisfiable, return TRUE.
8. Recursive call: if $C \cup \{\neg a\}$ is satisfiable, return TRUE.
9. Return FALSE.

Planning as satisfiability

Example: plan search with Davis-Putnam

To obtain a short CNF formula, we introduce auxiliary variables a_i^1 and a_i^2 for $i \in \{1, 2, 3\}$ denoting operator applications.

\[
\begin{align*}
 a_1^0 &\equiv \left((b_1^0 \land b_1^0) \land (b_1^0 \land \neg b_1^0) \right) \\
 a_2^0 &\equiv \left((b_2^0 \land \neg b_2^0) \land (b_2^0 \land b_2^0) \right) \\
 a_1^1 \lor a_2^1 &\equiv \left((b_1^1 \land b_1^1) \land (b_1^1 \land \neg b_1^1) \right) \\
 a_1^2 \lor a_2^2 &\equiv \left((b_1^2 \land b_1^2) \land (b_1^2 \land \neg b_1^2) \right) \\
 (b_1^3 \land \neg b_1^3) \lor (\neg b_1^3 \land b_1^3) &\equiv \left((b_1^3 \land b_1^3) \land (b_1^3 \land \neg b_1^3) \right) \\
\end{align*}
\]

Parallel plans

Efficiency of satisfiability planning is strongly dependent on the plan length because satisfiability algorithms have runtime $O(2^n)$ where n is the formula size, and formula sizes are linearly proportional to plan length.

- **Formula sizes** can be reduced by allowing several operators in parallel.
- On many problems this leads to big speed-ups.
- However there are no guarantees of optimality.

Planning as satisfiability with parallel plans

We consider the possibility of executing several operators simultaneously.

Definition

Let T be a set of operators and s a state.

Define $\text{app}_{T}(s)$ as the state that is obtained from s by making the literals in $\bigcup_{a \in T} \text{EPC}(a)$ true.

For $\text{app}_{T}(s)$ to be defined, we require that $s \models c$ for all $a = (c, e) \in T$ and $\bigcup_{a \in T} \text{EPC}(a)$ consistent.

Parallel operator application

Formal definition

We rewrite the formulae for operator application using the equivalence $a \rightarrow (b \lor c) \equiv ((a \land b) \lor (a \land c))$.

\[
\begin{align*}
 b_0^0 &\equiv a_1^0 \land b_1^0 \land b_2^0 \land b_3^0 \\
 c_0 &\equiv a_1^1 \lor a_2^1 \\
 c_1 &\equiv a_1^2 \lor a_2^2 \\
 d_0 &\equiv (b_1^3 \land \neg b_1^3) \lor (\neg b_1^3 \land b_1^3) \\
\end{align*}
\]

The explanatory frame axioms

The formulae say that the only explanation for a changing its value is the application of one operator.

\[
\begin{align*}
 \wedge_{a \in A}((a \land \neg a') \rightarrow \text{EPC}_{a}(c)) \\
 \wedge_{a \in A}((a \land a') \rightarrow \text{EPC}_{a}(c)) \\
\end{align*}
\]

When several operators could be applied in parallel, we have to consider all operators as possible explanations.

\[
\begin{align*}
 \wedge_{a \in A}((a \land \neg a') \rightarrow \bigcup_{a \in A} \text{EPC}_{a}(c)) \\
 \wedge_{a \in A}((a \land a') \rightarrow \bigcup_{a \in A} \text{EPC}_{a}(c)) \\
\end{align*}
\]

where $T = \{a_1, \ldots, a_n\}$ and c_1, \ldots, c_r are the respective effects.
Parallel actions

Formula in CPC

Definition

Let T be a set of operators. Let $\tau_a(T)$ denote the conjunction of formulae

\[
(a \rightarrow c) \land \bigwedge_{o \in A}(a \land EPC_o(c) \rightarrow a') \land \\
\bigwedge_{o \in E}(a \land EPC_o(e) \rightarrow \neg a')
\]

for all $(c, e) \in T$ and

\[
\bigwedge_{o \in A}(x \land \neg \neg a') \rightarrow ((o_1 \land EPC_{o_1}(e_1)) \lor \cdots \lor (o_n \land EPC_{o_n}(e_n))) \\
\bigwedge_{o \in E}(\neg x \land a') \rightarrow ((o_1 \land EPC_{o_1}(e_1)) \lor \cdots \lor (o_n \land EPC_{o_n}(e_n)))
\]

where $T = \{o_1, \ldots, o_n\}$ and e_1, \ldots, e_n are the respective effects.

Parallel actions

Meaning in terms of interleavings

Example

The operators $(a \rightarrow b)$ and $(b \rightarrow c)$ may be executed simultaneously resulting in a state satisfying $\neg a \land \neg b$. But this state is not reachable by the two operators sequentially, because executing any one operator makes the precondition of the other false.

Step plans

Tractable subclass

- Finding arbitrary step plans is difficult: even testing whether a set T of operators is executable in all orders is co-NP-hard.
- Representing the executability test exactly as a propositional formula seems complicated: doing this test exactly would seem to cancel the benefits of parallel plans.
- Instead, all work on parallel plans so far has used a sufficient but not necessary condition that can be tested in polynomial-time.
- This is a simple syntactic test: is the result of executing a_1 and a_2 in any state both in order $a_1; a_2$ and in $a_2; a_1$ the same.

Interference

Auxiliary definition: affects

Definition (Affect)

Let A be a set of state variables and $\alpha = \langle c, e \rangle$ and $\alpha' = \langle c', e' \rangle$ operators over A. Then α affects α' if there is a $a \in A$ such that

1. a is an atomic effect in e and a occurs in a formula in e' or it occurs negatively in e', or
2. $\neg a$ is an atomic effect in e and a occurs in a formula in e' or it occurs positively in e'.

Example

(c, d) affects $(\neg d, c)$ and $(c, d \lor f)$. (c, d) does not affect (d, e) nor $(e, \neg c)$.

Correctness

The formula $\tau_a(T)$ exactly matches the definition of $app_T(s)$.

Lemma

Let s and s' be states and T a set of operators. Let $v : A \cup A' \cup T \rightarrow \{0, 1\}$ be a valuation such that

1. for all $o \in T$, $v(o) = 1$,
2. for all $a \in A$, $v(a) = s(a)$, and
3. for all $a \in A$, $v(a') = s'(a)$.

Then $v \models \tau_a(T)$ if and only if $s' = app_T(s)$.

Interference

Example

Actions do not interfere

Actions can be taken simultaneously.

Actions interfere

If A is moved first, B won’t be clear and cannot be moved.

Interference

Definition (Interference)

Operators α and α' interfere if α affects α' or α' affects α.

Example

(c, d) and $(\neg d, e)$ interfere. (c, d) and (e, f) do not interfere.
Lemma
Let s be a state and T a set of operators so that $\text{app}_{s}(s)$ is defined and no two operators interfere. Then $\text{app}_{s}(s) = \text{app}_{\sigma_{1},\ldots,\sigma_{n}}(s)$ for any total ordering $\sigma_{1},\ldots,\sigma_{n}$ of T.

Definition (Bounded-length plans in CPC)
Existence of parallel plans length t is represented by a formula over propositions $A^{0} \cup \cdots \cup A^{t} \cup O^{1} \cup \cdots \cup O^{t}$ where $A^{t} = \{a^{t}|a \in A\}$ for all $i \in \{0,\ldots,t\}$ and $O^{t} = \{o^{t}|o \in O\}$ for all $i \in \{1,\ldots,t\}$ as
\[
\Phi^{\text{per}}_{t} = \bigwedge_{i=0}^{t} \bigwedge_{a \in A} \bigwedge_{o \in O} \bigwedge_{i=1}^{t} \bigwedge_{a \in A} \bigwedge_{o \in O} (\neg \phi^{a}_{i} \land \phi^{o}_{i}) \land G^{t}
\]
where $\phi^{a}_{i} = \bigwedge_{a \in A} \bigwedge_{o \in O} (\neg \phi^{a}_{i} \land \phi^{o}_{i})$ and G^{t} is G with propositions a replaced by a^{t}.

Definition
Define $R_{A}(A',O)$ as the conjunction of $\tau_{a}(O)$ and $-(a \land a')$ for all $a \in O$ and $a' \in O$ such that a and a' interfere and $a \neq a'$.

Planning as satisfiability
Existence of plans

Theorem
Let ϕ^{per}_{n} be the formula for (A, I, O, G) and plan length t. The formula ϕ^{per}_{n} is satisfiable if and only if there is a sequence of states s_{0},\ldots,s_{t} and sets O_{1},\ldots,O_{t} of non-interfering operators such that $s_{0} = I$ and sets O_{1},\ldots,O_{t} of non-interfering operators such that $s_{0} = I$, $s_{i} \models G$ and $s_{i} = \text{app}_{s_{i-1}}(s_{i-1})$ for all $i \in \{1,\ldots,t\}$.

Example
Let t be a state such that $s \models \neg c \land \neg d \land \neg c \land \neg f$.
Let $G = c \land d \land e$.

Example
The Davis-Putnam procedure solves the problem quickly:
- Formulate for lengths 1 to 4 shown unsatisfiable without any search.
- Formulae for plan lengths 1 and 2 shown unsatisfiable without any search.
- Plans 5 to 7 operators, optimal plan has 5.
Planning as satisfiability
Example: valuations after unit propagation, after branching

ON
CLEAR
TABLE

01234

fromtable(a,b)T
fromtable(b,c) ...T.
fromtable(c,d) ...T...
totable(b,a) ..T...
totable(c,b) .T...
totable(e,d) T....