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Planning as satisfiability

Planning in the propositional logic

I Early work on deductive planning viewed plans as proofs that lead
to a desired goal (theorem).

I Planning as satisfiability testing was proposed in 1992.
1. A propositional formula represents all length n action sequences

from the initial state to a goal state.
2. If the formula is satisfiable then a plan of length n exists.

I Satisfiability planning is the best approach to solve difficult
planning problems.
Heuristic search is often more efficient on very big but easy
problems.

I Bounded model-checking in Computer Aided Verification was
introduced in 1998 as an extension of satisfiability planning after
the success of the latter had been noticed outside the AI
community.
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Planning as satisfiability

Planning in the propositional logic
Abstractly

1. Represent actions (= binary relations) as propositional formulae.

2. Construct a formula saying “execute one of the actions”.

3. Construct a formula saying “execute a sequence of n actions,
starting from the initial state, ending in a goal state.”

4. Test the satisfiability of this formula by a satisfiability algorithm.

5. If the formula is satisfiable, construct a plan from a satisfying
valuation.
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Planning as satisfiability Relations in CPC

Sets (of states) as formulae

Formulae on A as sets of states
We view formulae φ as representing sets of states s : A→ {0, 1}.

Example
Formula a ∨ b on the state variables a, b, c represents the set
{010, 011, 100, 101, 110, 111}.
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Planning as satisfiability Relations in CPC

Relations/actions as formulae

Formulae on A ∪ A
′ as binary relations

Let A = {a1, . . . , an} represent state variables in the current state, and
A′ = {a′1, . . . , a

′
n} state variables in the successor state.

Formulae φ on A ∪A′ represent binary relations on states: a valuation
of A ∪A′ → {0, 1} represents a pair of states s : A→ {0, 1},
s′ : A′ → {0, 1}.

Example
Formula (a→a′) ∧ ((a′ ∨ b)→b′) on a, b, a′, b′ represents the binary
relation {(00, 00), (00, 01), (00, 11), (01, 01), (01, 11), (10, 11), (11, 11)}.

(Albert-Ludwigs-Universität Freiburg) AI Planning May 2, 2005 5 / 52

Planning as satisfiability Relations in CPC

Matrices as formulae

Example (Formulae as relations as matrices)

Binary relation {(00, 00), (00, 01),
(00, 11), (01, 01), (01, 11), (10, 11),
(11, 11)} can be represented as
the adjacency matrix:

a′b′ a′b′ a′b′ a′b′

ab 00 01 10 11

00 1 1 0 1
01 0 1 0 1
10 0 0 0 1
11 0 0 0 1

Representation of big matrices is possible
For n state variables a formula (over 2n variables) represents an
adjacency matrix of size 2n × 2n.
For n = 20, matrix size is 220 × 220 ∼ 106 × 106.
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Planning as satisfiability Relations in CPC

Actions/relations as propositional formulae
Example

φ = (a1 ↔ ¬a′1) ∧ (a2 ↔ ¬a′2) as a matrix

a′1a
′
2 a′1a

′
2 a′1a

′
2 a′1a

′
2

a1a2 0 0 0 1 1 0 1 1

00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

and as a conventional truth-table:

a1 a2 a′1 a′2 φ

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
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Planning as satisfiability Relations in CPC

Actions/relations as propositional formulae
Example

(a1 ↔ a′2) ∧ (a2 ↔ a′3) ∧ (a3 ↔ a′1) represents the matrix:

000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0
001 0 0 0 0 1 0 0 0
010 0 1 0 0 0 0 0 0
011 0 0 0 0 0 1 0 0
100 0 0 1 0 0 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 1 0 0 0 0
111 0 0 0 0 0 0 0 1

This action rotates the value of the state variables a1, a2, a3 one step
forward.

(Albert-Ludwigs-Universität Freiburg) AI Planning May 2, 2005 8 / 52



Planning as satisfiability Relations in CPC

Deterministic vs. nondeterministic actions

Expressiveness of propositional logic

I For every operator there is a corresponding formula (see next
slides!)

I Our current definition of operators does not allow expressing
nondeterministic actions.

I In the propositional logic they can be expressed.

Example (A nondeterministic action)
The formula > describes the relation in which any state can be
reached from any other state by this action.

A sufficient (but not necessary) condition for determinism
Formula has the form (φ1 ↔ a′1) ∧ · · · ∧ (φn ↔ a′n) where
A = {a1, . . . , an} and φi have no occurrences of propositions in A′.
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Planning as satisfiability Relations in CPC

Deterministic vs. nondeterministic actions
Example

Example
An action that is applicable if a is false, and that randomly sets values
to state variables b and c:

a′b′c′ a′b′c′ a′b′c′ a′b′c′ a′b′c′ a′b′c′ a′b′c′ a′b′c′

abc 000 001 010 011 100 101 110 111

000 1 1 1 1 0 0 0 0
001 1 1 1 1 0 0 0 0
010 1 1 1 1 0 0 0 0
011 1 1 1 1 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0

Corresponding formula: ¬a ∧ ¬a′
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Planning as satisfiability Ops in CPC

Translating operators into formulae

I Any operator can be translated into a propositional formula.
I Translation takes polynomial time.
I Resulting formula has polynomial size.
I Use in planning algorithms. Two main applications are

1. Planning as Satisfiability
2. Progression & regression for state sets as used in symbolic

state-space traversal, as typically implemented with the help of
binary decision diagrams.
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Planning as satisfiability Ops in CPC

Translating operators into formulae

Definition
Let o = 〈c, e〉 be an operator and A a set of state variables.
Define τA(o) as the conjunction of

c (1)∧
a∈A(EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′ (2)∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)) (3)

(2) says that the new value of a, represented by a′, is 1 if the old value
was 1 and it did not become 0, or it became 1.
(3) says that none of the state variables is assigned both 0 and 1. This
together with c determine whether the operator is applicable.
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Planning as satisfiability Ops in CPC

Translating operators into formulae
Example

Example
Let the state variables be A = {a, b, c}.
Consider operator 〈a ∨ b, (b B a) ∧ (c B ¬a) ∧ (a B b)〉.
The corresponding propositional formula is

(a ∨ b) ∧((b ∨ (a ∧ ¬c)) ↔ a′)
∧((a ∨ (b ∧ ¬⊥)) ↔ b′)
∧((⊥ ∨ (c ∧ ¬⊥)) ↔ c′)
∧¬(b ∧ c) ∧ ¬(a ∧ ⊥) ∧ ¬(⊥ ∧⊥)

≡
(a ∨ b) ∧((b ∨ (a ∧ ¬c)) ↔ a′)

∧((a ∨ b) ↔ b′)
∧(c↔ c′)
∧¬(b ∧ c)
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Planning as satisfiability Ops in CPC

Translating operators into formulae
Example

Example
Let A = {a, b, c, d, e} be the state variables.
Consider operator 〈a ∧ b, c ∧ (d B e)〉.
The formula τA(o) after simplifications is

(a ∧ b) ∧ (a↔ a′) ∧ (b↔ b′) ∧ c′ ∧ (d↔ d′) ∧ ((d ∨ e) ↔ e′)
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Planning as satisfiability Ops in CPC

Correctness

Lemma
Let s and s′ be states and o an operator. Let v : A ∪A′ → {0, 1} be a
valuation such that

1. for all a ∈ A, v(a) = s(a), and

2. for all a ∈ A, v(a′) = s′(a).

Then v |= τA(o) if and only if s′ = appo(s).
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Planning as satisfiability Plans in CPC

Planning as satisfiability

1. Encode operator sequences of length 0, 1, 2, ... as formulae Φseq
0

,
Φseq

1
, Φseq

2
, . . . (see next slide...)

2. Test satisfiability of Φseq
0

, Φseq
1

, Φseq
2

, . . ..

3. If a satisfying valuation v is found, a plan can constructed from v.
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Planning as satisfiability Plans in CPC

Planning as satisfiability

Definition (Transition relation in CPC)
For 〈A, I,O,G〉 define

R1(A,A
′) =

∨

o∈O

τA(o).

Definition (Bounded-length plans in CPC)
Existence of plans length t is represented by a formula over
propositions A0 ∪ · · · ∪At where Ai = {ai|a ∈ A} for all i ∈ {0, . . . , t} as

Φseq
t = ι0 ∧R1(A

0, A1) ∧R1(A
1, A2) ∧ · · · ∧ R1(A

t−1, At) ∧Gt

where ι0 =
∧
{a0|a ∈ A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0} and Gt is G

with propositions a replaced by at.
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Planning as satisfiability Plans in CPC

Planning as satisfiability
Example

Example
Consider

I |= b ∧ c
G = (b ∧ ¬c) ∨ (¬b ∧ c)
o1 = 〈>, (c B ¬c) ∧ (¬c B c)〉
o2 = 〈>, (b B ¬b) ∧ (¬b B b)〉.

Formula for plans of length 3 is

(b0 ∧ c0)
∧(((b0 ↔ b1) ∧ (c0 ↔ ¬c1)) ∨ ((b0 ↔ ¬b1) ∧ (c0 ↔ c1)))
∧(((b1 ↔ b2) ∧ (c1 ↔ ¬c2)) ∨ ((b1 ↔ ¬b2) ∧ (c1 ↔ c2)))
∧(((b2 ↔ b3) ∧ (c2 ↔ ¬c3)) ∨ ((b2 ↔ ¬b3) ∧ (c2 ↔ c3)))
∧((b3 ∧ ¬c3) ∨ (¬b3 ∧ c3)).
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Planning as satisfiability Plans in CPC

Planning as satisfiability
Existence of (optimal) plans

Theorem
Let Φseq

t be the formula for 〈A, I,O,G〉 and plan length t. The formula
Φseq

t is satisfiable if and only if there is a sequence of states s0, . . . , st

and operators o1, . . . , ot such that s0 = I, st |= G and si = appoi
(si−1)

for all i ∈ {1, . . . , t}.

Consequence
If Φseq

0
,Φseq

1
, . . . ,Φseq

i−1
are unsatisfiable and Φseq

i is satisfiable, then the
length of shortest plans is i.
Satisfiability planning with Φseq

i yields optimal plans, like heuristic
search with admissible heuristics and optimal algorithms like A∗ or
IDA∗.
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Planning as satisfiability Plans in CPC

Planning as satisfiability
Plan extraction

All satisfiability algorithms give a valuation v that satisfies Φseq
i upon

finding out that Φseq
i is satisfiable.

This makes it possible to construct a plan.

Constructing a plan from a satisfying valuation
Let v be a valuation so that v |= Φseq

t . Then define si(a) = v(ai) for all
a ∈ A and i ∈ {0, . . . , t}.
The ith operator in the plan is o ∈ O if appo(si−1) = si. Notice: There
may be more than one such operator, any of them may be chosen.
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Planning as satisfiability Plans in CPC

Planning as satisfiability
Example, continued

Example
One valuation that satisfies Φseq

3
:

time i
0 1 2 3

bi 1 1 0 0
ci 1 0 0 1

Notice:

1. Also a plan of length 1 exists.

2. Plans of length 2 do not exist.
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Planning as satisfiability Plans in CPC

Conjunctive normal form

Many satisfiability algorithms require formulas in the conjunctive
normal form: transformation by repeated applications of the following
equivalences.

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ

¬¬φ ≡ φ

φ ∨ (ψ1 ∧ ψ2) ≡ (φ ∨ ψ1) ∧ (φ ∨ ψ2)

The formula is conjunction of clauses (disjunctions of literals).

Example
(A ∨ ¬B ∨ C) ∧ (¬C ∨ ¬B) ∧A
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Planning as satisfiability Plans in CPC

The unit resolution rule

Unit resolution
From l1 ∨ l2 ∨ · · · ∨ ln (here n ≥ 1) and l1 infer l2 ∨ · · · ∨ ln.

Example
From a ∨ b ∨ c and ¬a infer b ∨ c.

Unit resolution: a special case
From A and ¬A we get the empty clause ⊥ (“disjunction consisting of
zero disjuncts”).

Unit subsumption
The clause l1 ∨ l2 ∨ · · · ∨ ln can be eliminated if we have the unit clause
l1.
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Planning as satisfiability Plans in CPC

The Davis-Putnam procedure

I The first efficient decision procedure for any logic (Davis, Putnam,
Logemann & Loveland, 1960/62).

I Based on binary search through the valuations of a formula.
I Unit resolution and unit subsumption help pruning the search tree.
I The currently most efficient satisfiability algorithms are variants of

the Davis-Putnam procedure
(Although there is currently a shift toward viewing these
procedures as performing more general resolution:
clause-learning.)
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Planning as satisfiability Plans in CPC

Satisfiability test by the Davis-Putnam procedure

1. Let C be a set of clauses.

2. For all clauses l1 ∨ l2 ∨ · · · ∨ ln ∈ C and l1 ∈ C,
remove l1 ∨ l2 ∨ · · · ∨ ln from C and add l2 ∨ · · · ∨ ln to C.

3. For all clauses l1 ∨ l2 ∨ · · · ∨ ln ∈ C and l1 ∈ C,
remove l1 ∨ l2 ∨ · · · ∨ ln from C. (UNIT SUBSUMPTION)

4. If ⊥ ∈ C, return FALSE.

5. If C contains only unit clauses, return TRUE.

6. Pick some a ∈ A such that {a,¬a} ∩ C = ∅

7. Recursive call: if C ∪ {a} is satisfiable, return TRUE.

8. Recursive call: if C ∪ {¬a} is satisfiable, return TRUE.

9. Return FALSE.
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Planning as satisfiability Example

Planning as satisfiability
Example: plan search with Davis-Putnam

Consider the problem from a previous slide, with two operators each
inverting the value of one state variable, for plan length 3.

(b0 ∧ c0)
∧(((b0 ↔ b1) ∧ (c0 ↔ ¬c1)) ∨ ((b0 ↔ ¬b1) ∧ (c0 ↔ c1)))
∧(((b1 ↔ b2) ∧ (c1 ↔ ¬c2)) ∨ ((b1 ↔ ¬b2) ∧ (c1 ↔ c2)))
∧(((b2 ↔ b3) ∧ (c2 ↔ ¬c3)) ∨ ((b2 ↔ ¬b3) ∧ (c2 ↔ c3)))
∧((b3 ∧ ¬c3) ∨ (¬b3 ∧ c3)).
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Planning as satisfiability Example

Planning as satisfiability
Example: plan search with Davis-Putnam

To obtain a short CNF formula, we introduce auxiliary variables oi
1 and

oi
2 for i ∈ {1, 2, 3} denoting operator applications.

b0

c0

o11 ∨ o
1
2

o21 ∨ o
2
2

o31 ∨ o
3
2

(b3 ∧ ¬c3) ∨ (¬b3 ∧ c3)

o11→((b0 ↔ b1) ∧ (c0 ↔ ¬c1))
o12→((b0 ↔ ¬b1) ∧ (c0 ↔ c1))
o21→((b1 ↔ b2) ∧ (c1 ↔ ¬c2))
o22→((b1 ↔ ¬b2) ∧ (c1 ↔ c2))
o31→((b2 ↔ b3) ∧ (c2 ↔ ¬c3))
o32→((b2 ↔ ¬b3) ∧ (c2 ↔ c3))
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Planning as satisfiability Example

Planning as satisfiability
Example: plan search with Davis-Putnam

We rewrite the formulae for operator applications by using the
equivalence φ→(l ↔ l′) ≡ ((φ ∧ l→ l′) ∧ (φ ∧ l→ l′)).

b0

c0

o11 ∨ o
1
2

o21 ∨ o
2
2

o31 ∨ o
3
2

b3 ∨ c3

¬c3 ∨ ¬b3

o11 ∧ b
0→b1

o11 ∧ ¬b0→¬b1

o11 ∧ c
0→¬c1

o11 ∧ ¬c0→c1

o12 ∧ b
0→¬b1

o12 ∧ ¬b0→b1

o12 ∧ c
0→c1

o12 ∧ ¬c0→c1

o21 ∧ b
1→b2

o21 ∧ ¬b1→¬b2

o21 ∧ c
1→¬c2

o21 ∧ ¬c1→c2

o22 ∧ b
1→¬b2

o22 ∧ ¬b1→b2

o22 ∧ c
1→c2

o22 ∧ ¬c1→c2

o31 ∧ b
2→b3

o31 ∧ ¬b2→¬b3

o31 ∧ c
2→¬c3

o31 ∧ ¬c2→c3

o32 ∧ b
2→¬b3

o32 ∧ ¬b2→b3

o32 ∧ c
2→c3

o32 ∧ ¬c2→c3

(Albert-Ludwigs-Universität Freiburg) AI Planning May 2, 2005 28 / 52

Parallel plans

Planning as satisfiability with parallel plans

I Efficiency of satisfiability planning is strongly dependent on the
plan length because satisfiability algorithms have runtime O(2n)
where n is the formula size, and formula sizes are linearly
proportional to plan length.

I Formula sizes can be reduced by allowing several operators in
parallel.

I On many problems this leads to big speed-ups.
I However there are no guarantees of optimality.
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Parallel plans

Parallel operator application
Formal definition

We consider the possibility of executing several operators
simultaneously.

Definition
Let T be a set of operators and s a state.
Define appT (s) as the state that is obtained from s by making the
literals in

⋃
〈c,e〉∈T [e]s true.

For appT (s) to be defined, we require that s |= c for all o = 〈c, e〉 ∈ T

and
⋃

〈c,e〉∈T [e]s is consistent.
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Parallel plans

Parallel operator application
Representation in CPC

Consider the formula τA(o) representing operator o = 〈c, e〉

c∧∧
a∈A((EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′)∧∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)).

This can be logically equivalently be written as follows.

c∧∧
a∈A(EPCa(e)→a′)∧∧
a∈A(EPC¬a(e)→¬a′)∧∧
a∈A((a ∧ ¬EPC¬a(e))→a′)∧∧
a∈A((¬a ∧ ¬EPCa(e))→¬a′)

This separates the changes from non-changes. This is the basis of the
translation for parallel actions for which we do not say that executing a
given operator directly means that unrelated state variables retain their
old value.
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Parallel plans

The explanatory frame axioms

The formulae say that the only explanation for a changing its value is
the application of one operator.

∧
a∈A((a ∧ ¬a′)→EPC¬a(e))∧
a∈A((¬a ∧ a′)→EPCa(e))

When several operators could be applied in parallel, we have to
consider all operators as possible explanations.

∧
a∈A((a ∧ ¬a′)→((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (on ∧ EPC¬a(en))∧
a∈A((¬a ∧ a′)→((o1 ∧ EPCa(e1)) ∨ · · · ∨ (on ∧ EPCa(en)))

where T = {o1, . . . , on} and e1, . . . , en are the respective effects.
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Parallel plans

Parallel actions
Formula in CPC

Definition
Let T be a set of operators. Let τA(T ) denote the conjunction of
formulae

(o→c)∧∧
a∈A(o ∧ EPCa(e)→a′)∧∧
a∈A(o ∧ EPC¬a(e)→¬a′)

for all 〈c, e〉 ∈ T and

∧
a∈A((a ∧ ¬a′)→((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (on ∧ EPC¬a(en))∧
a∈A((¬a ∧ a′)→((o1 ∧ EPCa(e1)) ∨ · · · ∨ (on ∧ EPCa(en)))

where T = {o1, . . . , on} and e1, . . . , en are the respective effects.
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Parallel plans

Correctness

The formula τA(T ) exactly matches the definition of appT (s).

Lemma
Let s and s′ be states and T a set of operators. Let
v : A ∪A′ ∪ T → {0, 1} be a valuation such that

1. for all o ∈ T , v(o) = 1,

2. for all a ∈ A, v(a) = s(a), and

3. for all a ∈ A, v(a′) = s′(a).

Then v |= τA(T ) if and only if s′ = appT (s).
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Parallel plans

Parallel actions
Meaning in terms of interleavings

Example
The operators 〈a,¬b〉 and 〈b,¬a〉 may be executed simultaneously
resulting in a state satisfying ¬a ∧ ¬b.
But this state is not reachable by the two operators sequentially,
because executing any one operator makes the precondition of the
other false.
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Parallel plans

Step plans
Formal definition

Definition (Step plans)
For a set of operators O and an initial state I, a step plan for O and I is
a sequence T = 〈T0, . . . , Tl−1〉 of sets of operators for some l ≥ 0 such
that there is a sequence of states s0, . . . , sl (the execution of T ) such
that

1. s0 = I,

2. for all i ∈ {0, . . . , l − 1} and every total ordering o1, . . . , on of Ti,
appo1;...;on

(si) is defined and equals si+1.
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Parallel plans

Step plans
Tractable subclass

I Finding arbitrary step plans is difficult: even testing whether a set
T of operators is executable in all orders is co-NP-hard.

I Representing the executability test exactly as a propositional
formula seems complicated: doing this test exactly would seem to
cancel the benefits of parallel plans.

I Instead, all work on parallel plans so far has used a sufficient but
not necessary condition that can be tested in polynomial-time.

I This is a simple syntactic test: is the result of executing o1 and o2
in any state both in order o1; o2 and in o2; o1 the same.
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Parallel plans Interference

Interference
Example

Actions do not interfere

A B C D
A
B C

D

Actions can be taken simultaneously.

Actions interfere

A B C D
If A is moved first, B won’t be clear and cannot be moved.
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Parallel plans Interference

Interference
Auxiliary definition: affects

Definition (Affect)
Let A be a set of state variables and o = 〈c, e〉 and o′ = 〈c′, e′〉
operators over A. Then o affects o′ if there is a ∈ A such that

1. a is an atomic effect in e and a occurs in a formula in e′ or it occurs
negatively in c′, or

2. ¬a is an atomic effect in e and a occurs in a formula in e′ or it
occurs positively in c′.

Example
〈c, d〉 affects 〈¬d, e〉 and 〈e, d B f〉.
〈c, d〉 does not affect 〈d, e〉 nor 〈e,¬c〉.
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Parallel plans Interference

Interference

Definition (Interference)
Operators o and o′ interfere if o affects o′ or o′ affects o.

Example
〈c, d〉 and 〈¬d, e〉 interfere.
〈c, d〉 and 〈e, f〉 do not interfere.
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Parallel plans Interference

Interference

Lemma
Let s be a state and T a set of operators so that appT (s) is defined and
no two operators interfere.
Then appT (s) = appo1;...;on

(s) for any total ordering o1, . . . , on of T .
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Parallel plans Translation

The translation for parallel plans in CPC

Definition
Define R2(A,A

′, O) as the conjunction of τA(O) and

¬(o ∧ o′)

for all o ∈ O and o′ ∈ O such that o and o′ interfere and o 6= o′.
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Parallel plans Translation

Planning as satisfiability
Existence of plans

Definition (Bounded-length plans in CPC)
Existence of parallel plans length t is represented by a formula over
propositions A0 ∪ · · · ∪At ∪O1 ∪ · · · ∪Ot where Ai = {ai|a ∈ A} for all
i ∈ {0, . . . , t} and Oi = {oi|o ∈ O} for all i ∈ {1, . . . t} as

Φpar
t = ι0 ∧R2(A

0, A1, O1) ∧ · · · ∧ R2(A
t−1, At, Ot) ∧Gt

where ι0 =
∧
{a0|a ∈ A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0} and Gt is G

with propositions a replaced by at.
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Parallel plans Translation

Planning as satisfiability
Existence of plans

Theorem
Let Φpar

t be the formula for 〈A, I,O,G〉 and plan length t. The formula
Φpar

t is satisfiable if and only if there is a sequence of states s0, . . . , st

and sets O1, . . . , Ot of non-interfering operators such that s0 = I,
st |= G and si = appOi

(si−1) for all i ∈ {1, . . . , t}.
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Parallel plans Optimality

Why is optimality lost?

For parallel plans there is no guarantee for smallest number of
operators
That a plan has the smallest number of time points does not guarantee
that it has the smallest number of actions.

I Satisfiability algorithms return any satisfying valuation of Φpar
i , and

this does not have to be the one with the smallest number of
operators.

I There could be better solutions with more time points.
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Parallel plans Optimality

Why is optimality lost?

Example
Let I be a state such that s |= ¬c ∧ ¬d ∧ ¬e ∧ ¬f .
Let G = c ∧ d ∧ e.
Let

o1 = 〈>, c〉
o2 = 〈>, d〉
o3 = 〈>, e〉
o4 = 〈>, f〉
o5 = 〈f, c ∧ d ∧ e〉

Now {o1, o2, o3} is a plan with one step, and {o4}; {o5} is a plan with
two steps. The first one has less time steps and corresponds to a
satisfying valuation of both Φpar

1
and Φpar

2
.
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Parallel plans Example

Planning as satisfiability
Example

A
B
C

D
E

A
B
C
D
E

initial state goal state

The Davis-Putnam procedure solves the problem quickly:
I Formulae for lengths 1 to 4 shown unsatisfiable without any

search.
I Formula for plan length 5 is satisfiable: 3 nodes in the search tree.
I Plans have 5 to 7 operators, optimal plan has 5.

(Albert-Ludwigs-Universität Freiburg) AI Planning May 2, 2005 48 / 52

Parallel plans Example

Planning as satisfiability
Example

v0.9 13/08/1997 19:32:47
30 propositions 100 operators
Length 1
Length 2
Length 3
Length 4
Length 5
branch on -clear(b)[1] depth 0
branch on clear(a)[3] depth 1
Found a plan.

0 totable(e,d)
1 totable(c,b) fromtable(d,e)
2 totable(b,a) fromtable(c,d)
3 fromtable(b,c)
4 fromtable(a,b)

Branches 2 last 2 failed 0; time 0.0
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Parallel plans Example

Planning as satisfiability
Example: valuations after unit propagation, after branching

ON ON
CLEARaaaabbbbccccddddeeeeTABLE
abcdebcdeacdeabdeabceabcdabcde

0 FFTFTFFFFTFFFFTFFFFFFFFFTTFFTF
1 F TTTFFFFTFFFF FFFFFFFFFFTF TT
2 TFFFFF FFF FFFFFTFFFFT FT
3 FF FFF FFFFTFFFFTFFFF FFT
4 FFF FFFFTFFFFTFFFFTFFFF FFFT
5 FFFFTFFFFTFFFFTFFFFTFFFFFFFFT

0 FFTFTFFFFTFFFFTFFFFFFFFFTTFFTF
1 FFTTTFFFFTFFFFTFFFFFFFFFFTFFTT
2 F TTFFFFFTFFFF FFFFFTFFFFTF FT
3 TTFFFFFF FFFFFTFFFFTFFFFT FFT
4 TTFFFFFFFFTFFFFTFFFFTFFFFTFFFT
5 TFFFFTFFFFTFFFFTFFFFTFFFFFFFFT

0 FFTFTFFFFTFFFFTFFFFFFFFFTTFFTF
1 FFTTTFFFFTFFFFTFFFFFFFFFFTFFTT
2 FTTTFFFFFTFFFFFFFFFFTFFFFTFTFT
3 TTTFFFFFFFFFFFFTFFFFTFFFFTTFFT
4 TTFFFFFFFFTFFFFTFFFFTFFFFTFFFT
5 TFFFFTFFFFTFFFFTFFFFTFFFFFFFFT
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Parallel plans Example

Planning as satisfiability
Example: valuations after unit propagation, after branching

012345 012345 012345
clear(a) FF FFF TT FFFTTT
clear(b) F F FF TTF FFTTTF
clear(c) TT FF TTTTFF TTTTFF
clear(d) FTTFFF FTTFFF FTTFFF
clear(e) TTFFFF TTFFFF TTFFFF
on(a,b) FFF T FFFFFT FFFFFT
on(a,c) FFFFFF FFFFFF FFFFFF
on(a,d) FFFFFF FFFFFF FFFFFF
on(a,e) FFFFFF FFFFFF FFFFFF
on(b,a) TT FF TTT FF TTTFFF
on(b,c) FF TT FFFFTT FFFFTT
on(b,d) FFFFFF FFFFFF FFFFFF
on(b,e) FFFFFF FFFFFF FFFFFF
on(c,a) FFFFFF FFFFFF FFFFFF
on(c,b) T FFF TT FFF TTFFFF
on(c,d) FFFTTT FFFTTT FFFTTT
on(c,e) FFFFFF FFFFFF FFFFFF
on(d,a) FFFFFF FFFFFF FFFFFF
on(d,b) FFFFFF FFFFFF FFFFFF
on(d,c) FFFFFF FFFFFF FFFFFF
on(d,e) FFTTTT FFTTTT FFTTTT
on(e,a) FFFFFF FFFFFF FFFFFF
on(e,b) FFFFFF FFFFFF FFFFFF
on(e,c) FFFFFF FFFFFF FFFFFF
on(e,d) TFFFFF TFFFFF TFFFFF

ontable(a) TTT F TTTTTF TTTTTF
ontable(b) FF FF FFF FF FFFTFF
ontable(c) F FFF FF FFF FFTFFF
ontable(d) TTFFFF TTFFFF TTFFFF
ontable(e) FTTTTT FTTTTT FTTTTT
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Parallel plans Example

Planning as satisfiability
Example: valuation for operators after plan has been found

01234
fromtable(a,b) ....T
fromtable(b,c) ...T.
fromtable(c,d) ..T..
fromtable(d,e) .T...
totable(b,a) ..T..
totable(c,b) .T...
totable(e,d) T....
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