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Planning in the propositional logic

Early work on deductive planning viewed plans as
proofs that lead to a desired goal (theorem).
Planning as satisfiability testing was proposed in 1992.

1 A propositional formula represents all length n action
sequences from the initial state to a goal state.

2 If the formula is satisfiable then a plan of length n exists.

Satisfiability planning is the best approach to solve
difficult planning problems.
Heuristic search is often more efficient on very big but
easy problems.

Bounded model-checking in Computer Aided
Verification was introduced in 1998 as an extension of
satisfiability planning after the success of the latter had
been noticed outside the AI community.
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Planning in the propositional logic
Abstractly

1 Represent actions (= binary relations) as propositional
formulae.

2 Construct a formula saying “execute one of the actions”.
3 Construct a formula saying “execute a sequence of n

actions, starting from the initial state, ending in a goal
state.”

4 Test the satisfiability of this formula by a satisfiability
algorithm.

5 If the formula is satisfiable, construct a plan from a
satisfying valuation.
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Sets (of states) as formulae

Formulae on A as sets of states

We view formulae φ as representing sets of states
s : A→ {0, 1}.

Example

Formula a ∨ b on the state variables a, b, c represents the set
{010, 011, 100, 101, 110, 111}.
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Relations/actions as formulae

Formulae on A ∪A′ as binary relations

Let A = {a1, . . . , an} represent state variables in the current
state, and A′ = {a′1, . . . , a′n} state variables in the successor
state.
Formulae φ on A∪A′ represent binary relations on states: a
valuation of A ∪A′ → {0, 1} represents a pair of states
s : A→ {0, 1}, s′ : A′ → {0, 1}.

Example

Formula (a→a′) ∧ ((a′ ∨ b)→b′) on a, b, a′, b′ represents the
binary relation
{(00, 00), (00, 01), (00, 11), (01, 01), (01, 11), (10, 11), (11, 11)}.
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Matrices as formulae

Example (Formulae as relations as matrices)

Binary relation {(00, 00), (00, 01),
(00, 11), (01, 01), (01, 11), (10, 11),
(11, 11)} can be represented as
the adjacency matrix:

a′b′ a′b′ a′b′ a′b′

ab 00 01 10 11

00 1 1 0 1
01 0 1 0 1
10 0 0 0 1
11 0 0 0 1

Representation of big matrices is possible

For n state variables a formula (over 2n variables)
represents an adjacency matrix of size 2n × 2n.
For n = 20, matrix size is 220 × 220 ∼ 106 × 106.
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Actions/relations as propositional formulae
Example

φ = (a1 ↔ ¬a′1) ∧ (a2 ↔ ¬a′2) as a matrix

a′1a
′
2 a

′
1a

′
2 a

′
1a

′
2 a

′
1a

′
2

a1a2 0 0 0 1 1 0 1 1

00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

and as a conventional truth-table:

a1 a2 a
′
1 a

′
2 φ

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
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Actions/relations as propositional formulae
Example

(a1 ↔ a′2) ∧ (a2 ↔ a′3) ∧ (a3 ↔ a′1) represents the matrix:

000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0
001 0 0 0 0 1 0 0 0
010 0 1 0 0 0 0 0 0
011 0 0 0 0 0 1 0 0
100 0 0 1 0 0 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 1 0 0 0 0
111 0 0 0 0 0 0 0 1

This action rotates the value of the state variables a1, a2, a3

one step forward.
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Deterministic vs. nondeterministic actions

Expressiveness of propositional logic

For every operator there is a corresponding formula
(see next slides!)

Our current definition of operators does not allow
expressing nondeterministic actions.

In the propositional logic they can be expressed.

Example (A nondeterministic action)

The formula > describes the relation in which any state can
be reached from any other state by this action.

A sufficient (but not necessary) condition for determinism

Formula has the form (φ1 ↔ a′1) ∧ · · · ∧ (φn ↔ a′n) where
A = {a1, . . . , an} and φi have no occurrences of
propositions in A′.
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Deterministic vs. nondeterministic actions
Example

Example

An action that is applicable if a is false, and that randomly
sets values to state variables b and c:

a′b′c′ a′b′c′ a′b′c′ a′b′c′ a′b′c′ a′b′c′ a′b′c′ a′b′c′

abc 000 001 010 011 100 101 110 111

000 1 1 1 1 0 0 0 0
001 1 1 1 1 0 0 0 0
010 1 1 1 1 0 0 0 0
011 1 1 1 1 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0

Corresponding formula: ¬a ∧ ¬a′
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Translating operators into formulae

Any operator can be translated into a propositional
formula.

Translation takes polynomial time.

Resulting formula has polynomial size.
Use in planning algorithms. Two main applications are

1 Planning as Satisfiability
2 Progression & regression for state sets as used in

symbolic state-space traversal, as typically
implemented with the help of binary decision diagrams.
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Translating operators into formulae

Definition

Let o = 〈c, e〉 be an operator and A a set of state variables.
Define τA(o) as the conjunction of

c (1)∧
a∈A(EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′ (2)∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)) (3)

(2) says that the new value of a, represented by a′, is 1 if the
old value was 1 and it did not become 0, or it became 1.
(3) says that none of the state variables is assigned both 0
and 1. This together with c determine whether the operator
is applicable.
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Translating operators into formulae
Example

Example

Let the state variables be A = {a, b, c}.
Consider operator 〈a ∨ b, (b B a) ∧ (c B ¬a) ∧ (a B b)〉.
The corresponding propositional formula is

(a ∨ b) ∧((b ∨ (a ∧ ¬c)) ↔ a′)
∧((a ∨ (b ∧ ¬⊥)) ↔ b′)
∧((⊥ ∨ (c ∧ ¬⊥)) ↔ c′)
∧¬(b ∧ c) ∧ ¬(a ∧ ⊥) ∧ ¬(⊥ ∧⊥)

≡
(a ∨ b) ∧((b ∨ (a ∧ ¬c)) ↔ a′)

∧((a ∨ b) ↔ b′)
∧(c↔ c′)
∧¬(b ∧ c)
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Translating operators into formulae
Example

Example

Let A = {a, b, c, d, e} be the state variables.
Consider operator 〈a ∧ b, c ∧ (d B e)〉.
The formula τA(o) after simplifications is

(a ∧ b) ∧ (a↔ a′) ∧ (b↔ b′) ∧ c′ ∧ (d↔ d′) ∧ ((d ∨ e) ↔ e′)
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Correctness

Lemma

Let s and s′ be states and o an operator. Let
v : A ∪A′ → {0, 1} be a valuation such that

1 for all a ∈ A, v(a) = s(a), and
2 for all a ∈ A, v(a′) = s′(a).

Then v |= τA(o) if and only if s′ = appo(s).
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Planning as satisfiability

1 Encode operator sequences of length 0, 1, 2, ... as
formulae Φseq

0 , Φseq
1 , Φseq

2 , . . . (see next slide...)
2 Test satisfiability of Φseq

0 , Φseq
1 , Φseq

2 , . . ..
3 If a satisfying valuation v is found, a plan can

constructed from v.
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Planning as satisfiability

Definition (Transition relation in CPC)

For 〈A, I,O,G〉 define

R1(A,A
′) =

∨
o∈O

τA(o).

Definition (Bounded-length plans in CPC)

Existence of plans length t is represented by a formula over
propositions A0 ∪ · · · ∪At where Ai = {ai|a ∈ A} for all
i ∈ {0, . . . , t} as

Φseq
t = ι0 ∧R1(A

0, A1)∧R1(A
1, A2)∧ · · · ∧R1(A

t−1, At)∧Gt

where ι0 =
∧
{a0|a ∈ A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0}

and Gt is G with propositions a replaced by at.
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Planning as satisfiability
Example

Example

Consider
I |= b ∧ c
G = (b ∧ ¬c) ∨ (¬b ∧ c)
o1 = 〈>, (c B ¬c) ∧ (¬c B c)〉
o2 = 〈>, (b B ¬b) ∧ (¬b B b)〉.

Formula for plans of length 3 is

(b0 ∧ c0)
∧(((b0 ↔ b1) ∧ (c0 ↔ ¬c1)) ∨ ((b0 ↔ ¬b1) ∧ (c0 ↔ c1)))
∧(((b1 ↔ b2) ∧ (c1 ↔ ¬c2)) ∨ ((b1 ↔ ¬b2) ∧ (c1 ↔ c2)))
∧(((b2 ↔ b3) ∧ (c2 ↔ ¬c3)) ∨ ((b2 ↔ ¬b3) ∧ (c2 ↔ c3)))
∧((b3 ∧ ¬c3) ∨ (¬b3 ∧ c3)).
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Planning as satisfiability
Existence of (optimal) plans

Theorem

Let Φseq
t be the formula for 〈A, I,O,G〉 and plan length t.

The formula Φseq
t is satisfiable if and only if there is a

sequence of states s0, . . . , st and operators o1, . . . , ot such
that s0 = I, st |= G and si = appoi(si−1) for all i ∈ {1, . . . , t}.

Consequence

If Φseq
0 ,Φseq

1 , . . . ,Φseq
i−1 are unsatisfiable and Φseq

i is
satisfiable, then the length of shortest plans is i.
Satisfiability planning with Φseq

i yields optimal plans, like
heuristic search with admissible heuristics and optimal
algorithms like A∗ or IDA∗.
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Planning as satisfiability
Plan extraction

All satisfiability algorithms give a valuation v that satisfies
Φseq

i upon finding out that Φseq
i is satisfiable.

This makes it possible to construct a plan.

Constructing a plan from a satisfying valuation

Let v be a valuation so that v |= Φseq
t . Then define

si(a) = v(ai) for all a ∈ A and i ∈ {0, . . . , t}.
The ith operator in the plan is o ∈ O if appo(si−1) = si.
Notice: There may be more than one such operator, any of
them may be chosen.
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Planning as satisfiability
Example, continued

Example

One valuation that satisfies Φseq
3 :

time i
0 1 2 3

bi 1 1 0 0
ci 1 0 0 1

Notice:
1 Also a plan of length 1 exists.
2 Plans of length 2 do not exist.
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Conjunctive normal form

Many satisfiability algorithms require formulas in the
conjunctive normal form: transformation by repeated
applications of the following equivalences.

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ

¬¬φ ≡ φ
φ ∨ (ψ1 ∧ ψ2) ≡ (φ ∨ ψ1) ∧ (φ ∨ ψ2)

The formula is conjunction of clauses (disjunctions of
literals).

Example

(A ∨ ¬B ∨ C) ∧ (¬C ∨ ¬B) ∧A
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The unit resolution rule

Unit resolution

From l1 ∨ l2 ∨ · · · ∨ ln (here n ≥ 1) and l1 infer l2 ∨ · · · ∨ ln.

Example

From a ∨ b ∨ c and ¬a infer b ∨ c.

Unit resolution: a special case

From A and ¬A we get the empty clause ⊥ (“disjunction
consisting of zero disjuncts”).

Unit subsumption

The clause l1 ∨ l2 ∨ · · · ∨ ln can be eliminated if we have the
unit clause l1.
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The Davis-Putnam procedure

The first efficient decision procedure for any logic
(Davis, Putnam, Logemann & Loveland, 1960/62).

Based on binary search through the valuations of a
formula.

Unit resolution and unit subsumption help pruning the
search tree.

The currently most efficient satisfiability algorithms are
variants of the Davis-Putnam procedure
(Although there is currently a shift toward viewing these
procedures as performing more general resolution:
clause-learning.)
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Satisfiability test by the Davis-Putnam
procedure

1 Let C be a set of clauses.
2 For all clauses l1 ∨ l2 ∨ · · · ∨ ln ∈ C and l1 ∈ C,

remove l1 ∨ l2 ∨ · · · ∨ ln from C and add l2 ∨ · · · ∨ ln to C.
3 For all clauses l1 ∨ l2 ∨ · · · ∨ ln ∈ C and l1 ∈ C,

remove l1 ∨ l2 ∨ · · · ∨ ln from C. (UNIT SUBSUMPTION)
4 If ⊥ ∈ C, return FALSE.
5 If C contains only unit clauses, return TRUE.
6 Pick some a ∈ A such that {a,¬a} ∩ C = ∅
7 Recursive call: if C ∪ {a} is satisfiable, return TRUE.
8 Recursive call: if C ∪ {¬a} is satisfiable, return TRUE.
9 Return FALSE.
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Planning as satisfiability
Example: plan search with Davis-Putnam

Consider the problem from a previous slide, with two
operators each inverting the value of one state variable, for
plan length 3.

(b0 ∧ c0)
∧(((b0 ↔ b1) ∧ (c0 ↔ ¬c1)) ∨ ((b0 ↔ ¬b1) ∧ (c0 ↔ c1)))
∧(((b1 ↔ b2) ∧ (c1 ↔ ¬c2)) ∨ ((b1 ↔ ¬b2) ∧ (c1 ↔ c2)))
∧(((b2 ↔ b3) ∧ (c2 ↔ ¬c3)) ∨ ((b2 ↔ ¬b3) ∧ (c2 ↔ c3)))
∧((b3 ∧ ¬c3) ∨ (¬b3 ∧ c3)).
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Planning as satisfiability
Example: plan search with Davis-Putnam

To obtain a short CNF formula, we introduce auxiliary
variables oi

1 and oi
2 for i ∈ {1, 2, 3} denoting operator

applications.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
(b3 ∧ ¬c3) ∨ (¬b3 ∧ c3)

o11→((b0 ↔ b1) ∧ (c0 ↔ ¬c1))
o12→((b0 ↔ ¬b1) ∧ (c0 ↔ c1))
o21→((b1 ↔ b2) ∧ (c1 ↔ ¬c2))
o22→((b1 ↔ ¬b2) ∧ (c1 ↔ c2))
o31→((b2 ↔ b3) ∧ (c2 ↔ ¬c3))
o32→((b2 ↔ ¬b3) ∧ (c2 ↔ c3))
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Planning as satisfiability
Example: plan search with Davis-Putnam

We rewrite the formulae for operator applications by using
the equivalence φ→(l↔ l′) ≡ ((φ ∧ l→ l′) ∧ (φ ∧ l→ l′)).

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

o11 ∧ b0→b1

o11 ∧ ¬b0→¬b1
o11 ∧ c0→¬c1
o11 ∧ ¬c0→c1

o12 ∧ b0→¬b1
o12 ∧ ¬b0→b1

o12 ∧ c0→c1

o12 ∧ ¬c0→c1

o21 ∧ b1→b2

o21 ∧ ¬b1→¬b2
o21 ∧ c1→¬c2
o21 ∧ ¬c1→c2

o22 ∧ b1→¬b2
o22 ∧ ¬b1→b2

o22 ∧ c1→c2

o22 ∧ ¬c1→c2

o31 ∧ b2→b3

o31 ∧ ¬b2→¬b3
o31 ∧ c2→¬c3
o31 ∧ ¬c2→c3

o32 ∧ b2→¬b3
o32 ∧ ¬b2→b3

o32 ∧ c2→c3

o32 ∧ ¬c2→c3
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Planning as satisfiability
Example: plan search with Davis-Putnam

Eliminate implications with ((l1∧l2)→ l3) ≡ (l1∨l2∨l3).

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ c3

Valuation constructed by the Davis-Putnam procedure

0 1 2 3

bi

1 1

ci

1 0

1 2 3

oi
1

1

oi
2

0
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Example

Parallel plans

Planning as satisfiability
Example: plan search with Davis-Putnam

Identify unit clauses.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ c3

Valuation constructed by the Davis-Putnam procedure

0 1 2 3

bi 1

1

ci 1

0

1 2 3

oi
1

1

oi
2

0
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Parallel plans

Planning as satisfiability
Example: plan search with Davis-Putnam

Perform unit resolution with b0 and c0.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ c3

Valuation constructed by the Davis-Putnam procedure

0 1 2 3

bi 1

1

ci 1

0

1 2 3

oi
1

1

oi
2

0
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Parallel plans

Planning as satisfiability
Example: plan search with Davis-Putnam

Perform unit subsumption with b0 and c0.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ c3

Valuation constructed by the Davis-Putnam procedure

0 1 2 3

bi 1

1

ci 1

0

1 2 3

oi
1

1

oi
2

0
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Example

Parallel plans

Planning as satisfiability
Example: plan search with Davis-Putnam

Identify unit clauses. None exist. Must branch.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ c3

Valuation constructed by the Davis-Putnam procedure

0 1 2 3

bi 1

1

ci 1

0

1 2 3

oi
1

1

oi
2

0
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Parallel plans

Planning as satisfiability
Example: plan search with Davis-Putnam

We branch on b1, first trying out b1 = 1.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ c3

Valuation constructed by the Davis-Putnam procedure

0 1 2 3

bi 1 1
ci 1

0

1 2 3

oi
1

1

oi
2

0
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Example

Parallel plans

Planning as satisfiability
Example: plan search with Davis-Putnam

Perform unit resolution and unit subsumption with b1.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ c3

Valuation constructed by the Davis-Putnam procedure

0 1 2 3

bi 1 1
ci 1

0

1 2 3

oi
1

1

oi
2

0



AI Planning

SAT Planning
Relations in CPC

Ops in CPC

Plans in CPC

Example

Parallel plans

Planning as satisfiability
Example: plan search with Davis-Putnam

Perform unit resolution and unit subsumption with ¬o12.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ c3

Valuation constructed by the Davis-Putnam procedure

0 1 2 3

bi 1 1
ci 1

0

1 2 3

oi
1

1

oi
2 0
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Parallel plans

Planning as satisfiability
Example: plan search with Davis-Putnam

We obtain unit clause o11 and directly after it ¬c1.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ c3

Valuation constructed by the Davis-Putnam procedure

0 1 2 3

bi 1 1
ci 1 0

1 2 3

oi
1 1
oi
2 0
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Example

Parallel plans

Planning as satisfiability
Example: plan search with Davis-Putnam

Perform unit resolution and unit subsumption with o11,¬c1.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ c3

Valuation constructed by the Davis-Putnam procedure

0 1 2 3

bi 1 1
ci 1 0

1 2 3

oi
1 1
oi
2 0
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Example

Parallel plans

Planning as satisfiability
Example: plan search with Davis-Putnam

Identify unit clauses. None exist. Must branch a second time.

b0

c0

o11 ∨ o12
o21 ∨ o22
o31 ∨ o32
b3 ∨ c3
¬c3 ∨ ¬b3

¬o11 ∨ ¬b0 ∨ b1
¬o11 ∨ b0 ∨ ¬b1
¬o11 ∨ ¬c0 ∨ ¬c1
¬o11 ∨ c0 ∨ c1
¬o12 ∨ ¬b0 ∨ ¬b1
¬o12 ∨ b0 ∨ b1
¬o12 ∨ ¬c0 ∨ c1
¬o12 ∨ c0 ∨ c1

¬o21 ∨ ¬b1 ∨ b2
¬o21 ∨ b1 ∨ ¬b2
¬o21 ∨ ¬c1 ∨ ¬c2
¬o21 ∨ c1 ∨ c2
¬o22 ∨ ¬b1 ∨ ¬b2
¬o22 ∨ b1 ∨ b2
¬o22 ∨ ¬c1 ∨ c2
¬o22 ∨ c1 ∨ c2

¬o31 ∨ ¬b2 ∨ b3
¬o31 ∨ b2 ∨ ¬b3
¬o31 ∨ ¬c2 ∨ ¬c3
¬o31 ∨ c2 ∨ c3
¬o32 ∨ ¬b2 ∨ ¬b3
¬o32 ∨ b2 ∨ b3
¬o32 ∨ ¬c2 ∨ c3
¬o32 ∨ c2 ∨ c3

Valuation constructed by the Davis-Putnam procedure

0 1 2 3

bi 1 1
ci 1 0

1 2 3

oi
1 1
oi
2 0
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Planning as satisfiability with parallel plans

Efficiency of satisfiability planning is strongly dependent
on the plan length because satisfiability algorithms
have runtime O(2n) where n is the formula size, and
formula sizes are linearly proportional to plan length.

Formula sizes can be reduced by allowing several
operators in parallel.

On many problems this leads to big speed-ups.

However there are no guarantees of optimality.
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Parallel operator application
Formal definition

We consider the possibility of executing several operators
simultaneously.

Definition

Let T be a set of operators and s a state.
Define appT (s) as the state that is obtained from s by
making the literals in

⋃
〈c,e〉∈T [e]s true.

For appT (s) to be defined, we require that s |= c for all
o = 〈c, e〉 ∈ T and

⋃
〈c,e〉∈T [e]s is consistent.
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Parallel operator application
Representation in CPC

Consider the formula τA(o) representing operator o = 〈c, e〉

c∧∧
a∈A((EPCa(e) ∨ (a ∧ ¬EPC¬a(e))) ↔ a′)∧∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)).

This can be logically equivalently be written as follows.

c∧∧
a∈A(EPCa(e)→a′)∧∧
a∈A(EPC¬a(e)→¬a′)∧∧
a∈A((a ∧ ¬EPC¬a(e))→a′)∧∧
a∈A((¬a ∧ ¬EPCa(e))→¬a′)

This separates the changes from non-changes. This is the
basis of the translation for parallel actions for which we do
not say that executing a given operator directly means that
unrelated state variables retain their old value.



AI Planning

SAT Planning

Parallel plans
Interference

Translation

Optimality

Example

The explanatory frame axioms

The formulae say that the only explanation for a changing its
value is the application of one operator.∧

a∈A((a ∧ ¬a′)→EPC¬a(e))∧
a∈A((¬a ∧ a′)→EPCa(e))

When several operators could be applied in parallel, we
have to consider all operators as possible explanations.∧

a∈A((a ∧ ¬a′)→((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (on ∧ EPC¬a(en))∧
a∈A((¬a ∧ a′)→((o1 ∧ EPCa(e1)) ∨ · · · ∨ (on ∧ EPCa(en)))

where T = {o1, . . . , on} and e1, . . . , en are the respective
effects.
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Parallel actions
Formula in CPC

Definition

Let T be a set of operators. Let τA(T ) denote the
conjunction of formulae

(o→c)∧∧
a∈A(o ∧ EPCa(e)→a′)∧∧
a∈A(o ∧ EPC¬a(e)→¬a′)

for all 〈c, e〉 ∈ T and∧
a∈A((a ∧ ¬a′)→((o1 ∧ EPC¬a(e1)) ∨ · · · ∨ (on ∧ EPC¬a(en))∧
a∈A((¬a ∧ a′)→((o1 ∧ EPCa(e1)) ∨ · · · ∨ (on ∧ EPCa(en)))

where T = {o1, . . . , on} and e1, . . . , en are the respective
effects.
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Correctness

The formula τA(T ) exactly matches the definition of appT (s).

Lemma

Let s and s′ be states and T a set of operators. Let
v : A ∪A′ ∪ T → {0, 1} be a valuation such that

1 for all o ∈ T , v(o) = 1,
2 for all a ∈ A, v(a) = s(a), and
3 for all a ∈ A, v(a′) = s′(a).

Then v |= τA(T ) if and only if s′ = appT (s).
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Parallel actions
Meaning in terms of interleavings

Example

The operators 〈a,¬b〉 and 〈b,¬a〉 may be executed
simultaneously resulting in a state satisfying ¬a ∧ ¬b.
But this state is not reachable by the two operators
sequentially, because executing any one operator makes
the precondition of the other false.
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Step plans
Formal definition

Definition (Step plans)

For a set of operators O and an initial state I, a step plan for
O and I is a sequence T = 〈T0, . . . , Tl−1〉 of sets of
operators for some l ≥ 0 such that there is a sequence of
states s0, . . . , sl (the execution of T ) such that

1 s0 = I,
2 for all i ∈ {0, . . . , l − 1} and every total ordering
o1, . . . , on of Ti, appo1;...;on(si) is defined and equals
si+1.
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Step plans
Tractable subclass

Finding arbitrary step plans is difficult: even testing
whether a set T of operators is executable in all orders
is co-NP-hard.

Representing the executability test exactly as a
propositional formula seems complicated: doing this
test exactly would seem to cancel the benefits of
parallel plans.

Instead, all work on parallel plans so far has used a
sufficient but not necessary condition that can be tested
in polynomial-time.

This is a simple syntactic test: is the result of executing
o1 and o2 in any state both in order o1; o2 and in o2; o1
the same.
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Interference
Example

Actions do not interfere

A B C D
A
B C

D

Actions can be taken simultaneously.

Actions interfere

A B C D
If A is moved first, B won’t be clear and cannot be moved.
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Interference
Auxiliary definition: affects

Definition (Affect)

Let A be a set of state variables and o = 〈c, e〉 and
o′ = 〈c′, e′〉 operators over A. Then o affects o′ if there is
a ∈ A such that

1 a is an atomic effect in e and a occurs in a formula in e′

or it occurs negatively in c′, or
2 ¬a is an atomic effect in e and a occurs in a formula in
e′ or it occurs positively in c′.

Example

〈c, d〉 affects 〈¬d, e〉 and 〈e, d B f〉.
〈c, d〉 does not affect 〈d, e〉 nor 〈e,¬c〉.
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Interference

Definition (Interference)

Operators o and o′ interfere if o affects o′ or o′ affects o.

Example

〈c, d〉 and 〈¬d, e〉 interfere.
〈c, d〉 and 〈e, f〉 do not interfere.
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Interference

Lemma

Let s be a state and T a set of operators so that appT (s) is
defined and no two operators interfere.
Then appT (s) = appo1;...;on(s) for any total ordering
o1, . . . , on of T .
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The translation for parallel plans in CPC

Definition

Define R2(A,A
′, O) as the conjunction of τA(O) and

¬(o ∧ o′)

for all o ∈ O and o′ ∈ O such that o and o′ interfere and
o 6= o′.
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Planning as satisfiability
Existence of plans

Definition (Bounded-length plans in CPC)

Existence of parallel plans length t is represented by a
formula over propositions A0 ∪ · · · ∪At ∪O1 ∪ · · · ∪Ot where
Ai = {ai|a ∈ A} for all i ∈ {0, . . . , t} and Oi = {oi|o ∈ O} for
all i ∈ {1, . . . t} as

Φpar
t = ι0 ∧R2(A

0, A1, O1) ∧ · · · ∧ R2(A
t−1, At, Ot) ∧Gt

where ι0 =
∧
{a0|a ∈ A, I(a) = 1} ∪ {¬a0|a ∈ A, I(a) = 0}

and Gt is G with propositions a replaced by at.
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Planning as satisfiability
Existence of plans

Theorem

Let Φpar
t be the formula for 〈A, I,O,G〉 and plan length t.

The formula Φpar
t is satisfiable if and only if there is a

sequence of states s0, . . . , st and sets O1, . . . , Ot of
non-interfering operators such that s0 = I, st |= G and
si = appOi(si−1) for all i ∈ {1, . . . , t}.
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Why is optimality lost?

For parallel plans there is no guarantee for smallest number
of operators

That a plan has the smallest number of time points does not
guarantee that it has the smallest number of actions.

Satisfiability algorithms return any satisfying valuation
of Φpar

i , and this does not have to be the one with the
smallest number of operators.

There could be better solutions with more time points.
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Why is optimality lost?

Example

Let I be a state such that s |= ¬c ∧ ¬d ∧ ¬e ∧ ¬f .
Let G = c ∧ d ∧ e.
Let

o1 = 〈>, c〉
o2 = 〈>, d〉
o3 = 〈>, e〉
o4 = 〈>, f〉
o5 = 〈f, c ∧ d ∧ e〉

Now {o1, o2, o3} is a plan with one step, and {o4}; {o5} is a
plan with two steps. The first one has less time steps and
corresponds to a satisfying valuation of both Φpar

1 and Φpar
2 .
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Planning as satisfiability
Example

A
B
C

D
E

A
B
C
D
E

initial state goal state

The Davis-Putnam procedure solves the problem quickly:
Formulae for lengths 1 to 4 shown unsatisfiable without
any search.
Formula for plan length 5 is satisfiable: 3 nodes in the
search tree.
Plans have 5 to 7 operators, optimal plan has 5.
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Planning as satisfiability
Example

v0.9 13/08/1997 19:32:47
30 propositions 100 operators
Length 1
Length 2
Length 3
Length 4
Length 5
branch on -clear(b)[1] depth 0
branch on clear(a)[3] depth 1
Found a plan.

0 totable(e,d)
1 totable(c,b) fromtable(d,e)
2 totable(b,a) fromtable(c,d)
3 fromtable(b,c)
4 fromtable(a,b)

Branches 2 last 2 failed 0; time 0.0
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Planning as satisfiability
Example: valuations after unit propagation, after branching

ON ON
CLEARaaaabbbbccccddddeeeeTABLE
abcdebcdeacdeabdeabceabcdabcde

0 FFTFTFFFFTFFFFTFFFFFFFFFTTFFTF
1 F TTTFFFFTFFFF FFFFFFFFFFTF TT
2 TFFFFF FFF FFFFFTFFFFT FT
3 FF FFF FFFFTFFFFTFFFF FFT
4 FFF FFFFTFFFFTFFFFTFFFF FFFT
5 FFFFTFFFFTFFFFTFFFFTFFFFFFFFT

0 FFTFTFFFFTFFFFTFFFFFFFFFTTFFTF
1 FFTTTFFFFTFFFFTFFFFFFFFFFTFFTT
2 F TTFFFFFTFFFF FFFFFTFFFFTF FT
3 TTFFFFFF FFFFFTFFFFTFFFFT FFT
4 TTFFFFFFFFTFFFFTFFFFTFFFFTFFFT
5 TFFFFTFFFFTFFFFTFFFFTFFFFFFFFT

0 FFTFTFFFFTFFFFTFFFFFFFFFTTFFTF
1 FFTTTFFFFTFFFFTFFFFFFFFFFTFFTT
2 FTTTFFFFFTFFFFFFFFFFTFFFFTFTFT
3 TTTFFFFFFFFFFFFTFFFFTFFFFTTFFT
4 TTFFFFFFFFTFFFFTFFFFTFFFFTFFFT
5 TFFFFTFFFFTFFFFTFFFFTFFFFFFFFT



AI Planning

SAT Planning

Parallel plans
Interference

Translation

Optimality

Example

Planning as satisfiability
Example: valuations after unit propagation, after branching

012345 012345 012345
clear(a) FF FFF TT FFFTTT
clear(b) F F FF TTF FFTTTF
clear(c) TT FF TTTTFF TTTTFF
clear(d) FTTFFF FTTFFF FTTFFF
clear(e) TTFFFF TTFFFF TTFFFF

on(a,b) FFF T FFFFFT FFFFFT
on(a,c) FFFFFF FFFFFF FFFFFF
on(a,d) FFFFFF FFFFFF FFFFFF
on(a,e) FFFFFF FFFFFF FFFFFF
on(b,a) TT FF TTT FF TTTFFF
on(b,c) FF TT FFFFTT FFFFTT
on(b,d) FFFFFF FFFFFF FFFFFF
on(b,e) FFFFFF FFFFFF FFFFFF
on(c,a) FFFFFF FFFFFF FFFFFF
on(c,b) T FFF TT FFF TTFFFF
on(c,d) FFFTTT FFFTTT FFFTTT
on(c,e) FFFFFF FFFFFF FFFFFF
on(d,a) FFFFFF FFFFFF FFFFFF
on(d,b) FFFFFF FFFFFF FFFFFF
on(d,c) FFFFFF FFFFFF FFFFFF
on(d,e) FFTTTT FFTTTT FFTTTT
on(e,a) FFFFFF FFFFFF FFFFFF
on(e,b) FFFFFF FFFFFF FFFFFF
on(e,c) FFFFFF FFFFFF FFFFFF
on(e,d) TFFFFF TFFFFF TFFFFF

ontable(a) TTT F TTTTTF TTTTTF
ontable(b) FF FF FFF FF FFFTFF
ontable(c) F FFF FF FFF FFTFFF
ontable(d) TTFFFF TTFFFF TTFFFF
ontable(e) FTTTTT FTTTTT FTTTTT
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Planning as satisfiability
Example: valuation for operators after plan has been found

01234
fromtable(a,b) ....T
fromtable(b,c) ...T.
fromtable(c,d) ..T..
fromtable(d,e) .T...

totable(b,a) ..T..
totable(c,b) .T...
totable(e,d) T....
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