Distances and heuristics (April 25, 2005)

Planning by heuristic search
Incomplete plans
A*
Local search
Deriving heuristics

Distances

Heuristics
Max-heuristic
Admissibility
Tractability

Plan search: incomplete plans for progression

For progression, the incomplete plans are prefixes $o_{1}, o_{2}, \ldots, o_{n}$ of potential plans.
An incomplete plan is extended by

1. adding an operator after the last operator, from o_{1}, \ldots, o_{n} to $o_{1}, o_{2}, \ldots, o_{n}$, o for some $o \in O$, or
2. removing one or more of the last operators,
from o_{1}, \ldots, o_{n} to o_{1}, \ldots, o_{i} for some $i<n$.
This is for local search algorithms only.
$o_{1}, o_{2}, \ldots, o_{n}$ is a plan if $\operatorname{app}_{o_{n}}\left(\operatorname{app}_{o_{n-}}\left(\cdots \operatorname{app}_{o_{1}}(I) \cdots\right)\right) \models G$.

Planning by heuristic search
Forward search

$\begin{array}{llll}\text { (Albert-Ludwigs-Universität Freiburg) } & \text { Al Planning } & \text { April 25, 2005 } & \text { 5/41 }\end{array}$
Planning by heuristic search Incomplete plans

Planning by heuristic search
Selection of operators based on distance estimates

Select next operator $o \in O$ based on the estimated distance (number of operators) between

1. $\operatorname{app}_{o}\left(\operatorname{app}_{o_{n}}\left(\operatorname{app}_{o_{n-1}}\left(\cdots \operatorname{app}_{o_{1}}(I) \cdots\right)\right)\right)$ and G, for forward search.
2. I and regro $\left(\right.$ regr $_{o_{n}}\left(\cdots\right.$ regr $_{o_{2}}\left(\right.$ regr $\left.\left.\left._{o_{1}}(G)\right) \cdots\right)\right)$, for backward search.

Plan search with heuristic search algorithms

- For forward and backward search (progression, regression) the search space consists of incomplete plans that are respectively prefixes of possible plans and suffixes of possible plans.
Search starts from the empty plan.
- The neighbors/children of an incomplete plan in the search space are those that are obtained by

1. adding an operator to the incomplete plan, or 2. removing an operator from the incomplete plan.

- Systematic search algorithms (like A*) keep track of the incomplete plans generated so far, and therefore can go back to them.
Hence removing operators from incomplete plans is only needed for local search algorithms which do not keep track of the history of the search process.
$\begin{array}{llll}\text { Albert-Ludwigs-Universitäat Freiburg } & \text { Al Planning } & \text { April 25, 2005 } & \text { 2/41 }\end{array}$

Plan search: incomplete plans for regression

For regression, the incomplete plans are suffixes o_{n}, \ldots, o_{1} of potential plans.
An incomplete plan is extended by

1. adding an operator in front of the first operator, from o_{n}, \ldots, o_{1} to o, o_{n}, \ldots, o_{1} for $o \in O$, or
2. deleting one or more of the first operators, from o_{n}, \ldots, o_{1} to o_{i}, \ldots, o_{1} for some $i<n$. This is for local search algorithms only.
o_{n}, \ldots, o_{1} is a plan if $I \models \operatorname{regr}_{o_{n}}\left(\cdots \operatorname{regr}_{o_{2}}\left(\operatorname{regr}_{o_{1}}(G)\right) \cdots\right)$.
Remark
Above is for the simplest case when the formulae are not split. With splitting formalization is slightly trickier.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	April 25, 2005

Planning by heuristic search
Backward search

(Albert-Ludwigs-Universität Freiburg) Al Planning \quad April 25, 2005 6/41

Search algorithms: A*

Search control of A*
$A *$ uses the function $f(\sigma)=g(\sigma)+h(\sigma)$ to guide search:

- $g(\sigma)=$ cost so far i.e. number of operators in σ
- $h(\sigma)=$ estimated remaining cost (distance)
- admissibility: $h(\sigma)$ must be less than or equal the actual remaining cost $h *(\sigma)$ (distance), otherwise $\mathbf{A} *$ is not guaranteed to find an optimal solution.

Search algorithms: A*
 Example

Local search: random walk

Random walk

1. $\sigma:=\epsilon$
2. If $\operatorname{app}_{\sigma}(I) \models G$, stop: σ is a plan.
3. Randomly choose a neighbor σ^{\prime} of σ.
4. $\sigma:=\sigma^{\prime}$
5. Go to 2.

Remark
The algorithm usually does not find any solutions, unless almost every sequence of actions is a plan.

Local search: simulated annealing

Simulated annealing

1. $\sigma:=\epsilon$
2. If $\operatorname{app}_{\sigma}(I) \models G$, stop: σ is a plan.
3. Randomly choose a neighbor σ^{\prime} of σ.
4. If $h\left(\sigma^{\prime}\right)<h(\sigma)$ go to 7 .
5. With probability $\exp \left(-\frac{h\left(\sigma^{\prime}\right)-h(\sigma)}{T}\right)$ go to 7 .
6. Go to 3.
7. $\sigma:=\sigma^{\prime}$
8. Decrease T. (Different possible strategies!)
9. Go to 2.

The temperature T is initially high and then gradually decreased.
(Albert-Ludwigs-Universität Freiburg)

AI Planning

April 25, $2005 \quad 13 / 41$

Planning by heuristic search Deriving heuristics
How to obtain heuristics?

General procedure for obtaining a heuristic
Solve a simplified / less restricted version of the problem.
Example (Route-planning for the road network)
The road network is formalized as a weighted graph where the weight of an edge is the road distance between two locations.
A heuristic is obtained from the Euclidean distance $\sqrt{\left|x_{1}-x_{2}\right|^{2}+\left|y_{1}-y_{2}\right|^{2}}$. It is a lower bound on the road distance between $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}).

Search algorithms: A*
Definition
Notation for operator sequences
$\operatorname{app}_{o_{1} ; o_{2} ; \ldots ; o_{n}}(s)$ denotes $\operatorname{app}_{o_{n}}\left(\ldots \operatorname{app}_{o_{2}}\left(\operatorname{app}_{o_{1}}(s)\right) \ldots\right)$ and ϵ denotes the empty sequence for which $a p p_{\epsilon}(s)=s$.

Algorithm A*
Forward search with $\mathrm{A} *$ works as follows.

1. OPEN $:=\{\epsilon\}$, CLOSED $:=\emptyset$.

If OPEN $=\emptyset$, then stop: no solution.
Choose an element $\sigma \in$ OPEN with the least $f(\sigma)$.
If $\operatorname{app}_{\sigma}(I) \models G$ then stop: solution found.
OPEN $:=$ OPEN $\backslash\{\sigma\} ;$ CLOSED $:=$ CLOSED $\cup\{\sigma\}$.
OPEN $:=$ OPEN $\cup(\{\sigma ; o \mid o \in O\} \backslash$ CLOSED $)$.
Go to 2.
$\begin{array}{llll}\text { (Albert-Ludwigs-Universität Freiburg) } & \text { Al Planning } & \text { April 25, 2005 } & 10 / 41\end{array}$

Local search: steepest descent hill-climbing

Hill-climbing

1. $\sigma:=\epsilon$
2. If $\operatorname{app}_{\sigma}(I) \models G$, stop: σ is a plan.
3. Randomly choose neighbor σ^{\prime} of σ with the least $h\left(\sigma^{\prime}\right)$.
4. $\sigma:=\sigma^{\prime}$
5. Go to 2.

Remark
The algorithm gets stuck in local minima: the 3rd step cannot be carried out because no neighbor is better than the current incomplete plan.

Planning by heuristic search Local search
Local search: simulated annealing Illustration

(Albert-Ludwigs-Universität Freiburg)	Al Planning	April 25, 2005	14/41

An admissible heuristic for route planning Example

Heuristics for deterministic planning STRIPS

- STRIPS (Fikes \& Nilsson, 1971) used the number of state variables that differ:

$$
\left|\left\{a \in A \mid s(a)=s^{\prime}(a)\right\}\right| .
$$

"The more goal literals an operator makes true, the more useful the operator is."

- The above heuristic is not admissible because one operator may reduce this measure by more than one. Instead,

$$
\frac{\left|\left\{a \in A \mid s(a)=s^{\prime}(a)\right\}\right|}{n}
$$

is admissible when no operator has $>n$ atomic effects.

```
Albert-Ludwigs-Universität Freiburg)
```

Al Planning

$$
\text { April } 25,2005 \quad 17 / 41
$$

Distances

Distances

illustration
Forward distance of state s is 3 because $s \in D_{3}^{f w d} \backslash D_{2}^{f w d}$.

As $D_{i}^{f w d}=D_{4}^{f w d}$ for all $i>4$, forward distance of state s^{\prime} is ∞.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	April 25, 2005	19/41

Distances

of formulae
$\delta_{I}^{f w d}(\phi)=3$ since $s \models \phi$ for some $s \in D_{3}^{f w d}$ but for no $s \in D_{2}^{f w d}$.

(Albert-Ludwigs-Universität Freiburg)

Al Planning

April 25, 2005 21/41

Heuristic: approximations of distances

- We define a relaxed/approximate notion of distances that is computable in polynomial time.
- Exact distances are as hard to compute as solving the planning problem: when the distances are known, a plan is obtained simply by repeatedly choosing an operator that reduces the distance to goals by one.
- The idea of our approximation is: instead of distances of states, consider distances of literals which are distances of states in which the literal is true.
- If there are n state variables, for exact distances we have to consider sets with up to 2^{n} states.
For approximate distances sets with up to n literals suffice: polynomial time algorithms are possible.

Images

Definition
The image of a state s with respect to an action o is

$$
\operatorname{img}_{o}(s)=\left\{s^{\prime} \mid \operatorname{sos}^{\prime}\right\} .
$$

This can be generalized to sets T of states as follows.

$$
\operatorname{img}_{o}(T)=\bigcup_{s \in T} i m g_{o}(s)
$$

We use these functions also for operators o : replace $\operatorname{sos}^{\prime}$ by $s R(o) s^{\prime}$ where $R(o)$ is the relation corresponding to o.

(Albert-Ludwigs-Universität Freiburg	Al Planning	April 25, 2005
18/41		

Distances

Definition
Let I be a state and O a set of det. operators. Define the forward distance sets $D_{i}^{f w d}$ for I, O by

$$
\begin{aligned}
& D_{0}^{f w d}=\{I\} \\
& D_{i}^{f w d}=D_{i-1}^{f w d} \cup \bigcup_{o \in O} i m g_{o}\left(D_{i-1}^{f w d}\right) \text { for all } i \geq 1
\end{aligned}
$$

Definition
Let $D_{0}^{f w d}, D_{1}^{f w d}, \ldots$ be the forward distance sets for I, O.
The forward distance of a state s from I is

$$
\delta_{I}^{f w d}(s)= \begin{cases}0 & \text { if } I=s, \\ i & \text { if } s \in D_{i}^{f w d} \backslash D_{i-1}^{f w d}\end{cases}
$$

If $s \notin D_{i}^{f w d}$ for all $i \geq 0$ then the distance of s is ∞. States with a finite distance are reachable from I with O.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	April 25, 2005	20/41

Distances

of formulae

Theorem
$\delta_{I}^{\text {twd }}(s)$ is the length n of a shortest sequence $o_{1} ; \ldots ; o_{n}$ of actions/operators for reaching s from I.

Definition
Let ϕ be a formula. The forward distance $\delta_{I}^{f w d}(\phi)$ of ϕ is i if there is state s such that $s \models \phi$ and $\delta_{I}^{\text {fwd }}(s)=i$ and there is no state s such that $s \models \phi$ and $\delta_{I}^{f w d}(s)<i$.

Sets of literals representing sets of states

Idea
Let S be the set of all states (valuations of state variables.) A set T of literals a and $\neg a$ represents the set $\{s \in S \mid s \models T\}$ of states.

Example

The following are equivalent.

1. $b \vee c$ is true in at least one state represented by $\{a, \neg c\}$.
2. $\{a, \neg c\} \cup\{b \vee c\}$ is satisfiable $=\operatorname{SAT}(\{a, \neg c\} \cup\{b \vee c\})$.

Distance estimation

Blocks world example

	$D_{0}^{\max }$	$D_{1}^{\text {max }}$	$D_{2}^{\text {max }}$	$D_{3}^{\max }$	$D_{4}^{\text {max }}$
AonB	T	TF	TF	TF	TF
AonC	F	F	F	TF	TF
BonA	F	F	TF	TF	TF
BonC	T	T	T	TF	TF
ConA	F	F	F	TF	TF
ConB	F	F	F	TF	TF
AonT	F	TF	TF	TF	TF
BonT	F	F	TF	TF	TF
ConT	T	T	T	TF	TF
Aclear	T	T	TF	TF	TF
Bclear	F	TF	TF	TF	TF
Cclear	F	F	F	TF	TF

(Albert-Ludwigs-Universität Freiburg)
Al Planning
April 25, $2005 \quad$ 25/41

Distances of literals

Definition
$E P C_{l}(\langle c, e\rangle)=E P C_{l}(e) \wedge c \wedge \bigwedge_{a \in A} \neg\left(E P C_{a}(e) \wedge E P C_{\neg a}(e)\right)$
Definition
Let $L=A \cup\{\neg a \mid a \in A\}$ be the set of literals on A. Let I be a state.
Define the sets $D_{i}^{\max }$ for $i \geq 0$ as follows.

$$
\begin{aligned}
D_{0}^{\max } & =\{l \in L \mid I \models l\} \\
D_{i}^{\max } & =D_{i-1}^{\max } \backslash\left\{l \in L \mid o \in O, \operatorname{SAT}\left(D_{i-1}^{\max } \cup\left\{E P C_{\bar{l}}(o)\right\}\right)\right\}
\end{aligned}
$$

Remark
Since we consider only finite sets A of state variables and
$\left|D_{0}^{\max }\right|=|A|$ and $D_{i+1}^{\max } \subseteq D_{i}^{\max }$ for all $i \geq 0$, necessarily $D_{i}^{\max }=D_{j}^{\max }$ for some $i \leq|A|$ and all $j>i$.
\qquad

Al Planning

Heuristics Max-heuristic

Why are max-distances inaccurate?

Example

1. Consider the problem of switching on n lamps that are all switched off.
2. Each action switches on 1 lamp.
3. The distances of literal "lamp i is on" for every i is 1 .
4. But the distance of the state with all lamps on is n.

The distance estimate of n goals in the above example is the maximum of the distances of individual goals, even though the sum of the distances in this case would be much more accurate. (See the lecture notes for further discussion of this topic.)

Albert-Ludwigs-Universität Freiburg)

AI Planning

April 25, 2005 29/41

Relation between max-distances and distances
The sets $D_{i}^{\max }$ approximate the sets $D_{i}^{f w d}$ upwards in the following way.
Theorem (A)
Let $D_{i}^{f w d}, i \geq 0$ be the forward distance sets and $D_{i}^{\max }$ the
max-distance sets for I and O. Then for all $i \geq 0$,
$D_{i}^{f w d} \subseteq\left\{s \in S \mid s \models D_{i}^{\max }\right\}$ where S is the set of all states.
Proof.
By induction on i.
Base case $i=0: D_{0}^{f w d}$ consists of the unique initial state and $D_{0}^{\max }$ consists of exactly those literals that are true in the initial state, identifying the initial state uniquely. Hence $D_{i}^{f w d}=\left\{s \in S \mid s \models D_{i}^{\max }\right\}$.

Distance estimation

Blocks world example
Initially A is on B which is on C.

$$
\begin{aligned}
D_{0}^{\max }= & \{\text { Aclear, AonB, BonC, ConT }, \neg \text { AonC }, \neg \text { BonA, }, \\
& \neg \text { ConA }, \neg \text { ConB, } \neg \text { AonT }, \neg \text { BonT }, \neg \text { Bclear }, \neg \text { Cclear }\} \\
D_{1}^{\text {max }}= & \{\text { Aclear, BonC, ConT, } \neg \text { AonC }, \neg \text { BonA, }, \\
& \neg \text { ConA, } \neg \text { ConB, } \neg \text { BonT, } \neg \text { Cclear }\} \\
D_{2}^{\max }= & \{\text { ConT }, \neg \text { AonC }, \neg \text { ConA }, \neg \text { ConB }\} \\
D_{3}^{\text {max }}= & \emptyset
\end{aligned}
$$

New state variables values are possible at the given time points because of the following actions.

1. A onto table
2. B onto table, B onto A
3. C onto A, C onto B, A onto C
(Albert-Ludwigs-Universität Freiburg)

Max-distances of literals and states

Definition
The max-distance of a literal l (from I with O) is

$$
\delta_{I}^{\max }(l)=\left\{\begin{array}{l}
0 \text { if } \bar{l} \notin D_{0}^{\max } \\
d \text { if } \bar{l} \in D_{d-1}^{\max } \backslash D_{d}^{\max } \text { for } d \geq 1
\end{array}\right.
$$

Definition
The max-distance of a state s (from I with O) is

$$
\delta_{I}^{\max }(s)=\left\{\begin{array}{l}
0 \text { if } s \models D_{0}^{\max } \\
d \text { if } s \not \models D_{d-1}^{\max } \text { and } s \models D_{d}^{\max } \text { for } d \geq 1
\end{array}\right.
$$

If $\delta_{I}^{\max }(s)=n$ then $\delta_{I}^{\max }(l) \leq n$ for all literals l such that $s \models l$, and $\delta_{I}^{\text {max }}(l)=n$ for at least one literal l.
(Albert-Ludwigs-Universität Freiburg)
Al Planning
April 25, $2005 \quad 28 / 41$

Distances of formulae

Based on the distances of literals we can define the distances of formulae. The distance of ϕ is n if $s \models \phi$ for at least one state having distance n and $s \not \vDash \phi$ for all states having distance $<n$.
Definition
The max-distance of a formula ϕ (from I with O) is
$\delta_{I}^{\max }(\phi)=\left\{\begin{array}{l}0 \text { if } \operatorname{SAT}\left(D_{0}^{\max } \cup\{\phi\}\right) \\ d \text { if } \operatorname{SAT}\left(D_{d}^{\max } \cup\{\phi\}\right) \text { and not } \operatorname{SAT}\left(D_{d-1}^{\max } \cup\{\phi\}\right) \text { for } d \geq 1\end{array}\right.$

Relation between max-distances and distances continued
proof continues.
Inductive case $i \geq 1$: Let s be any state in $D_{i}^{f w d}$. We show that $s \models D_{i}^{\max }$. Let l be any literal in $D_{i}^{\max }$.

1. Assume $s \in D_{i-1}^{f w d}$. As $D_{i}^{\max } \subseteq D_{i-1}^{\max }$ also $l \in D_{i-1}^{\max }$. By the induction hypothesis $s \models l$.
2. Otherwise $s \in D_{i}^{f w d} \backslash D_{i-1}^{f w d}$.

Hence there is $o \in O$ and $s_{0} \in D_{i-1}^{f w d}$ with $s=\operatorname{app}_{o}\left(s_{0}\right)$.
By $D_{i}^{\max } \subseteq D_{i-1}^{\max }$ and the induction hypothesis $s_{0} \models l$.
As $l \in D_{i}^{\text {max }}$, not $\operatorname{SAT}\left(D_{i-1}^{\max } \cup\left\{E P C_{\bar{l}}(o)\right\}\right)$ by def. of $D_{i}^{\max }$. Not asat $\left(D_{i-1}^{\max }, E P C_{\bar{l}}(o)\right)$ implies not $\operatorname{SAT}\left(D_{i-1}^{\max } \cup\left\{E P C_{\bar{l}}(o)\right\}\right)$.
By $s_{0} \in D_{i-1}^{f w d}$ and the induction hypothesis $s_{0} \models D_{i-1}^{\max }$. Hence $s_{0} \not \models E P C_{\bar{l}}(o)$.
By Lemma B applying o in s_{0} does not make l false.
Hence $s \models l$.

Properties of max-distances

Corollary
Let I be a state and ϕ a formula. Then for any sequence o_{1}, \ldots, o_{n} of operators such that executing them in I results in state s such that $s \models \phi, n \geq \delta_{I}^{\max }(\phi)$.
Hence we can use $\delta_{I}^{\max }(\phi)$ for estimating the distance from I to ϕ. This never overestimates the actual distance (the heuristic is admissible) but may severely underestimate.

Albert-Ludwigs-Universität Freiburg)

Al Planning

pril 25, 2005 33/4

Distance estimation in polynomial time

- By approximating the satisfiability tests it becomes possible to compute max-distances in polynomial time.
- This is at the cost of a small further inaccuracy.
- Satisfiability tests $\operatorname{SAT}(D \cup\{\phi\})$ are replaced by a weaker test $\operatorname{asat}(D, \phi)$ such that

$$
\text { if } \operatorname{SAT}(D \cup\{\phi\}) \text { then } \operatorname{asat}(D, \phi)
$$

(but not necessarily vice versa.)

- Max-distances remain admissible under such a weaker test.
- We next present procedure asat (D, ϕ) that is polynomial time computable.

| (Albert-Ludwigs-Universität Freiburg) | Al Planning | April 25, 2005 | 35/41 |
| :--- | :---: | :---: | :---: | :---: |
| | Heuristics \quad Tractability | | |

The procedure asat (ϕ, D)

Definition

Definition

Let D be a consistent set of literals. Then define

$$
\begin{array}{ll}
\operatorname{asat}(D, \perp) & =\text { false } \\
\operatorname{asat}(D, \top) & =\operatorname{true} \\
\operatorname{asat}(D, a) & =\operatorname{true} \text { iff } \neg a \notin D(\text { for } a \in A) \\
\operatorname{asat}(D, \neg a) & =\operatorname{true} i f f a \notin D(\text { for } a \in A) \\
\operatorname{asat}(D, \neg \neg \phi) & =\operatorname{asat}(D, \phi) \\
\operatorname{asat}(D, \phi \vee \psi) & =\operatorname{asat}(D, \phi) \text { or asat }(D, \psi) \\
\operatorname{asat}(D, \phi \wedge \psi) & =\operatorname{asat}(D, \phi) \text { and asat }(D, \psi) \\
\operatorname{asat}(D, \neg(\phi \vee \psi)) & =\operatorname{asat}(D, \neg \phi) \operatorname{and} \operatorname{asat}(D, \neg \psi) \\
\operatorname{asat}(D, \neg(\phi \wedge \psi)) & =\operatorname{asat}(D, \neg \phi) \text { or } \operatorname{asat}(D, \neg \psi)
\end{array}
$$

The procedure asat (D, ϕ)
Correctness

Lemma (ASAT)
Let ϕ be a formula and D a consistent set of literals (i.e. $\{a, \neg a\} \nsubseteq D$
for all $a \in A$.)
If $D \cup\{\phi\}$ is satisfiable then asat (D, ϕ) returns true.
Proof.
By induction on the structure of ϕ.
Base case $1 \phi=\perp$: The set $D \cup\{\perp\}$ is not satisfiable, and hence the implication trivially holds.
Base case $2 \phi=\mathrm{T}$: asat (D, \top) always returns true, and hence the implication trivially holds.
Base case $3 \phi=a$ for some $a \in A$: If $D \cup\{a\}$ is satisfiable, then $\neg a \notin D$, and hence asat (D, a) returns true.

Computing max-distances takes polynomial time assuming the tests $\operatorname{SAT}\left(D_{i}^{\max } \cup\{\phi\}\right)$ take polynomial time.

- However, performing these tests is of course in general NP-hard.
- Polynomial time special case: ϕ is a conjunction literals. Then $\operatorname{SAT}\left(D_{i}^{\max } \cup\{\phi\}\right)$ if and only if $\bar{l} \notin D_{i}^{\max }$ for all literals l in ϕ. You can verify that for STRIPS operators formulae ϕ always have this form after the obvious simplifications.
- Can we achieve polynomial runtime for arbitrary operators?

(Albert-Ludwigs-Universität Freiburg)	Al Planning	April 25, 2005	$34 / 41$

The procedure asat (ϕ, D)

Our goal
Define procedure asat (ϕ, D) that is guaranteed to return true if $D \cup\{\phi\}$ is satisfiable, but may sometimes return true also when $D \cup\{\phi\}$ is unsatisfiable. Hence the procedure fails in one direction.
As a result, max-distance estimates

1. become slightly less accurate,
2. but remain admissible.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	April 25, 2005
	$36 / 41$	
Heuristics	Tractability	
The procedure asat (D, ϕ)		

1. $\operatorname{asat}(\emptyset, a)=$ true
2. $\operatorname{asat}(\{\neg a\}, a)=$ false
3. $\operatorname{asat}(\{\neg b\}, a)=$ true
4. asat $(\{\neg a, \neg b\}, a \wedge b)=$ false
5. asat $(\emptyset, a \wedge \neg a)=\operatorname{true}$ but $a \wedge \neg a$ is not satisfiable!!!
6. $\operatorname{asat}(\{\neg b, \neg c\}, a \wedge(b \vee c))=\operatorname{true}$

	Albert-Ludwigs-Universität Freiburg	Al Planning	April 25, 2005
38/41			

The procedure asat (D, ϕ)
Correctness
proof continues.
Base case $4 \phi=\neg a$ for some $a \in A$: If $D \cup\{\neg a\}$ is satisfiable then $a \notin D$ and asat $(D, \neg a)$ returns true.
Inductive case $1 \phi=\neg \neg \phi^{\prime}: \phi$ and ϕ^{\prime} are equivalent: claim follows from the induction hypothesis.
Inductive case $2 \phi=\phi_{1} \vee \phi_{2}$: If $D \cup\{\phi\}$ is satisfiable, then $D \cup\left\{\phi_{1}\right\}$ or $D \cup\left\{\phi_{2}\right\}$ is satisfiable, and by the induction hypothesis $\operatorname{asat}\left(D, \phi_{1}\right)$ or $\operatorname{asat}\left(D, \phi_{2}\right)$ returns true. Hence $\operatorname{asat}\left(D, \phi_{1} \vee \phi_{2}\right)$ returns true.
Inductive case $3 \phi=\phi_{1} \wedge \phi_{2}$: If $D \cup\{\phi\}$ is satisfiable, then both $D \cup\left\{\phi_{1}\right\}$ and $D \cup\left\{\phi_{2}\right\}$ are satisfiable, and by the induction hypothesis both $\operatorname{asat}\left(D, \phi_{1}\right)$ and $\operatorname{asat}\left(D, \phi_{2}\right)$ return true. Hence asat $\left(D, \phi_{1} \wedge \phi_{2}\right)$ returns true.
Inductive cases 4 and $5 \phi=\neg\left(\phi^{\prime} \vee \psi^{\prime}\right)$ and $\phi=\neg\left(\phi^{\prime} \wedge \psi^{\prime}\right)$: Like cases
(Abert-Luwiandodaikytragical equivaleneenning

Relation between max-distances and distances continued
proof continues.
Inductive case $i \geq 1$: Let s be any state in $D_{i}^{f w d}$. We show that $s \models D_{i}^{\max }$. Let l be any literal in $D_{i}^{\max }$.

1. Assume $s \in D_{i-1}^{f w d}$. As $D_{i}^{\max } \subseteq D_{i-1}^{\max }$ also $l \in D_{i-1}^{\max }$. By the induction hypothesis $s \models l$.
2. Otherwise $s \in D_{i}^{f w d} \backslash D_{i-1}^{f w d}$.

Hence there is $o \in O$ and $s_{0} \in D_{i-1}^{f w d}$ with $s=\operatorname{app}_{o}\left(s_{0}\right)$. By $D_{i}^{\max } \subseteq D_{i-1}^{\max }$ and the induction hypothesis $s_{0} \models l$. As $l \in D_{i}^{\max }$, not $\operatorname{SAT}\left(D_{i-1}^{\max } \cup\left\{E P C_{\bar{l}}(o)\right\}\right)$ by def. of $D_{i}^{\max }$.

By $s_{0} \in D_{i-1}^{f w d}$ and the induction hypothesis $s_{0} \models D_{i-1}^{\max }$. Hence $s_{0} \not \models E P C_{\bar{l}}(o)$.
By Lemma B applying o in s_{0} does not make l false.
Hence $s \models l$.
(Albert-Ludwigs-Universität Freiburg) Al Planning April 25, 2005 $\quad 41 / 41$

