
Distances and heuristics (April 25, 2005)

Planning by heuristic search
Incomplete plans
A∗
Local search
Deriving heuristics

Distances

Heuristics
Max-heuristic
Admissibility
Tractability

(Albert-Ludwigs-Universität Freiburg) 1 / 41

Planning by heuristic search Incomplete plans

Plan search with heuristic search algorithms

I For forward and backward search (progression, regression) the
search space consists of incomplete plans that are respectively
prefixes of possible plans and suffixes of possible plans.

I Search starts from the empty plan.
I The neighbors/children of an incomplete plan in the search space

are those that are obtained by
1. adding an operator to the incomplete plan, or
2. removing an operator from the incomplete plan.

I Systematic search algorithms (like A∗) keep track of the
incomplete plans generated so far, and therefore can go back to
them.
Hence removing operators from incomplete plans is only needed
for local search algorithms which do not keep track of the history
of the search process.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 2 / 41

Planning by heuristic search Incomplete plans

Plan search: incomplete plans for progression

For progression, the incomplete plans are prefixes o1, o2, . . . , on of
potential plans.
An incomplete plan is extended by

1. adding an operator after the last operator,
from o1, . . . , on to o1, o2, . . . , on, o for some o ∈ O, or

2. removing one or more of the last operators,
from o1, . . . , on to o1, . . . , oi for some i < n.
This is for local search algorithms only.

o1, o2, . . . , on is a plan if appon
(appon−

(· · · appo1(I) · · ·)) |= G.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 3 / 41

Planning by heuristic search Incomplete plans

Plan search: incomplete plans for regression

For regression, the incomplete plans are suffixes on, . . . , o1 of potential
plans.
An incomplete plan is extended by

1. adding an operator in front of the first operator,
from on, . . . , o1 to o, on, . . . , o1 for o ∈ O, or

2. deleting one or more of the first operators,
from on, . . . , o1 to oi, . . . , o1 for some i < n.
This is for local search algorithms only.

on, . . . , o1 is a plan if I |= regron
(· · · regro2(regro1(G)) · · ·).

Remark
Above is for the simplest case when the formulae are not split. With
splitting formalization is slightly trickier.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 4 / 41

Planning by heuristic search Incomplete plans

Planning by heuristic search
Forward search

G
I

distance estimatedistance estimate

distance estimate

distance estim
ate

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 5 / 41

Planning by heuristic search Incomplete plans

Planning by heuristic search
Backward search

I
G

distance estim
ate

distance estimate

distance estimatedistance estimate

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 6 / 41

Planning by heuristic search Incomplete plans

Planning by heuristic search
Selection of operators based on distance estimates

Select next operator o ∈ O based on the estimated distance (number
of operators) between

1. appo(appon
(appon−1(· · · appo1(I) · · ·))) and G,

for forward search.

2. I and regro(regron
(· · · regro2(regro1(G)) · · ·)),

for backward search.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 7 / 41

Planning by heuristic search A∗

Search algorithms: A∗

Search control of A∗
A∗ uses the function f(σ) = g(σ) + h(σ) to guide search:

I g(σ) = cost so far i.e. number of operators in σ
I h(σ) = estimated remaining cost (distance)
I admissibility: h(σ) must be less than or equal the actual remaining

cost h ∗ (σ) (distance), otherwise A∗ is not guaranteed to find an
optimal solution.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 8 / 41

Planning by heuristic search A∗

Search algorithms: A∗
Example

G
I

0+3 3

1+3

3

1+2

2

2+2

2

2+5 5

2+6 6

2+7

7

3+5

5

3+1
1

4+8

8
(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 9 / 41

Planning by heuristic search A∗

Search algorithms: A∗
Definition

Notation for operator sequences
appo1;o2;...;on

(s) denotes appon
(. . . appo2(appo1(s)) . . .) and ε denotes

the empty sequence for which appε(s) = s.

Algorithm A∗
Forward search with A∗ works as follows.

1. OPEN := {ε}, CLOSED := ∅.

2. If OPEN = ∅, then stop: no solution.

3. Choose an element σ ∈ OPEN with the least f(σ).

4. If appσ(I) |= G then stop: solution found.

5. OPEN := OPEN\{σ}; CLOSED := CLOSED∪{σ}.

6. OPEN := OPEN ∪({σ; o|o ∈ O}\CLOSED).

7. Go to 2.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 10 / 41

Planning by heuristic search Local search

Local search: random walk

Random walk
1. σ := ε

2. If appσ(I) |= G, stop: σ is a plan.

3. Randomly choose a neighbor σ′ of σ.

4. σ := σ′

5. Go to 2.

Remark
The algorithm usually does not find any solutions, unless almost every
sequence of actions is a plan.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 11 / 41

Planning by heuristic search Local search

Local search: steepest descent hill-climbing

Hill-climbing

1. σ := ε

2. If appσ(I) |= G, stop: σ is a plan.

3. Randomly choose neighbor σ′ of σ with the least h(σ′).

4. σ := σ′

5. Go to 2.

Remark
The algorithm gets stuck in local minima: the 3rd step cannot be
carried out because no neighbor is better than the current incomplete
plan.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 12 / 41

Planning by heuristic search Local search

Local search: simulated annealing

Simulated annealing

1. σ := ε

2. If appσ(I) |= G, stop: σ is a plan.

3. Randomly choose a neighbor σ′ of σ.

4. If h(σ′) < h(σ) go to 7.

5. With probability exp(−h(σ′)−h(σ)
T

) go to 7.

6. Go to 3.

7. σ := σ′

8. Decrease T . (Different possible strategies!)

9. Go to 2.

The temperature T is initially high and then gradually decreased.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 13 / 41

Planning by heuristic search Local search

Local search: simulated annealing
Illustration

temperature

S

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 14 / 41

Planning by heuristic search Deriving heuristics

How to obtain heuristics?

General procedure for obtaining a heuristic
Solve a simplified / less restricted version of the problem.

Example (Route-planning for the road network)
The road network is formalized as a weighted graph where the weight
of an edge is the road distance between two locations.
A heuristic is obtained from the Euclidean distance
√

|x1 − x2|2 + |y1 − y2|2. It is a lower bound on the road distance
between (x1, y1) and (x2, y2).

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 15 / 41

Planning by heuristic search Deriving heuristics

An admissible heuristic for route planning
Example

Frankfurt

Freiburg

Karlsruhe

München

Nürnberg

Passau

Regensburg

Stuttgart

Ulm

Würzburg

12
0

km

12
0

km

100 km
100 km

100 km 120 km80
km

160 km

100 km

100 km

120 km

200 km150 km

180 km

120 km

13
0

km

100 km

120
km

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 16 / 41

Planning by heuristic search Deriving heuristics

Heuristics for deterministic planning
STRIPS

I STRIPS (Fikes & Nilsson, 1971) used the number of state
variables that differ:

|{a ∈ A|s(a) = s′(a)}|.

“The more goal literals an operator makes true, the more useful
the operator is.”

I The above heuristic is not admissible because one operator may
reduce this measure by more than one. Instead,

|{a ∈ A|s(a) = s′(a)}|

n

is admissible when no operator has > n atomic effects.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 17 / 41

Distances

Images

Definition
The image of a state s with respect to an action o is

imgo(s) = {s′|sos′}.

This can be generalized to sets T of states as follows.

imgo(T) =
⋃

s∈T imgo(s)

We use these functions also for operators o: replace sos′ by sR(o)s′

where R(o) is the relation corresponding to o.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 18 / 41

Distances

Distances
Illustration

D
fwd
0 D

fwd
1 D

fwd
2 D

fwd
3 D

fwd
4

∞

s

Forward distance of state s is 3 because s ∈ D
fwd
3 \Dfwd

2 .

s′

As Dfwd
i = D

fwd
4 for all i > 4, forward distance of state s′ is ∞.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 19 / 41

Distances

Distances

Definition
Let I be a state and O a set of det. operators. Define the forward
distance sets Dfwd

i for I,O by

D
fwd
0 = {I}

D
fwd
i = D

fwd
i−1 ∪

⋃

o∈O imgo(D
fwd
i−1) for all i ≥ 1

Definition
Let Dfwd

0 , D
fwd
1 , . . . be the forward distance sets for I,O.

The forward distance of a state s from I is

δfwd
I (s) =

{

0 if I = s,

i if s ∈ D
fwd
i \Dfwd

i−1

If s 6∈ D
fwd
i for all i ≥ 0 then the distance of s is ∞.

States with a finite distance are reachable from I with O.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 20 / 41

Distances

Distances
of formulae

φ

D
fwd
0 D

fwd
1 D

fwd
2 D

fwd
3 D

fwd
4

∞

δfwd
I (φ) = 3 since s |= φ for some s ∈ D

fwd
3 but for no s ∈ D

fwd
2 .

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 21 / 41

Distances

Distances
of formulae

Theorem
δfwd
I (s) is the length n of a shortest sequence o1; . . . ; on of

actions/operators for reaching s from I.

Definition
Let φ be a formula. The forward distance δfwd

I (φ) of φ is i if there is
state s such that s |= φ and δfwd

I (s) = i and there is no state s such that
s |= φ and δfwd

I (s) < i.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 22 / 41

Heuristics

Heuristic: approximations of distances

I We define a relaxed/approximate notion of distances that is
computable in polynomial time.

I Exact distances are as hard to compute as solving the planning
problem: when the distances are known, a plan is obtained simply
by repeatedly choosing an operator that reduces the distance to
goals by one.

I The idea of our approximation is: instead of distances of states,
consider distances of literals which are distances of states in
which the literal is true.

I If there are n state variables, for exact distances we have to
consider sets with up to 2n states.
For approximate distances sets with up to n literals suffice:
polynomial time algorithms are possible.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 23 / 41

Heuristics Max-heuristic

Sets of literals representing sets of states

Idea
Let S be the set of all states (valuations of state variables.) A set T of
literals a and ¬a represents the set {s ∈ S|s |= T} of states.

Example
The following are equivalent.

1. b ∨ c is true in at least one state represented by {a,¬c}.

2. {a,¬c} ∪ {b ∨ c} is satisfiable = SAT({a,¬c} ∪ {b ∨ c}).

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 24 / 41

Heuristics Max-heuristic

Distance estimation
Blocks world example

Dmax
0 Dmax

1 Dmax
2 Dmax

3 Dmax
4

AonB T TF TF TF TF
AonC F F F TF TF
BonA F F TF TF TF
BonC T T T TF TF
ConA F F F TF TF
ConB F F F TF TF
AonT F TF TF TF TF
BonT F F TF TF TF
ConT T T T TF TF
Aclear T T TF TF TF
Bclear F TF TF TF TF
Cclear F F F TF TF

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 25 / 41

Heuristics Max-heuristic

Distance estimation
Blocks world example

Initially A is on B which is on C.

Dmax
0 = {Aclear,AonB,BonC,ConT,¬AonC,¬BonA,

¬ConA,¬ConB,¬AonT,¬BonT,¬Bclear,¬Cclear}
Dmax

1 = {Aclear,BonC,ConT,¬AonC,¬BonA,
¬ConA,¬ConB,¬BonT,¬Cclear}

Dmax
2 = {ConT,¬AonC,¬ConA,¬ConB}

Dmax
3 = ∅

New state variables values are possible at the given time points
because of the following actions.

1. A onto table

2. B onto table, B onto A

3. C onto A, C onto B, A onto C

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 26 / 41

Heuristics Max-heuristic

Distances of literals

Definition
EPCl(〈c, e〉) = EPCl(e) ∧ c ∧

∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e))

Definition
Let L = A ∪ {¬a|a ∈ A} be the set of literals on A. Let I be a state.
Define the sets Dmax

i for i ≥ 0 as follows.

Dmax
0 = {l ∈ L|I |= l}

Dmax
i = Dmax

i−1 \{l ∈ L|o ∈ O,SAT(Dmax
i−1 ∪ {EPCl(o)})}

Remark
Since we consider only finite sets A of state variables and
|Dmax

0 | = |A| and Dmax
i+1 ⊆ Dmax

i for all i ≥ 0, necessarily Dmax
i = Dmax

j

for some i ≤ |A| and all j > i.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 27 / 41

Heuristics Max-heuristic

Max-distances of literals and states

Definition
The max-distance of a literal l (from I with O) is

δmax
I (l) =

{

0 if l 6∈ Dmax
0

d if l ∈ Dmax
d−1 \D

max
d for d ≥ 1

Definition
The max-distance of a state s (from I with O) is

δmax
I (s) =

{

0 if s |= Dmax
0

d if s 6|= Dmax
d−1 and s |= Dmax

d for d ≥ 1

If δmax
I (s) = n then δmax

I (l) ≤ n for all literals l such that s |= l, and
δmax
I (l) = n for at least one literal l.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 28 / 41

Heuristics Max-heuristic

Why are max-distances inaccurate?

Example

1. Consider the problem of switching on n lamps that are all switched
off.

2. Each action switches on 1 lamp.

3. The distances of literal “lamp i is on” for every i is 1.

4. But the distance of the state with all lamps on is n.

The distance estimate of n goals in the above example is the
maximum of the distances of individual goals, even though the sum of
the distances in this case would be much more accurate. (See the
lecture notes for further discussion of this topic.)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 29 / 41

Heuristics Max-heuristic

Distances of formulae

Based on the distances of literals we can define the distances of
formulae. The distance of φ is n if s |= φ for at least one state having
distance n and s 6|= φ for all states having distance < n.

Definition
The max-distance of a formula φ (from I with O) is

δmax
I (φ) =

{

0 if SAT(Dmax
0 ∪ {φ})

d if SAT(Dmax
d ∪ {φ}) and not SAT(Dmax

d−1 ∪ {φ}) for d ≥ 1

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 30 / 41

Heuristics Admissibility

Relation between max-distances and distances

The sets Dmax
i approximate the sets Dfwd

i upwards in the following
way.

Theorem (A)
Let Dfwd

i , i ≥ 0 be the forward distance sets and Dmax
i the

max-distance sets for I and O. Then for all i ≥ 0,
D

fwd
i ⊆ {s ∈ S|s |= Dmax

i } where S is the set of all states.

Proof.
By induction on i.

Base case i = 0: Dfwd
0 consists of the unique initial state and Dmax

0

consists of exactly those literals that are true in the initial
state, identifying the initial state uniquely. Hence
D

fwd
i = {s ∈ S|s |= Dmax

i }.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 31 / 41

Heuristics Admissibility

Relation between max-distances and distances
continued

proof continues.

Inductive case i ≥ 1: Let s be any state in Dfwd
i . We show that

s |= Dmax
i . Let l be any literal in Dmax

i .

1. Assume s ∈ D
fwd
i−1 . As Dmax

i ⊆ Dmax
i−1 also l ∈ Dmax

i−1 . By the
induction hypothesis s |= l.

2. Otherwise s ∈ D
fwd
i \Dfwd

i−1 .

Hence there is o ∈ O and s0 ∈ D
fwd
i−1 with s = appo(s0).

By Dmax
i ⊆ Dmax

i−1 and the induction hypothesis s0 |= l.
As l ∈ Dmax

i , not SAT(Dmax
i−1 ∪ {EPCl(o)}) by def. of Dmax

i .
Not asat(Dmax

i−1 ,EPCl(o)) implies not SAT(Dmax
i−1 ∪ {EPCl(o)}).

By s0 ∈ D
fwd
i−1 and the induction hypothesis s0 |= Dmax

i−1 .
Hence s0 6|= EPCl(o).
By Lemma B applying o in s0 does not make l false.
Hence s |= l.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 32 / 41

Heuristics Admissibility

Properties of max-distances

Corollary
Let I be a state and φ a formula. Then for any sequence o1, . . . , on of
operators such that executing them in I results in state s such that
s |= φ, n ≥ δmax

I (φ).

Hence we can use δmax
I (φ) for estimating the distance from I to φ. This

never overestimates the actual distance (the heuristic is admissible)
but may severely underestimate.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 33 / 41

Heuristics Tractability

Distance estimation in polynomial time

I Computing max-distances takes polynomial time assuming the
tests SAT(Dmax

i ∪ {φ}) take polynomial time.
I However, performing these tests is of course in general NP-hard.
I Polynomial time special case: φ is a conjunction literals. Then

SAT(Dmax
i ∪ {φ}) if and only if l 6∈ Dmax

i for all literals l in φ. You
can verify that for STRIPS operators formulae φ always have this
form after the obvious simplifications.

I Can we achieve polynomial runtime for arbitrary operators?

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 34 / 41

Heuristics Tractability

Distance estimation in polynomial time

I By approximating the satisfiability tests it becomes possible to
compute max-distances in polynomial time.

I This is at the cost of a small further inaccuracy.
I Satisfiability tests SAT(D ∪ {φ}) are replaced by a weaker test

asat(D,φ) such that

if SAT(D ∪ {φ}) then asat(D,φ)

(but not necessarily vice versa.)
I Max-distances remain admissible under such a weaker test.
I We next present procedure asat(D,φ) that is polynomial time

computable.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 35 / 41

Heuristics Tractability

The procedure asat(φ, D)

Our goal
Define procedure asat(φ,D) that is guaranteed to return true if D ∪ {φ}
is satisfiable, but may sometimes return true also when D ∪ {φ} is
unsatisfiable. Hence the procedure fails in one direction.
As a result, max-distance estimates

1. become slightly less accurate,

2. but remain admissible.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 36 / 41

Heuristics Tractability

The procedure asat(φ, D)
Definition

Definition
Let D be a consistent set of literals. Then define

asat(D,⊥) = false
asat(D,>) = true
asat(D, a) = true iff ¬a 6∈ D (for a ∈ A)
asat(D,¬a) = true iff a 6∈ D (for a ∈ A)
asat(D,¬¬φ) = asat(D,φ)
asat(D,φ ∨ ψ) = asat(D,φ) or asat(D,ψ)
asat(D,φ ∧ ψ) = asat(D,φ) and asat(D,ψ)
asat(D,¬(φ ∨ ψ)) = asat(D,¬φ) and asat(D,¬ψ)
asat(D,¬(φ ∧ ψ)) = asat(D,¬φ) or asat(D,¬ψ)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 37 / 41

Heuristics Tractability

The procedure asat(D, φ)
Examples

1. asat(∅, a) = true

2. asat({¬a}, a) = false

3. asat({¬b}, a) = true

4. asat({¬a,¬b}, a ∧ b) = false

5. asat(∅, a ∧ ¬a) = true but a ∧ ¬a is not satisfiable!!!

6. asat({¬b,¬c}, a ∧ (b ∨ c)) = true

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 38 / 41

Heuristics Tractability

The procedure asat(D, φ)
Correctness

Lemma (ASAT)
Let φ be a formula and D a consistent set of literals (i.e. {a,¬a} 6⊆ D

for all a ∈ A.)
If D ∪ {φ} is satisfiable then asat(D,φ) returns true.

Proof.
By induction on the structure of φ.

Base case 1 φ = ⊥: The set D ∪ {⊥} is not satisfiable, and hence the
implication trivially holds.

Base case 2 φ = >: asat(D,>) always returns true, and hence the
implication trivially holds.

Base case 3 φ = a for some a ∈ A: If D ∪ {a} is satisfiable, then
¬a 6∈ D, and hence asat(D, a) returns true.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 39 / 41

Heuristics Tractability

The procedure asat(D, φ)
Correctness

proof continues.

Base case 4 φ = ¬a for some a ∈ A: If D ∪ {¬a} is satisfiable then
a 6∈ D and asat(D,¬a) returns true.

Inductive case 1 φ = ¬¬φ′: φ and φ′ are equivalent: claim follows from
the induction hypothesis.

Inductive case 2 φ = φ1 ∨ φ2: If D ∪ {φ} is satisfiable, then D ∪ {φ1} or
D ∪ {φ2} is satisfiable, and by the induction hypothesis
asat(D,φ1) or asat(D,φ2) returns true. Hence asat(D,φ1 ∨ φ2)
returns true.

Inductive case 3 φ = φ1 ∧ φ2: If D ∪ {φ} is satisfiable, then both
D ∪ {φ1} and D ∪ {φ2} are satisfiable, and by the induction
hypothesis both asat(D,φ1) and asat(D,φ2) return true. Hence
asat(D,φ1 ∧ φ2) returns true.

Inductive cases 4 and 5 φ = ¬(φ′ ∨ ψ′) and φ = ¬(φ′ ∧ ψ′): Like cases
2 and 3 by logical equivalence.(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 40 / 41

Heuristics Tractability

Relation between max-distances and distances
continued

proof continues.

Inductive case i ≥ 1: Let s be any state in Dfwd
i . We show that

s |= Dmax
i . Let l be any literal in Dmax

i .

1. Assume s ∈ D
fwd
i−1 . As Dmax

i ⊆ Dmax
i−1 also l ∈ Dmax

i−1 . By the
induction hypothesis s |= l.

2. Otherwise s ∈ D
fwd
i \Dfwd

i−1 .

Hence there is o ∈ O and s0 ∈ D
fwd
i−1 with s = appo(s0).

By Dmax
i ⊆ Dmax

i−1 and the induction hypothesis s0 |= l.
As l ∈ Dmax

i , not SAT(Dmax
i−1 ∪ {EPCl(o)}) by def. of Dmax

i .
Not asat(Dmax

i−1 ,EPCl(o)) implies not SAT(Dmax
i−1 ∪ {EPCl(o)}).

By s0 ∈ D
fwd
i−1 and the induction hypothesis s0 |= Dmax

i−1 .
Hence s0 6|= EPCl(o).
By Lemma B applying o in s0 does not make l false.
Hence s |= l.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 25, 2005 41 / 41

