Planning by state-space search (April 18, 2005)

Normal form for effects STRIPS operators

Planning by state-space search

Ideas Progression Regression Complexity Branching

(Albert-Ludwigs-Universität Freiburg)

Normal form for effects

Equivalences on effects

$c \rhd (e_1 \land \dots \land e_n) \equiv (c \rhd e_1) \land \dots \land (c \rhd e_n)$	(1)
$c_1 \rhd (c_2 \rhd e) \equiv (c_1 \land c_2) \rhd e$	(2)
$(c_1 \rhd e) \land (c_2 \rhd e) \equiv (c_1 \lor c_2) \rhd e$	(3)
$e \wedge (c \vartriangleright e) \equiv e$	(4)
$e\equiv\top \vartriangleright e$	(5)
$e \equiv \top \wedge e$	(6)
$e_1 \wedge e_2 \equiv e_2 \wedge e_1$	(7)
$(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3)$	(8)

(Albert-Ludwigs-Universität Freiburg)

Normal form for effects

Normal form for effects Example

Example

$$(a \vartriangleright (b \land (c \vartriangleright (\neg d \land e)))) \land (\neg b \rhd e)$$

Al Planning

transformed to normal form is

$$egin{array}{ccc} (a \ arappi \ b) \wedge \ ((a \wedge c) \ arappi \ \neg d) \wedge \ ((\neg b \lor (a \land c)) \ arappi \ e) \end{array}$$

AI Planning

(Albert-Ludwigs-Universität Freiburg)

April 18, 2005 5 / 38

April 18, 2005 3 / 38

Planning by state-space search

Planning by state-space search

There are many alternative ways of doing planning by state-space search.

- 1. different ways of expressing planning as a search problem:
 - 1.1 search direction: forward, backward
 - 1.2 representation of search space: states, sets of states
- 2. different search algorithms: depth-first, breadth-first, informed (heuristic) search (systematic: A*, IDA*,...; local: hill-climbing, simulated annealing, ...), ...

Al Planning

- 3. different ways of controlling search:
 - 3.1 heuristics for heuristic search algorithms
 - 3.2 pruning techniques: invariants, symmetry elimination,...

Normal form for effects

- 1. Similarly to normal forms in propositional logic (DNF, CNF, NNF, ...) we can define a normal form for effects.
- 2. Nesting of conditionals, as in $a \triangleright (b \triangleright c)$, can be eliminated.
- 3. Restriction to atomic effects e in conditional effects $\phi \triangleright e$ can be made.
- 4. Only a small polynomial increase in size by transformation to normal form.
 - Compare: transformation to CNF or DNF may increase formula size exponentially.

(Albert-Ludwigs-Universität Freiburg) Al Planning

April 18, 2005 2 / 38

Normal form for effe

Normal form for operators and effects

Definition

1/38

An operator $\langle c, e \rangle$ is in normal form if for all occurrences of $c' \rhd e'$ in ethe effect e' is either a or $\neg a$ for some $a \in A$, and there is at most one occurrence of any atomic effect in e.

Theorem

For every operator there is an equivalent one in normal form. Proof is constructive: we can transform any operator into normal form by using the equivalences from the previous slide.

Al Planning

Normal form for effects STRIPS operators

STRIPS operators

(Albert-Ludwigs-Universität Freiburg)

Definition

- An operator $\langle c, e \rangle$ is a STRIPS operator if
 - 1. c is a conjunction of literals, and
- 2. e does not contain \triangleright .

Hence every STRIPS operator is of the form

 $\langle l_1 \wedge \cdots \wedge l_n, \ l'_1 \wedge \cdots \wedge l'_m \rangle$

where l_i are literals and l'_i are atomic effects.

STanford Research Institute Planning System, Fikes & Nilsson, 1971.

(Albert-Ludwigs-Universität Freiburg)

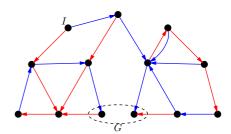
AI Planning

April 18, 2005 6 / 38

April 18, 2005 4 / 38

Planning by state-space search Ideas

Planning by forward search with depth-first search



Al Planning

STRIPS

Planning by state-space search Progression

Progression

- ▶ Progression means computing the successor state *app*_o(s) of s with respect to o.
- Used in forward search: from the initial state toward the goal states.

April 18, 2005 11 / 38

Very easy and efficient to implement.

Planning by state-space search Regression

Regression

- Regression is computing the possible predecessor states of a set of states.
- The formula $regr_o(\phi)$ represents the states from which a state represented by ϕ is reached by operator o.
- Used in backward search: from the goal states toward the initial states.
- Regression is powerful because it allows handling sets of states (progression: only one state at a time.)
- Handling formulae is more complicated than handling states: many questions about regression are NP-hard.

Al Planning

Planning by state-space search Regression

(Albert-Ludwigs-Universität Freiburg) Al Planning Planning by state-space search Regression

Regression for STRIPS operators

- Regression for STRIPS operators is very simple.
- Goals are conjunctions of literals $l_1 \wedge \cdots \wedge l_n$.
- First step: Choose an operator that makes some of l_1, \ldots, l_n true and makes none of them false.
- Second step: Form a new goal by removing the fulfilled goal literals and adding the preconditions of the operator.

Definition The STRIPS-regression $regr_{a}^{str}(\phi)$ of $\phi = l_{1}^{"} \wedge \cdots \wedge l_{m'}^{"}$ with respect to

 $o = \langle l_1 \wedge \dots \wedge l_n, \ l'_1 \wedge \dots \wedge l'_m \rangle$

is the conjunction of literals

(Albert-Ludwigs-Universität Freiburg)

(Albert-Ludwigs-Universität Freiburg)

Definition

$$\bigwedge \left(\left(\left\{ l_1'', \dots, l_{m'}'' \right\} \setminus \left\{ l_1', \dots, l_m' \right\} \right) \cup \left\{ l_1, \cdots, l_n \right\} \right)$$

Al Planning

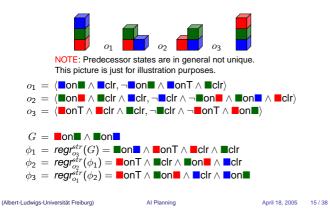
provided that $\{l', \ldots, l'_m\} \cap \{\overline{l''_1}, \ldots, \overline{l''_m'}\} = \emptyset$.

Regression for STRIPS operators

(Albert-Ludwigs-Universität Freiburg) Al Planning April 18, 2005 13 / 38

Planning by state-space search Regression

Regression for STRIPS operators Example



Planning by state-space search Regression

Precondition for effect *l* to take place: $EPC_l(e)$ Definition

Definition The condition $EPC_l(e)$ for literal *l* to become true under effect *e* is defined as follows.

> $EPC_l(l) = \top$ $EPC_l(l') = \bot$ when $l \neq l'$ (for literals l') $EPC_l(\top) = \bot$ $EPC_l(e_1 \land \cdots \land e_n) = EPC_l(e_1) \lor \cdots \lor EPC_l(e_n)$ $EPC_l(c \triangleright e) = EPC_l(e) \wedge c$

> > Al Planning

Planning by state-space search Regression

Regression for general operators

- With disjunction and conditional effects, things become more tricky. How to regress $A \vee (B \wedge C)$ with respect to $\langle Q, D \triangleright B \rangle$?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- > We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.

(Albert-Ludwigs-Universität Freiburg)

AI Planning

April 18, 2005 16 / 38

April 18, 2005 12 / 38

April 18, 2005 14 / 38

Planning by state-space search Regression

Precondition for effect *l* to take place: $EPC_l(e)$ Example

Example

 $EPC_a(b \wedge c) = \bot \lor \bot \equiv \bot$ $EPC_a(a \land (b \triangleright a)) = \top \lor (\top \land b) \equiv \top$ $EPC_a((c \triangleright a) \land (b \triangleright a)) = (\top \land c) \lor (\top \land b) \equiv c \lor b$

AI Planning

Precondition for effect l to take place: $EPC_l(e)$ Connection to $[e]_s$

Lemma (B)

Let *s* be a state, *l* a literal and *e* an effect. Then $l \in [e]_s$ if and only if $s \models \mathsf{EPC}_l(e)$.

Proof.

Induction on the structure of the effect e.

Base case 1, $e = \top$: By definition of $[\top]_s$ we have $l \notin [\top]_s = \emptyset$ and by definition of $EPC_l(\top)$ we have $s \not\models EPC_l(\top) = \bot$: Both sides of the equivalence are false.

Base case 2, e = l: $l \in [l]_s = \{l\}$ by definition, and $s \models EPC_l(l) = \top$ by definition. Both sides are true.

Base case 3, e = l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are false.

(Albert-Ludwigs-Universität Freiburg) Al Planning

April 18, 2005 19 / 38

Planning by state-space search Regression

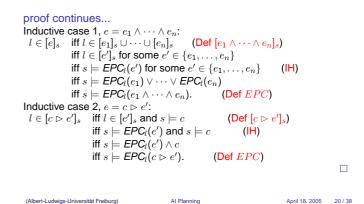
Notice that in terms of $EPC_a(e)$ any operator $\langle c, e \rangle$ can be expressed in

 $\left\langle c, \bigwedge_{e \in A} (EPC_a(e) \rhd a) \land (EPC_{\neg a}(e) \rhd \neg a) \right\rangle.$

Al Planning

Precondition for effect l to take place: $EPC_l(e)$ Connection to the normal form Planning by state-space search Regression

Precondition for effect l to take place: $EPC_l(e)$ Connection to $[e]_s$



Regression: definition for state variables

Planning by state-space search Regression

Regressing a state variable

The formula $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ expresses the value of $a \in A$ after applying *o* in terms of values of state variables before applying *o*: Either

- a was true before and it did not become false, or
- ▶ *a* became true.

(Albert-Ludwigs-Universität Freiburg)

Planning by state-space search Regression

Regression: definition for state variables

Example

Remark

normal form as

(Albert-Ludwigs-Universität Freiburg)

Let $e = (b \triangleright a) \land (c \triangleright \neg a) \land b \land \neg d$.

	$EPC_{\cdots}(e) \lor (\cdots \land \neg EPC_{\neg \cdots}(e))$
a	$b \lor (a \land \neg c)$
b	$\top \lor (b \land \neg \bot) \equiv \top$
c	$\bot \lor (c \land \neg \bot) \equiv c$
d	

(Albert-Ludwigs-Universität Freiburg)

April 18, 2005 23 / 38

April 18, 2005 21 / 38

Planning by state-space search Regression

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s'.

AI Planning

For the second part of the equivalence we show that if the formula is false in s, then a is false in s'.

- 1. So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- 2. Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ by de Morgan's law.
- 3. Analyze the two cases: *a* is true or it is false in *s*.
- 3.1 Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because
 - $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma B $\neg a \in [e]_s$ and we get $s' \not\models a$.
 - 3.2 Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma B $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

April 18, 2005 25 / 38

 $\textit{regr}_o(\phi) = \phi_r \wedge c \wedge f$

We base the definition of regression on formulae $EPC_l(e)$.

Let ϕ be a propositional formula and $o = \langle c, e \rangle$ an operator.

- 1. ϕ_r is obtained from ϕ by replacing each $a \in A$ by
- $EPC_{a}(e) \lor (a \land \neg EPC_{\neg a}(e)), \text{ and}$ 2. $f = \bigwedge_{a \in A} \neg (EPC_{a}(e) \land EPC_{\neg a}(e)).$

The formula f says that no state variable may become simultaneously true and false.

(Albert-Ludwigs-Universität Freiburg)

Lemma (C)

Regression: definition for state variables

Let *a* be a state variable, $o = \langle c, e \rangle \in O$ an operator, *s* a state and $s' = \mathsf{app}_o(s)$. Then $s \models \mathsf{EPC}_a(e) \lor (a \land \neg \mathsf{EPC}_\neg_a(e))$ if and only if $s' \models a$.

Al Planning

Planning by state-space search Regression

Proof.

Definition

where

First prove the implication from left to right.

Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Do a case analysis on the two disjuncts.

- 1. Assume that $s \models EPC_a(e)$. By Lemma B $a \in [e]_s$ and hence $s' \models a$.
- 2. Assume that $s \models a \land \neg EPC_{\neg a}(e)$. By Lemma B $\neg a \notin [e]_s$. Hence a remains true in s'.

Al Planning

(Albert-Ludwigs-Universität Freiburg)

April 18, 2005 24 / 38

April 18, 2005 22 / 38

Planning by state-space search Regression

Regression: general definition

The regression of ϕ with respect to o is

Regression: examples

- 1. $regr_{(a,b)}(b) = (a \land (\top \lor (b \land \neg \bot))) \equiv a$
- 2. $regr_{(a,b)}(b \wedge c \wedge d) =$

$$(a \land (\top \lor (b \land \neg \bot)) \land (\lor \bot (c \land \neg \bot)) \land (\bot \lor (d \land \neg \bot))) \equiv a \land c \land d$$

- 3. $\operatorname{regr}_{(a,c \triangleright b)}(b) = (a \land (c \lor (b \land \neg \bot))) \equiv a \land (c \lor b)$
- 4. $\operatorname{regr}_{(a,(c \rhd b) \land (b \rhd \neg b))}(b) = (a \land (c \lor (b \land \neg b)) \land \neg (c \land b)) \equiv a \land c \land \neg b$
- 5. $\operatorname{regr}_{\langle a, (c \triangleright b) \land (d \triangleright \neg b) \rangle}(b) = (a \land (c \lor (b \land \neg d)) \land \neg (c \land d)) \equiv$

Planning by state-space search Regression

 $a \wedge (c \vee b) \wedge (c \vee \neg d) \wedge (\neg c \vee \neg d)$

(Albert-Ludwigs-Universität Freiburg)

April 18, 2005 27 / 38

April 18, 2005 29 / 38

Regression: examples Incrementing a binary number

$$\begin{array}{c} (\neg b_0 \vartriangleright b_0) \land \\ ((\neg b_1 \land b_0) \vartriangleright (b_1 \land \neg b_0)) \land \\ ((\neg b_2 \land b_1 \land b_0) \vartriangleright (b_2 \land \neg b_1 \land \neg b_0)) \end{array}$$

Al Planning

 $EPC_{b_2}(e) = \neg b_2 \wedge b_1 \wedge b_0 \ EPC_{\neg b_2}(e) = \bot$ $EPC_{b_1}(e) = \neg b_1 \wedge b_0$ $EPC_{\neg b_1}(e) = \neg b_2 \wedge b_1 \wedge b_0$ $EPC_{\neg b_0}(e) = (\neg b_1 \wedge b_0) \vee (\neg b_2 \wedge b_1 \wedge b_0)$ $EPC_{b_0}(e) = \neg b_0$ $\equiv (\neg b_1 \vee \neg b_2) \wedge b_0$

Regression replaces state variables as follows

 $b_2 by (b_2 \land \neg \bot) \lor (\neg b_2 \land b_1 \land b_0) \equiv b_2 \lor (b_1 \land b_0)$ $b_1 \ by \ (b_1 \land \neg (\neg b_2 \land b_1 \land b_0)) \lor (\neg b_1 \land b_0)$ $\equiv (b_1 \land (b_2 \lor \neg b_0)) \lor (\neg b_1 \land b_0)$ $b_0 \ by \ (b_0 \land \neg((\neg b_1 \lor \neg b_2) \land b_0)) \lor \neg b_0 \equiv (b_1 \land b_2) \lor \neg b_0$

Al Planning

Planning by state-space search Regression

Regression: properties

proof continues...

(Albert-Ludwigs-Universität Freiburg)

```
Inductive case 1 \phi' = \neg \psi: By the induction hypothesis s \models \psi_r iff
                          s'\models\psi. Hence s\models\phi'_r iff s'\models\phi' by the truth-definition
                         of ¬.
Inductive case 2 \phi' = \psi \lor \psi': By the induction hypothesis s \models \psi_r iff
                          s' \models \psi, and s \models \psi'_r iff s' \models \psi'. Hence s \models \phi'_r iff
                         s' \models \phi' by the truth-definition of \lor.
Inductive case 3 \phi' = \psi \land \psi': By the induction hypothesis s \models \psi_r iff
                          s' \models \psi, and s \models \psi'_r iff s' \models \psi'. Hence s \models \phi'_r iff
                          s' \models \phi' by the truth-definition of \wedge.
                                                                                                       (Albert-Ludwigs-Universität Freiburg)
                                               AI Planning
                                                                                     April 18, 2005 31 / 38
```

Planning by state-space search Complexity

Regression: complexity issues

The formula $regr_{o_1}(regr_{o_2}(\cdots regr_{o_n-1}(regr_{o_n}(\phi))))$ may have size $\mathcal{O}(|\phi||o_1||o_2|\cdots|o_{n-1}||o_n|)$, i.e. the product of the sizes of ϕ and the operators.

The size in the worst case $\mathcal{O}(2^n)$ is hence exponential in *n*.

Logical simplifications

- 1. $\bot \land \phi \equiv \bot$, $\top \land \phi \equiv \phi$, $\bot \lor \phi \equiv \phi$, $\top \lor \phi \equiv \top$
- 2. $a \lor \phi \equiv a \lor \phi[\bot/a], \neg a \lor \phi \equiv a \lor \phi[\top/a], a \land \phi \equiv a \land \phi[\top/a],$ $\neg a \land \phi \equiv a \land \phi[\bot/a]$

To obtain the maximum benefit from the last equivalences, e.g. for $(a \wedge b) \wedge \phi(a)$, the equivalences for associativity and commutativity are useful: $(\phi_1 \lor \phi_2) \lor \phi_3 \equiv \phi_1 \lor (\phi_2 \lor \phi_3), \phi_1 \lor \phi_2 \equiv \phi_2 \lor \phi_1$, $(\phi_1 \wedge \phi_2) \wedge \phi_3 \equiv \phi_1 \wedge (\phi_2 \wedge \phi_3), \phi_1 \wedge \phi_2 \equiv \phi_2 \wedge \phi_1.$

Al Planning

Planning by state-space search Regression

Regression: examples Blocks World with conditional effects

Moving blocks A and B onto the table from any location if they are clear.

> $o_1 = \langle \top, (AonB \land Aclear) \triangleright (AonT \land Bclear \land \neg AonB) \rangle$ $o_2 = \langle \top, (BonA \land Bclear) \triangleright (BonT \land Aclear \land \neg BonA) \rangle$

Plan for putting both blocks onto the table from any blocks world state is o_2, o_1 . Proof by regression:

$$\begin{array}{ll} G = & \mathsf{AonT} \land \mathsf{BonT} \\ \phi_1 = & \mathsf{regr}_{o_1}(G) = & (\mathsf{AonT} \lor (\mathsf{AonB} \land \mathsf{Aclear})) \land \mathsf{BonT} \\ \phi_2 = & \mathsf{regr}_{o_2}(\phi_1) = & (\mathsf{AonT} \lor (\mathsf{AonB} \land (\mathsf{Aclear} \lor (\mathsf{BonA} \land \mathsf{Bclear})))) \\ \land (\mathsf{BonT} \lor (\mathsf{BonA} \land \mathsf{Bclear})) \end{array}$$

All three 2-block states satisfy ϕ_2 . Similar plans exist for any number of blocks. Al Planning

Planning by state-space search Regression

April 18, 2005 28 / 38

April 18, 2005 30 / 38

April 18, 2005 32 / 38

Regression: properties

(Albert-Ludwigs-Universität Freiburg)

Lemma (D)

Let ϕ be a formula, o an operator, s any state and $s' = app_o(s)$. Then $s \models \operatorname{regr}_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Rest of $regr_o(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$.

Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: Trivial as $\phi'_r = \phi'$. Base case 3 $\phi' = a$ for some $a \in A$: Now $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$ By Lemma C $s \models \phi'_r$ iff $s' \models \phi'$.

Planning by state-space search Complexity

Regression: complexity issues

(Albert-Ludwigs-Universität Freiburg)

The following two tests are useful when generating a search tree with regression.

Al Planning

- 1. Testing that a formula $regr_o(\phi)$ does not represent the empty set (= search is in a blind alley). For example, $\operatorname{\mathit{regr}}_{\langle a, \neg p \rangle}(p) = a \land \bot \equiv \bot.$
- 2. Testing that a regression step does not make the set of states smaller (= more difficult to reach). For example, $regr_{(b,c)}(a) = a \wedge b$.

AI Planning

Both of these problems are NP-hard.

(Albert-Ludwigs-Universität Freiburg)

Planning by state-space search Branching

Regression: generation of search trees

Problem Formulae obtained with regression may become very big.

Cause Disjunctivity in the formulae. Formulae without disjunctions easily convertible to small formulae $l_1 \land \cdots \land l_n$ where l_i are literals and n is at most the number of state variables.

Solution Handle disjunctivity when generating search trees. Alternatives:

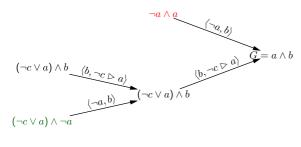
- 1. Do nothing. (May lead to very big formulae!!!)
- 2. Always eliminate all disjunctivity.
- 3. Reduce disjunctivity if formula becomes too big.

AI Planning

Regression: generation of search trees

Unrestricted regression (= do nothing about formula size)

Reach goal $a \wedge b$ from state *I* such that $I \models \neg a \wedge \neg b \wedge \neg c$.



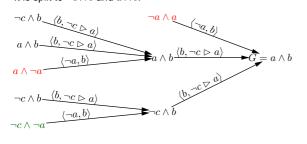
Al Planning

Planning by state-space search Branching

(Albert-Ludwigs-Universität Freiburg)

Regression: generation of search trees

Reach goal $a \wedge b$ from state *I* such that $I \models \neg a \wedge \neg b \wedge \neg c$. $(\neg c \vee a) \wedge b$ in DNF is $(\neg c \wedge b) \vee (a \wedge b)$. It is split to $\neg c \wedge b$ and $a \wedge b$.



(Albert-Ludwigs-Universität Freiburg) Al Planning

April 18, 2005 37 / 38

April 18, 2005

35/38

Planning by state-space search Branching

Regression: generation of search trees Full splitting (= eliminate all disjunctivity)

- ▶ Planners for STRIPS operators only need to use formulae $l_1 \land \dots \land l_n$ where l_i are literals.
- Some PDDL planners also restrict to this class of formulae. This is done as follows.
 - 1. *regr*_o(ϕ) is transformed to disjunctive normal form (DNF):
 - $\begin{array}{l} (l_1^1 \wedge \dots \wedge l_{n_1}^1) \vee \dots \vee (l_1^n \wedge \dots \wedge l_{n_n}^n).\\ \\ \textbf{2. Each disjunct } l_1^i \wedge \dots \wedge l_{n_1}^i \text{ is handled in its own subtree of the search tree.} \end{array}$
 - The DNF formulae need not exist in its entirety explicitly: generate one disjunct at a time.
- Hence branching is both on the choice of operator and on the choice of the disjunct of the DNF formula.
- This leads to an increased branching factor and bigger search trees, but avoids big formulae.

AI Planning

April 18, 2005 36 / 38

April 18, 2005 38 / 38

Planning by state-space search Branching

Regression: generation of search trees Restricted splitting

(Albert-Ludwigs-Universität Freiburg)

(Albert-Ludwigs-Universität Freiburg)

- With full splitting search tree can be exponentially bigger than without splitting. (But it is not necessary to construct the DNF formulae explicitly!)
- Without splitting the formulae may have size that is exponential in the number of state variables.
- A compromise is to split formulae only when necessary: combine benefits of the two extremes.
- ▶ There are several ways to split a formula ϕ to ϕ_1, \ldots, ϕ_n such that $\phi \equiv \phi_1 \lor \cdots \lor \phi_n$. For example:
 - Transform φ to φ₁ ∨ · · · ∨ φ_n by equivalences like distributivity (φ₁ ∨ φ₂) ∧ φ₃ ≡ (φ₁ ∧ φ₃) ∨ (φ₂ ∧ φ₃).
 Choose state variable a, set φ₁ = a ∧ φ and φ₂ = ¬a ∧ φ, and
 - Choose state variable *a*, set φ₁ = a ∧ φ and φ₂ = ¬a ∧ φ, and simplify with equivalences like a ∧ ψ ≡ a ∧ ψ[⊤/a].

Al Planning