
Planning by state-space search (April 18, 2005)

Normal form for effects
STRIPS operators

Planning by state-space search
Ideas
Progression
Regression
Complexity
Branching

(Albert-Ludwigs-Universität Freiburg) 1 / 38

Normal form for effects

Normal form for effects

1. Similarly to normal forms in propositional logic (DNF, CNF, NNF,
...) we can define a normal form for effects.

2. Nesting of conditionals, as in a B (b B c), can be eliminated.

3. Restriction to atomic effects e in conditional effects φ B e can be
made.

4. Only a small polynomial increase in size by transformation to
normal form.
Compare: transformation to CNF or DNF may increase formula
size exponentially.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 2 / 38

Normal form for effects

Equivalences on effects

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (3)

e ∧ (c B e) ≡ e (4)

e ≡ > B e (5)

e ≡ > ∧ e (6)

e1 ∧ e2 ≡ e2 ∧ e1 (7)

(e1 ∧ e2) ∧ e3 ≡ e1 ∧ (e2 ∧ e3) (8)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 3 / 38

Normal form for effects

Normal form for operators and effects

Definition
An operator 〈c, e〉 is in normal form if for all occurrences of c′ B e′ in e
the effect e′ is either a or ¬a for some a ∈ A, and there is at most one
occurrence of any atomic effect in e.

Theorem
For every operator there is an equivalent one in normal form.

Proof is constructive: we can transform any operator into normal form
by using the equivalences from the previous slide.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 4 / 38

Normal form for effects

Normal form for effects
Example

Example

(a B (b∧
(c B (¬d ∧ e))))∧

(¬b B e)

transformed to normal form is

(a B b)∧
((a ∧ c) B ¬d)∧

((¬b ∨ (a ∧ c)) B e)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 5 / 38

Normal form for effects STRIPS operators

STRIPS operators

Definition
An operator 〈c, e〉 is a STRIPS operator if

1. c is a conjunction of literals, and

2. e does not contain B.

Hence every STRIPS operator is of the form

〈l1 ∧ · · · ∧ ln, l′1 ∧ · · · ∧ l′m〉

where li are literals and l′j are atomic effects.

STRIPS
STanford Research Institute Planning System, Fikes & Nilsson, 1971.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 6 / 38

Planning by state-space search

Planning by state-space search

There are many alternative ways of doing planning by state-space
search.

1. different ways of expressing planning as a search problem:
1.1 search direction: forward, backward
1.2 representation of search space: states, sets of states

2. different search algorithms: depth-first, breadth-first, informed
(heuristic) search (systematic: A∗, IDA∗,...; local: hill-climbing,
simulated annealing, ...), ...

3. different ways of controlling search:
3.1 heuristics for heuristic search algorithms
3.2 pruning techniques: invariants, symmetry elimination,...

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 7 / 38

Planning by state-space search Ideas

Planning by forward search
with depth-first search

G

I

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 8 / 38

Planning by state-space search Progression

Progression

I Progression means computing the successor state appo(s) of s
with respect to o.

I Used in forward search: from the initial state toward the goal
states.

I Very easy and efficient to implement.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 11 / 38

Planning by state-space search Regression

Regression

I Regression is computing the possible predecessor states of a set
of states.

I The formula regro(φ) represents the states from which a state
represented by φ is reached by operator o.

I Used in backward search: from the goal states toward the initial
states.

I Regression is powerful because it allows handling sets of states
(progression: only one state at a time.)

I Handling formulae is more complicated than handling states:
many questions about regression are NP-hard.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 12 / 38

Planning by state-space search Regression

Regression for STRIPS operators

I Regression for STRIPS operators is very simple.
I Goals are conjunctions of literals l1 ∧ · · · ∧ ln.
I First step: Choose an operator that makes some of l1, . . . , ln true

and makes none of them false.
I Second step: Form a new goal by removing the fulfilled goal

literals and adding the preconditions of the operator.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 13 / 38

Planning by state-space search Regression

Regression for STRIPS operators
Definition

Definition
The STRIPS-regression regrstro (φ) of φ = l′′1 ∧ · · · ∧ l′′m′ with respect to

o = 〈l1 ∧ · · · ∧ ln, l′1 ∧ · · · ∧ l′m〉

is the conjunction of literals
∧

(

({l′′1 , . . . , l
′′
m′}\{l′1, . . . , l

′
m}) ∪ {l1, · · · , ln}

)

provided that {l′, . . . , l′m} ∩ {l′′1 , . . . , l
′′
m′} = ∅.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 14 / 38

Planning by state-space search Regression

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧ �clr,¬�on� ∧ �onT ∧ �clr〉
o2 = 〈�on� ∧ �clr ∧ �clr,¬�clr ∧ ¬�on� ∧ �on� ∧ �clr〉
o3 = 〈�onT ∧ �clr ∧ �clr,¬�clr ∧ ¬�onT ∧ �on�〉

G = �on� ∧ �on�

φ1 = regrstro3
(G) = �on� ∧ �onT ∧ �clr ∧ �clr

φ2 = regrstro2
(φ1) = �onT ∧ �clr ∧ �on� ∧ �clr

φ3 = regrstro1
(φ2) = �onT ∧ �on� ∧ �clr ∧ �on�

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 15 / 38

Planning by state-space search Regression

Regression for general operators

I With disjunction and conditional effects, things become more
tricky. How to regress A ∨ (B ∧ C) with respect to 〈Q,D B B〉?

I The story about goals and subgoals and fulfilling subgoals, as in
the STRIPS case, is no longer useful.

I We present a general method for doing regression for any formula
and any operator.

I Now we extensively use the idea of representing sets of states as
formulae.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 16 / 38

Planning by state-space search Regression

Precondition for effect l to take place: EPCl(e)
Definition

Definition
The condition EPCl(e) for literal l to become true under effect e is
defined as follows.

EPCl(l) = >
EPCl(l

′) = ⊥ when l 6= l′ (for literals l′)
EPCl(>) = ⊥

EPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)
EPCl(c B e) = EPCl(e) ∧ c

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 17 / 38

Planning by state-space search Regression

Precondition for effect l to take place: EPCl(e)
Example

Example

EPCa(b ∧ c) = ⊥ ∨⊥ ≡ ⊥
EPCa(a ∧ (b B a)) = > ∨ (> ∧ b) ≡ >

EPCa((c B a) ∧ (b B a)) = (> ∧ c) ∨ (> ∧ b) ≡ c ∨ b

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 18 / 38

Planning by state-space search Regression

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

Lemma (B)
Let s be a state, l a literal and e an effect. Then l ∈ [e]s if and only if
s |= EPCl(e).

Proof.
Induction on the structure of the effect e.
Base case 1, e = >: By definition of [>]s we have l 6∈ [>]s = ∅ and by
definition of EPCl(>) we have s 6|= EPCl(>) = ⊥: Both sides of the
equivalence are false.
Base case 2, e = l: l ∈ [l]s = {l} by definition, and s |= EPCl(l) = > by
definition. Both sides are true.
Base case 3, e = l′ for some literal l′ 6= l: l 6∈ [l′]s = {l′} by definition,
and s 6|= EPCl(l

′) = ⊥ by definition. Both sides are false.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 19 / 38

Planning by state-space search Regression

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

proof continues...
Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]s iff l ∈ [e1]s ∪ · · · ∪ [en]s (Def [e1 ∧ · · · ∧ en]s)

iff l ∈ [e′]s for some e′ ∈ {e1, . . . , en}
iff s |= EPCl(e

′) for some e′ ∈ {e1, . . . , en} (IH)
iff s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
iff s |= EPCl(e1 ∧ · · · ∧ en). (Def EPC)

Inductive case 2, e = c B e′:
l ∈ [c B e′]s iff l ∈ [e′]s and s |= c (Def [c B e′]s)

iff s |= EPCl(e
′) and s |= c (IH)

iff s |= EPCl(e
′) ∧ c

iff s |= EPCl(c B e′). (Def EPC)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 20 / 38

Planning by state-space search Regression

Precondition for effect l to take place: EPCl(e)
Connection to the normal form

Remark
Notice that in terms of EPCa(e) any operator 〈c, e〉 can be expressed in
normal form as

〈

c,
∧

a∈A

(EPCa(e) B a) ∧ (EPC¬a(e) B ¬a)

〉

.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 21 / 38

Planning by state-space search Regression

Regression: definition for state variables

Regressing a state variable
The formula EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) expresses the value of a ∈ A
after applying o in terms of values of state variables before applying o:
Either

I a was true before and it did not become false, or
I a became true.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 22 / 38

Planning by state-space search Regression

Regression: definition for state variables

Example
Let e = (b B a) ∧ (c B ¬a) ∧ b ∧ ¬d.

variable EPC···(e) ∨ (· · · ∧ ¬EPC¬···(e))

a b ∨ (a ∧ ¬c)
b > ∨ (b ∧ ¬⊥) ≡ >
c ⊥ ∨ (c ∧ ¬⊥) ≡ c
d ⊥ ∨ (d ∧ ¬>) ≡ ⊥

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 23 / 38

Planning by state-space search Regression

Regression: definition for state variables

Lemma (C)
Let a be a state variable, o = 〈c, e〉 ∈ O an operator, s a state and
s′ = appo(s). Then s |= EPCa(e)∨ (a∧¬EPC¬a(e)) if and only if s′ |= a.

Proof.
First prove the implication from left to right.
Assume s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Do a case analysis on the
two disjuncts.

1. Assume that s |= EPCa(e). By Lemma B a ∈ [e]s and hence
s′ |= a.

2. Assume that s |= a ∧ ¬EPC¬a(e). By Lemma B ¬a 6∈ [e]s. Hence a
remains true in s′.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 24 / 38

Planning by state-space search Regression

Regression: definition for state variables

proof continues...
In the first part we showed that if the formula is true in s, then a is true
in s′.
For the second part of the equivalence we show that if the formula is
false in s, then a is false in s′.

1. So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).

2. Hence s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) by de Morgan’s law.
3. Analyze the two cases: a is true or it is false in s.

3.1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a ∨ EPC¬a(e). Hence by Lemma B ¬a ∈ [e]s and we get
s′ 6|= a.

3.2 Assume that s 6|= a. Because s |= ¬EPCa(e), by Lemma B a 6∈ [e]s
and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 25 / 38

Planning by state-space search Regression

Regression: general definition

We base the definition of regression on formulae EPCl(e).

Definition
Let φ be a propositional formula and o = 〈c, e〉 an operator.
The regression of φ with respect to o is

regro(φ) = φr ∧ c ∧ f

where

1. φr is obtained from φ by replacing each a ∈ A by
EPCa(e) ∨ (a ∧ ¬EPC¬a(e)), and

2. f =
∧

a∈A ¬(EPCa(e) ∧ EPC¬a(e)).

The formula f says that no state variable may become simultaneously
true and false.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 26 / 38

Planning by state-space search Regression

Regression: examples

1. regr〈a,b〉(b) = (a ∧ (> ∨ (b ∧ ¬⊥))) ≡ a

2. regr〈a,b〉(b ∧ c ∧ d) =
(a ∧ (> ∨ (b ∧ ¬⊥)) ∧ (∨⊥(c ∧ ¬⊥)) ∧ (⊥ ∨ (d ∧ ¬⊥))) ≡ a ∧ c ∧ d

3. regr〈a,cBb〉(b) = (a ∧ (c ∨ (b ∧ ¬⊥))) ≡ a ∧ (c ∨ b)

4. regr〈a,(cBb)∧(bB¬b)〉(b) = (a ∧ (c ∨ (b ∧ ¬b)) ∧ ¬(c ∧ b)) ≡ a ∧ c ∧ ¬b

5. regr〈a,(cBb)∧(dB¬b)〉(b) = (a ∧ (c ∨ (b ∧ ¬d)) ∧ ¬(c ∧ d)) ≡
a ∧ (c ∨ b) ∧ (c ∨ ¬d) ∧ (¬c ∨ ¬d)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 27 / 38

Planning by state-space search Regression

Regression: examples
Blocks World with conditional effects

Moving blocks A and B onto the table from any location if they are
clear.

o1 = 〈>, (AonB ∧ Aclear) B (AonT ∧ Bclear ∧ ¬AonB)〉
o2 = 〈>, (BonA ∧ Bclear) B (BonT ∧ Aclear ∧ ¬BonA)〉

Plan for putting both blocks onto the table from any blocks world state
is o2, o1. Proof by regression:

G = AonT ∧ BonT
φ1 = regro1(G) = (AonT ∨ (AonB ∧ Aclear)) ∧ BonT
φ2 = regro2(φ1) = (AonT ∨ (AonB ∧ (Aclear ∨ (BonA ∧ Bclear))))

∧(BonT ∨ (BonA ∧ Bclear))

All three 2-block states satisfy φ2. Similar plans exist for any number of
blocks.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 28 / 38

Planning by state-space search Regression

Regression: examples
Incrementing a binary number

(¬b0 B b0)∧
((¬b1 ∧ b0) B (b1 ∧ ¬b0))∧

((¬b2 ∧ b1 ∧ b0) B (b2 ∧ ¬b1 ∧ ¬b0))

EPCb2(e) = ¬b2 ∧ b1 ∧ b0 EPC¬b2(e) = ⊥
EPCb1(e) = ¬b1 ∧ b0 EPC¬b1(e) = ¬b2 ∧ b1 ∧ b0
EPCb0(e) = ¬b0 EPC¬b0(e) = (¬b1 ∧ b0) ∨ (¬b2 ∧ b1 ∧ b0)

≡ (¬b1 ∨ ¬b2) ∧ b0

Regression replaces state variables as follows.

b2 by (b2 ∧ ¬⊥) ∨ (¬b2 ∧ b1 ∧ b0) ≡ b2 ∨ (b1 ∧ b0)
b1 by (b1 ∧ ¬(¬b2 ∧ b1 ∧ b0)) ∨ (¬b1 ∧ b0)

≡ (b1 ∧ (b2 ∨ ¬b0)) ∨ (¬b1 ∧ b0)
b0 by (b0 ∧ ¬((¬b1 ∨ ¬b2) ∧ b0)) ∨ ¬b0 ≡ (b1 ∧ b2) ∨ ¬b0

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 29 / 38

Planning by state-space search Regression

Regression: properties

Lemma (D)
Let φ be a formula, o an operator, s any state and s′ = appo(s). Then
s |= regro(φ) if and only if s′ |= φ.

Proof.
Let e be the effect of o. We show by structural induction over
subformulae φ′ of φ that s |= φ′r iff s′ |= φ′, where φ′r is φ′ with every
a ∈ A replaced by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Rest of regro(φ) just
states that o is applicable in s.

Induction hypothesis s |= φ′r if and only if s′ |= φ′.

Base cases 1 & 2 φ′ = > or φ′ = ⊥: Trivial as φ′r = φ′.

Base case 3 φ′ = a for some a ∈ A: Now
φ′r = EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
By Lemma C s |= φ′r iff s′ |= φ′.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 30 / 38

Planning by state-space search Regression

Regression: properties

proof continues...

Inductive case 1 φ′ = ¬ψ: By the induction hypothesis s |= ψr iff
s′ |= ψ. Hence s |= φ′r iff s′ |= φ′ by the truth-definition
of ¬.

Inductive case 2 φ′ = ψ ∨ ψ′: By the induction hypothesis s |= ψr iff
s′ |= ψ, and s |= ψ′

r iff s′ |= ψ′. Hence s |= φ′r iff
s′ |= φ′ by the truth-definition of ∨.

Inductive case 3 φ′ = ψ ∧ ψ′: By the induction hypothesis s |= ψr iff
s′ |= ψ, and s |= ψ′

r iff s′ |= ψ′. Hence s |= φ′r iff
s′ |= φ′ by the truth-definition of ∧.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 31 / 38

Planning by state-space search Complexity

Regression: complexity issues

The following two tests are useful when generating a search tree with
regression.

1. Testing that a formula regro(φ) does not represent the empty set
(= search is in a blind alley).
For example, regr〈a,¬p〉(p) = a ∧ ⊥ ≡ ⊥.

2. Testing that a regression step does not make the set of states
smaller (= more difficult to reach).
For example, regr〈b,c〉(a) = a ∧ b.

Both of these problems are NP-hard.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 32 / 38

Planning by state-space search Complexity

Regression: complexity issues

The formula regro1(regro2(· · · regron−1(regron
(φ)))) may have size

O(|φ||o1||o2| · · · |on−1||on|), i.e. the product of the sizes of φ and the
operators.
The size in the worst case O(2n) is hence exponential in n.

Logical simplifications

1. ⊥ ∧ φ ≡ ⊥, > ∧ φ ≡ φ, ⊥ ∨ φ ≡ φ, > ∨ φ ≡ >

2. a ∨ φ ≡ a ∨ φ[⊥/a], ¬a ∨ φ ≡ a ∨ φ[>/a], a ∧ φ ≡ a ∧ φ[>/a],
¬a ∧ φ ≡ a ∧ φ[⊥/a]

To obtain the maximum benefit from the last equivalences, e.g. for
(a ∧ b) ∧ φ(a), the equivalences for associativity and commutativity are
useful: (φ1 ∨ φ2) ∨ φ3 ≡ φ1 ∨ (φ2 ∨ φ3), φ1 ∨ φ2 ≡ φ2 ∨ φ1,
(φ1 ∧ φ2) ∧ φ3 ≡ φ1 ∧ (φ2 ∧ φ3), φ1 ∧ φ2 ≡ φ2 ∧ φ1.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 33 / 38

Planning by state-space search Branching

Regression: generation of search trees

Problem Formulae obtained with regression may become very big.

Cause Disjunctivity in the formulae. Formulae without disjunctions
easily convertible to small formulae l1 ∧ · · · ∧ ln where li are
literals and n is at most the number of state variables.

Solution Handle disjunctivity when generating search trees.
Alternatives:

1. Do nothing. (May lead to very big formulae!!!)
2. Always eliminate all disjunctivity.
3. Reduce disjunctivity if formula becomes too big.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 34 / 38

Planning by state-space search Branching

Regression: generation of search trees
Unrestricted regression (= do nothing about formula size)

Reach goal a ∧ b from state I such that I |= ¬a ∧ ¬b ∧ ¬c.

G = a ∧ b

¬a ∧ a

(¬c ∨ a) ∧ b

(¬c ∨ a) ∧ ¬a

(¬c ∨ a) ∧ b

〈¬a, b〉

〈b,¬
c B

a〉

〈¬a, b
〉

〈b,¬c B a〉

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 35 / 38

Planning by state-space search Branching

Regression: generation of search trees
Full splitting (= eliminate all disjunctivity)

I Planners for STRIPS operators only need to use formulae
l1 ∧ · · · ∧ ln where li are literals.

I Some PDDL planners also restrict to this class of formulae. This is
done as follows.

1. regro(φ) is transformed to disjunctive normal form (DNF):
(l11 ∧ · · · ∧ l1

n1
) ∨ · · · ∨ (ln1 ∧ · · · ∧ ln

nn

).
2. Each disjunct li1 ∧ · · · ∧ ii

n1
is handled in its own subtree of the

search tree.
3. The DNF formulae need not exist in its entirety explicitly: generate

one disjunct at a time.

I Hence branching is both on the choice of operator and on the
choice of the disjunct of the DNF formula.

I This leads to an increased branching factor and bigger search
trees, but avoids big formulae.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 36 / 38

Planning by state-space search Branching

Regression: generation of search trees
Full splitting

Reach goal a ∧ b from state I such that I |= ¬a ∧ ¬b ∧ ¬c.
(¬c ∨ a) ∧ b in DNF is (¬c ∧ b) ∨ (a ∧ b).
It is split to ¬c ∧ b and a ∧ b.

G = a ∧ b

¬a ∧ a

¬c ∧ b

a ∧ b

¬c ∧ ¬a

¬c ∧ b

a ∧ ¬a

a ∧ b

¬c ∧ b 〈¬a, b〉

〈b,
¬c

B
a〉

〈b,¬c B a〉

〈¬a, b〉

〈¬a, b〉

〈b,¬c B a〉

〈b,¬c B a〉

〈b,¬c B a〉

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 37 / 38

Planning by state-space search Branching

Regression: generation of search trees
Restricted splitting

I With full splitting search tree can be exponentially bigger than
without splitting. (But it is not necessary to construct the DNF
formulae explicitly!)

I Without splitting the formulae may have size that is exponential in
the number of state variables.

I A compromise is to split formulae only when necessary: combine
benefits of the two extremes.

I There are several ways to split a formula φ to φ1, . . . , φn such that
φ ≡ φ1 ∨ · · · ∨ φn. For example:

1. Transform φ to φ1 ∨ · · · ∨ φn by equivalences like distributivity
(φ1 ∨ φ2) ∧ φ3 ≡ (φ1 ∧ φ3) ∨ (φ2 ∧ φ3).

2. Choose state variable a, set φ1 = a ∧ φ and φ2 = ¬a ∧ φ, and
simplify with equivalences like a ∧ ψ ≡ a ∧ ψ[>/a].

(Albert-Ludwigs-Universität Freiburg) AI Planning April 18, 2005 38 / 38

