Planning by state-space search (April 18, 2005)

Normal form for effects
STRIPS operators

Planning by state-space search
Ideas
Progression
Regression
Complexity
Branching
(Albert-Ludwigs-Universität Freiburg)

Normal form for effects
Equivalences on effects

$$
\begin{align*}
c \triangleright\left(e_{1} \wedge \cdots \wedge e_{n}\right) & \equiv\left(c \triangleright e_{1}\right) \wedge \cdots \wedge\left(c \triangleright e_{n}\right) \tag{1}\\
c_{1} \triangleright\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \wedge c_{2}\right) \triangleright e \tag{2}\\
\left(c_{1} \triangleright e\right) \wedge\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \vee c_{2}\right) \triangleright e \tag{3}\\
e \wedge(c \triangleright e) & \equiv e \tag{4}\\
e & \equiv \top \triangleright e \tag{5}\\
e & \equiv \top \wedge e \tag{6}\\
e_{1} \wedge e_{2} & \equiv e_{2} \wedge e_{1} \tag{7}\\
\left(e_{1} \wedge e_{2}\right) \wedge e_{3} & \equiv e_{1} \wedge\left(e_{2} \wedge e_{3}\right) \tag{8}
\end{align*}
$$

Albert-Ludwigs-Universität Freiburg) Al Planning April 18, 2005 3/38

Normal form for effects

Normal form for effects
Example

Example

$$
\begin{aligned}
& (a \triangleright(b \wedge \\
& \quad(c \triangleright(\neg d \wedge e)))) \wedge \\
& (\neg b \triangleright e)
\end{aligned}
$$

transformed to normal form is

$$
\begin{aligned}
(a & \triangleright b) \wedge \\
((a \wedge c) & \triangleright \neg d) \wedge \\
((\neg b \vee(a \wedge c)) & \triangleright e)
\end{aligned}
$$

Planning by state-space search

There are many alternative ways of doing planning by state-space search.

1. different ways of expressing planning as a search problem:
1.1 search direction: forward, backward
1.2 representation of search space: states, sets of states
2. different search algorithms: depth-first, breadth-first, informed (heuristic) search (systematic: A $*$, IDA $*, \ldots$; local: hill-climbing, simulated annealing, ...), ...
3. different ways of controlling search:
3.1 heuristics for heuristic search algorithms
3.2 pruning techniques: invariants, symmetry elimination,...

Normal form for effects

1. Similarly to normal forms in propositional logic (DNF, CNF, NNF, ...) we can define a normal form for effects.
2. Nesting of conditionals, as in $a \triangleright(b \triangleright c)$, can be eliminated.
3. Restriction to atomic effects e in conditional effects $\phi \triangleright e$ can be made.
4. Only a small polynomial increase in size by transformation to normal form.
Compare: transformation to CNF or DNF may increase formula size exponentially.

Normal form for operators and effects

Definition
An operator $\langle c, e\rangle$ is in normal form if for all occurrences of $c^{\prime} \triangleright e^{\prime}$ in e the effect e^{\prime} is either a or $\neg a$ for some $a \in A$, and there is at most one occurrence of any atomic effect in e.

Theorem
For every operator there is an equivalent one in normal form.
Proof is constructive: we can transform any operator into normal form by using the equivalences from the previous slide.

STRIPS operators

Definition
An operator $\langle c, e\rangle$ is a STRIPS operator if

1. c is a conjunction of literals, and
2. e does not contain \triangleright.

Hence every STRIPS operator is of the form

$$
\left\langle l_{1} \wedge \cdots \wedge l_{n}, \quad l_{1}^{\prime} \wedge \cdots \wedge l_{m}^{\prime}\right\rangle
$$

where l_{i} are literals and l_{j}^{\prime} are atomic effects.
STRIPS
STanford Research Institute Planning System, Fikes \& Nilsson, 1971.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	Aprill 18, 2005	6/38

Planning by forward search with depth-first search

- Progression means computing the successor state $\operatorname{app}_{o}(s)$ of s with respect to o.
- Used in forward search: from the initial state toward the goal states.
- Very easy and efficient to implement.

Regression for STRIPS operators

- Regression for STRIPS operators is very simple.
- Goals are conjunctions of literals $l_{1} \wedge \cdots \wedge l_{n}$.
- First step: Choose an operator that makes some of l_{1}, \ldots, l_{n} true and makes none of them false.
- Second step: Form a new goal by removing the fulfilled goal literals and adding the preconditions of the operator.

Planning by state-space search Regression
Regression for STRIPS operators
Example

$$
\begin{aligned}
& o_{1} \\
& \text { NOTE: Predecessor states are in general not unique. } \\
& \text { This picture is just for illustration purposes. } \\
& o_{1}=\langle\square o n \square \wedge \square c l r, \neg \square o n \square \wedge \square o n T \wedge \square c l r\rangle \\
& o_{2}=\langle\square o n \square \wedge \square \mathrm{clr} \wedge \square \mathrm{clr}, \neg \square \mathrm{clr} \wedge \neg \square \mathrm{on} \square \wedge \square \mathrm{on} \square \wedge \square \mathrm{clr}\rangle \\
& o_{3}=\langle\square o n T \wedge \text { clr } \wedge \text { ■lr, } \neg \square \mathrm{clr} \wedge \neg \square o n T \wedge \text { ■on } \square\rangle \\
& G=\square \text { ■on } \square \text { ■on■ } \\
& \phi_{1}=\operatorname{regr}_{o_{3}}^{s t r}(G)=\square \mathrm{on} \square \wedge \square \mathrm{onT} \wedge \square \mathrm{clr} \wedge \square \mathrm{clr} \\
& \phi_{2}=\operatorname{regr}_{o_{2}}^{\operatorname{tr}}\left(\phi_{1}\right)=\square \mathrm{onT} \wedge \square \mathrm{clr} \wedge \square \mathrm{on} \square \wedge \square \mathrm{clr} \\
& \phi_{3}=\operatorname{regr}_{o_{1}}^{\operatorname{tr}}\left(\phi_{2}\right)=\square \mathrm{onT} \wedge \square \mathrm{on} \square \wedge \square \mathrm{clr} \wedge \square \mathrm{on} \square
\end{aligned}
$$

Precondition for effect l to take place: $E P C_{l}(e)$ Definition

Definition
The condition $E P C_{l}(e)$ for literal l to become true under effect e is defined as follows.

$$
\begin{aligned}
E P C_{l}(l) & =\top \\
E P C_{l}\left(l^{\prime}\right) & \left.=\perp \text { when } l \neq l^{\prime} \quad \text { for literals } l^{\prime}\right) \\
E P C_{l}(\top) & =\perp \\
E P C_{l}\left(e_{1} \wedge \cdots \wedge e_{n}\right) & =E P C_{l}\left(e_{1}\right) \vee \cdots \vee E P C_{l}\left(e_{n}\right) \\
E P C_{l}(c \triangleright e) & =E P C_{l}(e) \wedge c
\end{aligned}
$$

Regression is computing the possible predecessor states of a set of states.

- The formula regr $_{o}(\phi)$ represents the states from which a state represented by ϕ is reached by operator o.
- Used in backward search: from the goal states toward the initial states.
- Regression is powerful because it allows handling sets of states (progression: only one state at a time.)
- Handling formulae is more complicated than handling states: many questions about regression are NP-hard.

Regression for STRIPS operators Definition

Definition
The STRIPS-regression regrstr (ϕ) of $\phi=l_{1}^{\prime \prime} \wedge \cdots \wedge l_{m^{\prime}}^{\prime \prime}$ with respect to

$$
o=\left\langle l_{1} \wedge \cdots \wedge l_{n}, \quad l_{1}^{\prime} \wedge \cdots \wedge l_{m}^{\prime}\right\rangle
$$

is the conjunction of literals

$$
\bigwedge\left(\left(\left\{l_{1}^{\prime \prime}, \ldots, l_{m^{\prime}}^{\prime \prime}\right\} \backslash\left\{l_{1}^{\prime}, \ldots, l_{m}^{\prime}\right\}\right) \cup\left\{l_{1}, \cdots, l_{n}\right\}\right)
$$

provided that $\left\{l^{\prime}, \ldots, l_{m}^{\prime}\right\} \cap\left\{\overline{l_{1}^{\prime \prime}}, \ldots, \overline{l_{m^{\prime}}^{\prime \prime}}\right\}=\emptyset$.

Regression for general operators

- With disjunction and conditional effects, things become more tricky. How to regress $A \vee(B \wedge C)$ with respect to $\langle Q, D \triangleright B\rangle$?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	April 18, 2005	16/38

Precondition for effect l to take place: $E P C_{l}(e)$ Example

Example

$E P C_{a}(b \wedge c)=\perp \vee \perp \equiv \perp$
$E P C_{a}(a \wedge(b \triangleright a))=\top \vee(\top \wedge b) \equiv \top$
$E P C_{a}((c \triangleright a) \wedge(b \triangleright a))=(T \wedge c) \vee(\top \wedge b) \equiv c \vee b$

Precondition for effect l to take place: $E P C_{l}(e)$
Connection to $[e]_{s}$

Lemma (B)
Let s be a state, l a literal and e an effect. Then $l \in[e]_{s}$ if and only if $s \models E P C_{l}(e)$.

Proof.
Induction on the structure of the effect e.
Base case 1, $e=T$: By definition of $[T]_{s}$ we have $l \notin[T]_{s}=\emptyset$ and by definition of $E P C_{l}(T)$ we have $s \not \models E P C_{l}(T)=\perp$: Both sides of the equivalence are false.
Base case 2, $e=l: l \in[l]_{s}=\{l\}$ by definition, and $s \models E P C_{l}(l)=\top$ by definition. Both sides are true.
Base case 3, $e=l^{\prime}$ for some literal $l^{\prime} \neq l: l \notin\left[l^{\prime}\right]_{s}=\left\{l^{\prime}\right\}$ by definition, and $s \not \models E P C_{l}\left(l^{\prime}\right)=\perp$ by definition. Both sides are false.
(Albert-Ludwigs-Universität Freiburg)
Al Planning
April 18, 2005 19/38

Precondition for effect l to take place: $E P C_{l}(e)$
Connection to the normal form

Remark
Notice that in terms of $E P C_{a}(e)$ any operator $\langle c, e\rangle$ can be expressed in normal form as

$$
\left\langle c, \bigwedge_{a \in A}\left(E P C_{a}(e) \triangleright a\right) \wedge\left(E P C_{\neg a}(e) \triangleright \neg a\right)\right\rangle
$$

Regression: definition for state variables

Example
Let $e=(b \triangleright a) \wedge(c \triangleright \neg a) \wedge b \wedge \neg d$.

variable	$E P C \ldots(e) \vee\left(\cdots \wedge \neg E P C_{\neg \ldots(. .(e))}\right.$
a	$b \vee(a \wedge \neg c)$
b	$\top \vee(b \wedge \neg \perp) \equiv \top$
c	$\perp \vee(c \wedge \neg \perp) \equiv c$
d	$\perp \vee(d \wedge \neg \top) \equiv \perp$

(Albert-Ludwigs-Universität Freiburg) Al Planning \quad April 18, 2005 $23 / 38$

Regression: definition for state variables
proof continues...
In the first part we showed that if the formula is true in s, then a is true in s^{\prime}.
For the second part of the equivalence we show that if the formula is false in s, then a is false in s^{\prime}.

1. So assume $s \not \vDash E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$.
2. Hence $s \models \neg E P C_{a}(e) \wedge\left(\neg a \vee E P C_{\neg a}(e)\right)$ by de Morgan's law.
3. Analyze the two cases: a is true or it is false in s.
3.1 Assume that $s \models a$. Now $s \models E P C_{\neg a}(e)$ because
$s \vDash \neg a \vee E P C_{\neg a}(e)$. Hence by Lemma $\mathrm{B} \neg a \in[e]_{s}$ and we get $s^{\prime} \neq a$.
3.2 Assume that $s \not \models a$. Because $s \models \neg E P C_{a}(e)$, by Lemma $\mathrm{B} a \notin[e]_{s}$ and hence $s^{\prime} \not \vDash a$.
Therefore in both cases $s^{\prime} \not \models a$.

Precondition for effect l to take place: $E P G_{l}(e)$
Connection to $[e]_{s}$
proof continues...
Inductive case 1, $e=e_{1} \wedge \cdots \wedge e_{n}$:

```
\(l \in[e]_{s} \quad\) iff \(l \in\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s} \quad\left(\operatorname{Def}\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}\right)\)
    iff \(l \in\left[e^{\prime}\right]_{s}\) for some \(e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}\)
    iff \(s \models E P C_{l}\left(e^{\prime}\right)\) for some \(e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}\)
    iff \(s=E P C_{l}\left(e_{1}\right) \vee \cdots \vee E P C_{l}\left(e_{n}\right)\)
    iff \(s \models E P C_{l}\left(e_{1} \wedge \cdots \wedge e_{n}\right)\). (Def EPC)
Inductive case 2, \(e=c \triangleright e^{\prime}\) :
\(l \in\left[c \triangleright e^{\prime}\right]_{s} \quad\) iff \(l \in\left[e^{\prime}\right]_{s}\) and \(s \models c \quad\) (Def \(\left[c \triangleright e^{\prime}\right]_{s}\) )
        iff \(s \models E P C_{l}\left(e^{\prime}\right)\) and \(s \models c \quad\) (IH)
        iff \(s \models E P C_{l}\left(e^{\prime}\right) \wedge c\)
        iff \(s \models E P C_{l}\left(c \triangleright e^{\prime}\right) . \quad\) (Def \(\left.E P C\right)\)
```

 \(\begin{array}{llll}\text { (Albert-Ludwigs-Universität Freiburg } & \text { Al Planning } & \text { April 18, 2005 } & 20 / 38\end{array}\)
 Regression: definition for state variables

Regressing a state variable
The formula $E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$ expresses the value of $a \in A$ after applying o in terms of values of state variables before applying o : Either

- a was true before and it did not become false, or
- a became true.

| (Albert-Ludwigs-Universität Freiburg) \quad Al Planning | April 18, 2005 | $22 / 38$ |
| :--- | :--- | :--- | :--- |
| | | |
| Planning by state-space search | Regression | |

Regression: definition for state variables

Lemma (C)
Let a be a state variable, $o=\langle c, e\rangle \in O$ an operator, s a state and
$s^{\prime}=\operatorname{app}_{o}(s)$. Then $s \models E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$ if and only if $s^{\prime} \models a$.
Proof.
First prove the implication from left to right.
Assume $s \models E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$. Do a case analysis on the two disjuncts.

1. Assume that $s \models E P C_{a}(e)$. By Lemma $\mathrm{B} a \in[e]_{s}$ and hence $s^{\prime} \models a$.
2. Assume that $s \models a \wedge \neg E P C_{\neg a}(e)$. By Lemma $\mathrm{B} \neg a \notin[e]_{s}$. Hence a remains true in s^{\prime}.

Regression: general definition

We base the definition of regression on formulae $E P C_{l}(e)$.
Definition
Let ϕ be a propositional formula and $o=\langle c, e\rangle$ an operator.
The regression of ϕ with respect to o is

$$
\operatorname{regr}_{o}(\phi)=\phi_{r} \wedge c \wedge f
$$

where

1. ϕ_{r} is obtained from ϕ by replacing each $a \in A$ by $E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$, and
2. $f=\bigwedge_{a \in A} \neg\left(E P C_{a}(e) \wedge E P C_{\neg a}(e)\right)$.

The formula f says that no state variable may become simultaneously true and false.

Regression: examples

1. $\operatorname{regr}_{\langle a, b\rangle}(b)=(a \wedge(T \vee(b \wedge \neg \perp))) \equiv a$
2. $\operatorname{regr}_{\langle a, b\rangle}(b \wedge c \wedge d)=$
$(a \wedge(T \vee(b \wedge \neg \perp)) \wedge(\vee \perp(c \wedge \neg \perp)) \wedge(\perp \vee(d \wedge \neg \perp))) \equiv a \wedge c \wedge d$
3. $\operatorname{regr}_{\langle a, c \triangleright b\rangle}(b)=(a \wedge(c \vee(b \wedge \neg \perp))) \equiv a \wedge(c \vee b)$
4. $\operatorname{regr}_{\langle a,(c \triangleright b) \wedge(b \triangleright \neg b)\rangle}(b)=(a \wedge(c \vee(b \wedge \neg b)) \wedge \neg(c \wedge b)) \equiv a \wedge c \wedge \neg b$
5. $\operatorname{regr}_{\langle a,(c \triangleright b) \wedge(d \triangleright \neg b)\rangle}(b)=(a \wedge(c \vee(b \wedge \neg d)) \wedge \neg(c \wedge d)) \equiv$ $a \wedge(c \vee b) \wedge(c \vee \neg d) \wedge(\neg c \vee \neg d)$

Regression: examples
Incrementing a binary number

$$
\begin{gathered}
\left(\neg b_{0} \triangleright b_{0}\right) \wedge \\
\left(\left(\neg b_{1} \wedge b_{0}\right) \triangleright\left(b_{1} \wedge \neg b_{0}\right)\right) \wedge \\
\left(\left(\neg b_{2} \wedge b_{1} \wedge b_{0}\right) \triangleright\left(b_{2} \wedge \neg b_{1} \wedge \neg b_{0}\right)\right)
\end{gathered}
$$

$$
\begin{array}{rlrl}
E P C_{b_{2}}(e) & =\neg b_{2} \wedge b_{1} \wedge b_{0} & E P C_{\neg b_{2}}(e) & =\perp \\
E P C_{b_{1}}(e) & =\neg b_{1} \wedge b_{0} & E P C_{\neg b_{1}}(e) & =\neg b_{2} \wedge b_{1} \wedge b_{0} \\
E P C_{b_{0}}(e) & =\neg b_{0} & E P C_{\neg b_{0}}(e) & =\left(\neg b_{1} \wedge b_{0}\right) \vee\left(\neg b_{2} \wedge b_{1} \wedge b_{0}\right) \\
& & \equiv\left(\neg b_{1} \vee \neg b_{2}\right) \wedge b_{0}
\end{array}
$$

Regression replaces state variables as follows.

$$
\begin{aligned}
& b_{2} \text { by }\left(b_{2} \wedge \neg \perp\right) \vee\left(\neg b_{2} \wedge b_{1} \wedge b_{0}\right) \equiv b_{2} \vee\left(b_{1} \wedge b_{0}\right) \\
& b_{1} \text { by }\left(b_{1} \wedge \neg\left(\neg b_{2} \wedge b_{1} \wedge b_{0}\right)\right) \vee\left(\neg b_{1} \wedge b_{0}\right) \\
& \equiv\left(b_{1} \wedge\left(b_{2} \vee \neg b_{0}\right)\right) \vee\left(\neg b_{1} \wedge b_{0}\right) \\
& b_{0} \text { by }\left(b_{0} \wedge \neg\left(\left(\neg b_{1} \vee \neg b_{2}\right) \wedge b_{0}\right)\right) \vee \neg b_{0} \equiv\left(b_{1} \wedge b_{2}\right) \vee \neg b_{0}
\end{aligned}
$$

| (Albert-Ludwigs-Universität Freiburg) Al Planning | April 18, 2005 | $29 / 38$ |
| :--- | :--- | :--- | :--- |

Planning by state-space search Regression

Regression: properties
proof continues...
Inductive case $1 \quad \phi^{\prime}=\neg \psi$: By the induction hypothesis $s \models \psi_{r}$ iff $s^{\prime} \models \psi$. Hence $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$ by the truth-definition of \neg.
Inductive case $2 \phi^{\prime}=\psi \vee \psi^{\prime}$: By the induction hypothesis $s \models \psi_{r}$ iff $s^{\prime} \models \psi$, and $s \models \psi_{r}^{\prime}$ iff $s^{\prime} \models \psi^{\prime}$. Hence $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$ by the truth-definition of \vee.
Inductive case $3 \phi^{\prime}=\psi \wedge \psi^{\prime}$: By the induction hypothesis $s \models \psi_{r}$ iff $s^{\prime} \models \psi$, and $s \models \psi_{r}^{\prime}$ iff $s^{\prime} \models \psi^{\prime}$. Hence $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$ by the truth-definition of \wedge.

Regression: complexity issues

The formula regr $r_{o_{1}}\left(\right.$ regr $_{o_{2}}\left(\cdots\right.$ regr $_{o_{n-1}}\left(\right.$ regr $\left.\left.\left._{o_{n}}(\phi)\right)\right)\right)$ may have size $\mathcal{O}\left(|\phi|\left|o_{1}\right|\left|o_{2}\right| \cdots\left|o_{n-1}\right|\left|o_{n}\right|\right)$, i.e. the product of the sizes of ϕ and the operators.
The size in the worst case $\mathcal{O}\left(2^{n}\right)$ is hence exponential in n.
Logical simplifications

$$
\begin{aligned}
& \text { 1. } \perp \wedge \phi \equiv \perp, \top \wedge \phi \equiv \phi, \perp \vee \phi \equiv \phi, \top \vee \phi \equiv \top \\
& \text { 2. } a \vee \phi \equiv a \vee \phi[\perp / a], \neg a \vee \phi \equiv a \vee \phi[\top / a], a \wedge \phi \equiv a \wedge \phi[\top / a] \\
& \neg a \wedge \phi \equiv a \wedge \phi[\perp / a]
\end{aligned}
$$

To obtain the maximum benefit from the last equivalences, e.g. for $(a \wedge b) \wedge \phi(a)$, the equivalences for associativity and commutativity are useful: $\left(\phi_{1} \vee \phi_{2}\right) \vee \phi_{3} \equiv \phi_{1} \vee\left(\phi_{2} \vee \phi_{3}\right), \phi_{1} \vee \phi_{2} \equiv \phi_{2} \vee \phi_{1}$, $\left(\phi_{1} \wedge \phi_{2}\right) \wedge \phi_{3} \equiv \phi_{1} \wedge\left(\phi_{2} \wedge \phi_{3}\right), \phi_{1} \wedge \phi_{2} \equiv \phi_{2} \wedge \phi_{1}$.

Regression: examples
Blocks World with conditional effects
Moving blocks A and B onto the table from any location if they are clear.

$$
\begin{aligned}
& o_{1}=\langle T,(\text { Aon } B \wedge \text { Aclear }) \triangleright(\text { Aon } T \wedge \text { Bclear } \wedge \neg A o n B)\rangle \\
& o_{2}=\langle T,(\text { Bon } A \wedge \text { Bclear }) \triangleright(\text { Bon } T \wedge \text { Aclear } \wedge \neg \text { BonA })\rangle
\end{aligned}
$$

Plan for putting both blocks onto the table from any blocks world state is o_{2}, o_{1}. Proof by regression:

$$
\begin{aligned}
G= & A o n T \wedge B o n T \\
\phi_{1}=\operatorname{regr}_{o_{1}}(G)= & (\text { Aon } T \vee(\text { Aon } B \wedge \text { Aclear })) \wedge \text { Bon } T \\
\phi_{2}=\operatorname{regr}_{o_{2}}\left(\phi_{1}\right)= & (A o n T \vee(\text { Aon } B \wedge(\text { Aclear } \vee(\text { Bon } A \wedge \text { Bclear })))) \\
& \wedge(\text { Bon } T \vee(\text { Bon } A \wedge \text { Bclear }))
\end{aligned}
$$

All three 2-block states satisfy ϕ_{2}. Similar plans exist for any number of blocks.
(Albert-Ludwigs-Universität Freiburg) Al Planning April 18, 2005 28/38

Regression: properties

Lemma (D)
Let ϕ be a formula, o an operator, s any state and $s^{\prime}=\operatorname{app}_{o}(s)$. Then $s \models$ regr $_{o}(\phi)$ if and only if $s^{\prime} \models \phi$.
Proof.
Let e be the effect of o. We show by structural induction over subformulae ϕ^{\prime} of ϕ that $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$, where ϕ_{r}^{\prime} is ϕ^{\prime} with every $a \in A$ replaced by $E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$. Rest of $r e g r_{o}(\phi)$ just states that o is applicable in s.
Induction hypothesis $s \models \phi_{r}^{\prime}$ if and only if $s^{\prime} \models \phi^{\prime}$.
Base cases $1 \& 2 \phi^{\prime}=\top$ or $\phi^{\prime}=\perp$: Trivial as $\phi_{r}^{\prime}=\phi^{\prime}$.
Base case $3 \phi^{\prime}=a$ for some $a \in A$: Now
$\phi_{r}^{\prime}=E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$.
By Lemma C $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$.
$\begin{array}{llll}\text { (Albert-Ludwigs-Universität Freiburg) } & \text { Al Planning } & \text { April 18, 2005 } & 30 / 38\end{array}$

Regression: complexity issues

The following two tests are useful when generating a search tree with regression.

1. Testing that a formula regro (ϕ) does not represent the empty set (= search is in a blind alley).
For example, $\operatorname{regr}_{\langle a, \neg p\rangle}(p)=a \wedge \perp \equiv \perp$.
2. Testing that a regression step does not make the set of states smaller (= more difficult to reach).
For example, $\operatorname{regr}_{\langle b, c\rangle}(a)=a \wedge b$.
Both of these problems are NP-hard.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	April 18, 2005	$32 / 38$

Regression: generation of search trees

Problem Formulae obtained with regression may become very big.
Cause Disjunctivity in the formulae. Formulae without disjunctions easily convertible to small formulae $l_{1} \wedge \cdots \wedge l_{n}$ where l_{i} are literals and n is at most the number of state variables.
Solution Handle disjunctivity when generating search trees.
Alternatives:

1. Do nothing. (May lead to very big formulae!!!)
2. Always eliminate all disjunctivity.
3. Reduce disjunctivity if formula becomes too big.

Regression: generation of search trees
Unrestricted regression (= do nothing about formula size)

Reach goal $a \wedge b$ from state I such that $I \models \neg a \wedge \neg b \wedge \neg c$.

$$
\begin{array}{llll}
\text { (Albert-Ludwigs-Universität Freiburg) } & \text { Al Planning } & \text { April } 18,2005 & 35 / 38
\end{array}
$$

Planning by state-space search Branching

Regression: generation of search trees

Full splitting
Reach goal $a \wedge b$ from state I such that $I \models \neg a \wedge \neg b \wedge \neg c$. $(\neg c \vee a) \wedge b$ in DNF is $(\neg c \wedge b) \vee(a \wedge b)$.
It is split to $\neg c \wedge b$ and $a \wedge b$.

Regression: generation of search trees Full splitting (= eliminate all disjunctivity)

- Planners for STRIPS operators only need to use formulae $l_{1} \wedge \cdots \wedge l_{n}$ where l_{i} are literals.
- Some PDDL planners also restrict to this class of formulae. This is done as follows.

1. $\operatorname{reg} r_{o}(\phi)$ is transformed to disjunctive normal form (DNF):
$\left(l_{1}^{1} \wedge \cdots \wedge l_{n_{1}}^{1}\right) \vee \cdots \vee\left(l_{1}^{n} \wedge \cdots \wedge l_{n}^{n}\right)$.
2. Each disjunct $l_{1}^{i} \wedge \cdots \wedge i_{n_{1}}^{i}$ is handled in its own subtree of the search tree.
3. The DNF formulae need not exist in its entirety explicitly: generate one disjunct at a time

- Hence branching is both on the choice of operator and on the choice of the disjunct of the DNF formula.
- This leads to an increased branching factor and bigger search trees, but avoids big formulae.

(Albert-Ludwigs-Universitäat Freiburg	Al Planning	April 18, 2005	$36 / 38$

Regression: generation of search trees
 Restricted splitting

- With full splitting search tree can be exponentially bigger than without splitting. (But it is not necessary to construct the DNF formulae explicitly!)
- Without splitting the formulae may have size that is exponential in the number of state variables.
- A compromise is to split formulae only when necessary: combine benefits of the two extremes.
- There are several ways to split a formula ϕ to $\phi_{1}, \ldots, \phi_{n}$ such that $\phi \equiv \phi_{1} \vee \cdots \vee \phi_{n}$. For example:

1. Transform ϕ to $\phi_{1} \vee \cdots \vee \phi_{n}$ by equivalences like distributivity $\left(\phi_{1} \vee \phi_{2}\right) \wedge \phi_{3} \equiv\left(\phi_{1} \wedge \phi_{3}\right) \vee\left(\phi_{2} \wedge \phi_{3}\right)$.
2. Choose state variable a, set $\phi_{1}=a \wedge \phi$ and $\phi_{2}=\neg a \wedge \phi$, and simplify with equivalences like $a \wedge \psi \equiv a \wedge \psi[\top / a]$.
