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Normal form for effects

Al Planning

© Similarly to normal forms in propositional logic (DNF, Normal form
CNF, NNF, ...) we can define a normal form for effects.

@ Nesting of conditionals, as in a > (b > ¢), can be
eliminated.

© Restriction to atomic effects e in conditional effects
¢ > e can be made.

© Only a small polynomial increase in size by
transformation to normal form.
Compare: transformation to CNF or DNF may increase
formula size exponentially.
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Equivalences on effects

>(er A Nep)=(c>er) AN A(ec>ep) (1)
ab(e>e)=(aha)>e 2

(c1 > e) (a>e)=(aaVe)>e 3)
A e) = 4

e=TD>e (5)

(6)

(7)

(8)



Equivalences on effects

>(er A Nep)=(c>er) AN A(ec>ep) (1)

c1 > (cz >e)=(aaANe)D>e 2

(c1 > e) (ca>e) = (01 Ver)b>e 3
Aet e)= @)

e=TD>e (5)

e=TAe (6)

(7

(8)



Equivalences on effects

>(er A Nep)=(c>er) AN A(ec>ep) (1)

c1 > (cz >e)=(aaANe)D>e 2

(c1 > e) (ca>e) = (cl Ver)b>e 3
A(e>e) = (4)

e=Tp>e (5)

e=TAe (6)
etNex=exNep )

(8)



Equivalences on effects

>(e1 A Nep)=(c>er)A--
ab(e>e)=(aha)>e
(clbe) (62[>€)E(Cl\/02)l>6
A(c>e)=
e=TD>e
e=TANe

eitNexy =ex Nep
(e1 Nex) Nes =e1 A(ea Aes)

‘A (c>ep)

(1)
)
®3)
(4)
()
(6)
()
(8)
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Normal form



Normal form for operators and effects

Al Planning

Definition
An operator (c, e) is in normal form if for all occurrences of

d > ¢’ in e the effect €’ is either a or —a for some a € A, and
there is at most one occurrence of any atomic effect in e.

Normal form

Theorem

For every operator there is an equivalent one in normal
form.

| \

A

Proof is constructive: we can transform any operator into
normal form by using the equivalences from the previous
slide.



Normal form for effects

Example

Al Planning

Example Normal form

(a > (bA
(c> (=d Ae))))A
(=b>e)

transformed to normal form is

(a > b)A
((a A ) > —d)A
(=bV(anc)r>e)




STRIPS operators

Al Planning

Definition

An operator (c, e) is a STRIPS operator if
© cis a conjunction of literals, and
© ¢ does not contain .

STRIPS operators

Hence every STRIPS operator is of the form

(AN Ny, ByN-- ALY

where [; are literals and l;. are atomic effects.

STanford Research Institute Planning System, Fikes &
Nilsson, 1971.




Planning by state-space search

Al Planning
There are many alternative ways of doing planning by
state-space search.
. . . State-space
@ different ways of expressing planning as a search search

problem:
@ search direction: forward, backward
@ representation of search space: states, sets of states
@ different search algorithms: depth-first, breadth-first,
informed (heuristic) search (systematic: Ax, IDAx,...;
local: hill-climbing, simulated annealing, ...), ...
© different ways of controlling search:

@ heuristics for heuristic search algorithms
@ pruning techniques: invariants, symmetry elimination,...
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¢1 =regr_(G) 1 —G
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Planning by backward search

with depth-first search, for state sets (represented as formulae)

¢1 =regr_.(G) ¢3 ——p —>p1 —>C
¢ = regr_.(¢1)
3 =regr.(¢2),I = ¢3

1




Progression

Al Planning

@ Progression means computing the successor state
app.(s) of s with respect to o.

@ Used in forward search: from the initial state toward the
goal states.

@ Very easy and efficient to implement.



Regression

Al Planning

@ Regression is computing the possible predecessor
states of a set of states.

@ The formula regr,(¢) represents the states from which

a state represented by ¢ is reached by operator o.
@ Used in backward search: from the goal states toward

the initial states.
@ Regression is powerful because it allows handling sets

of states (progression: only one state at a time.)

@ Handling formulae is more complicated than handling
states: many questions about regression are NP-hard.



Regression for STRIPS operators

Al Planning

@ Regression for STRIPS operators is very simple.
@ Goals are conjunctions of literals Iy A -+ - A l,,.

@ First step: Choose an operator that makes some of
l1,...,1, true and makes none of them false.

@ Second step: Form a new goal by removing the fulfilled
goal literals and adding the preconditions of the
operator.



Regression for STRIPS operators

Definition

Al Planning

The STRIPS-regression regri(¢) of ¢ = If A--- A", with
respect to

o={l1 A~ Nlp, YNNI

is the conjunction of literals

AN D Ul )

provided that {I', ..., 1, } N {1f,...,1",} = 0.




Regression for STRIPS operators

Example

Al Planning

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

Regression

o1 = (Honl A Hclr, —-HonM A HonT A Hclr)
0, = (HonM A Hclr A Hclr, —Hclr A —Honl A Honl A Hclr)

o3 = (HonT A Mclr A Hclr, —Hclr A —HonT A HonMl)

G = Honl A Honl



Regression for STRIPS operators
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G = Honl A HonA



Regression for STRIPS operators

Example
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03 = A A , A A HonMl)

G = Honl A



Regression for STRIPS operators

Example
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o3 = (HonT A Mclr A Hclr, A A )

G = A Honll



Regression for STRIPS operators

Example
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403i

o3 = (HonT A Mclr A Hclr, A A )

G= A HonH
¢1 = regri"(G) = MonM A MonT A Hclr A Hclr



Regression for STRIPS operators

Example
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¢1 = regri"(G) = MonM A MonT A Hclr A Hclr



Regression for STRIPS operators

Example
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02 = ( A A , A A Honl A Hclr)

¢1 = regril"(G) = MonM A A Hclr A



Regression for STRIPS operators

Example

Al Planning

024

0o = (Honl A Hclr A Hclr, A A A )

¢1 = regrii"(G) = A HonT A A Hclr

3



Regression for STRIPS operators

Example
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.024

0o = (Honl A Hclr A Hclr, A A A )

P1 =regrii(G) = A HonT A A Hclr
¢2 =regrii"(¢1) = MonT A Mclr A MonM A Hclr



Regression for STRIPS operators

Example
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> = regré’(¢;) = MonT A Hclr A Honl A Hclr
ar,,



Regression for STRIPS operators

Example
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¢2 =regrili(¢1) = A Hclr A A



Regression for STRIPS operators

Example

Al Planning

01.

o1 = (Honl A Hclr, A A )

> =regréi(¢;) = MonT A A HonM A Mclr
ar,,



Regression for STRIPS operators

Example

Al Planning

l01.

o1 = (Honl A Hclr, A A )

¢z =regril"(¢1) = MonT A A HonH A Mclr
¢3 = regrs”(¢2) = MonT A HonM A Hclr A HonHl



Regression for STRIPS operators

Example

Al Planning

¢3 = regrs”(¢2) = MonT A HonM A Hclr A HonH



Regression for general operators

Al Planning

@ With disjunction and conditional effects, things become
more tricky. How to regress A V (B A C') with respect to
(Q,D > B)?

@ The story about goals and subgoals and fulfilling
subgoals, as in the STRIPS case, is no longer useful.



Regression for general operators

Al Planning

@ With disjunction and conditional effects, things become
more tricky. How to regress A V (B A C') with respect to
(Q,D > B)?

@ The story about goals and subgoals and fulfilling
subgoals, as in the STRIPS case, is no longer useful.

@ We present a general method for doing regression for
any formula and any operator.

@ Now we extensively use the idea of representing sets of
states as formulae.



Precondition for effect [ to take place: epc;(e)

Definition

The condition EPC,(e) for literal [ to become true under
effect e is defined as follows.

EPC,/(I)=T
EPC;(I') = L when [ # ' (for literals I)
EPCl( )=1
EPCl(el N - n) = EP Cl(el) -V EPCl(en)
EPCl(cbe):E ()/\c

Al Planning
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EPC.(bAc)=1lVvIi=1
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EPC.(bAc)=1lVvIi=1
EPCi(aAN(b>a))=TV(TAD)=T




Precondition for effect [ to take place: epc;(e)

Example

Al Planning

EPC,(bAc)=1LvLi=1
EPCi(aAN(b>a))=TV(TAD)=T
EPCu((c>a)A(b>a))=(TAc)V(TAD)=cVb




Precondition for effect [ to take place: epc;(e)

Connection to [e]s

Al Planning

Lemma (B) ‘

Let s be a state, [ a literal and e an effect. Then [ € [e]; if
and only if s = EPC;(e).

| \
o
2
3
2
o
S

Proof.
Induction on the structure of the effect e.

.




Precondition for effect [ to take place: epc;(e)

Connection to [e]s

Lemma (B) ‘

Let s be a state, [ a literal and e an effect. Then [ € [e]; if
and only if s = EPC;(e).

Al Planning

| \
Y
2
3
2
o
S

Proof.

Induction on the structure of the effect e.
Base case 1, e = T: By definition of [T]s we have

[ € [T]s = 0 and by definition of EPC,;(T) we have

s = EPC,(T) = L: Both sides of the equivalence are false.

.




Precondition for effect [ to take place: epc;(e)

Connection to [e]s

Al Planning

Lemma (B) ‘

Let s be a state, [ a literal and e an effect. Then [ € [e]; if
and only if s = EPC;(e).

Proof.

Induction on the structure of the effect e.

Base case 1, e = T: By definition of [T]s we have

[ € [T]s = 0 and by definition of EPC,;(T) we have

s = EPC,(T) = L: Both sides of the equivalence are false.
Base case 2, e = [: | € [l]s = {l} by definition, and

s = EPC,(I) = T by definition. Both sides are true.

| \
Y
2
3
2
o
S

.




Precondition for effect [ to take place: epc;(e)

Connection to [e]s

Lemma (B) ‘

Let s be a state, [ a literal and e an effect. Then [ € [e]; if
and only if s = EPC;(e).

| N\

Proof.

Induction on the structure of the effect e.
Base case 1, e = T: By definition of [T]s we have

[ € [T]s = 0 and by definition of EPC,;(T) we have

s = EPC,(T) = L: Both sides of the equivalence are false.
Base case 2, e = [: | € [l]s = {l} by definition, and

s = EPC,(I) = T by definition. Both sides are true.

Base case 3, e = I’ for some literal I’ # 1: | & [I']s = {I'} by
definition, and s [~ EPC,(I") = L by definition. Both sides
are false.

.

Al Planning
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proof continues... ‘

Inductive case 1, e =e1 A--- Aey:
lele]s iffleler]sU---Ulen]s (Def [er A -+ Aepls)
iff [ € [¢]; for some €’ € {e1,...,en}
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Inductive case 1, e =e1 A--- Aey:
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lefe>é]s ifflele]sand s =c (Def [c > €/]5)
iff s = EPCy(¢’) and s = ¢ (IH)
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Connection to [e]s
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Inductive case 1, e =e1 A--- Aey:
lele]s iffleler]sU---Ulen]s (Def [er A -+ Aepls)
iff [ € [¢]; for some €’ € {e1,...,en}
iff s = EPCy(¢’) for some ¢’ € {e1,...,en} (IH) | |-
iff s ): EPCl(el) V.-V EPCl(en)
iff s = EPCi(e1 A--- Aey). (Def EPC)
Inductive case 2, e = c > €’:
lefe>é]s ifflele]sand s =c (Def [c > €/]5)
iff s = EPCy(¢’) and s = ¢ (IH)
iff s = EPCy(e') A c
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Connection to [e]s
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Inductive case 1, e =e1 A--- Aey:
lele]s iffleler]sU---Ulen]s (Def [er A -+ Aepls)
iff [ € [¢]; for some €’ € {e1,...,en}
iff s = EPCy(¢’) for some ¢’ € {e1,...,en} (IH) | |-
iff s ): EPCl(el) V.-V EPCl(en)
iff s = EPCi(e1 A--- Aey). (Def EPC)
Inductive case 2, e = c > €’:
lefe>é]s ifflele]sand s =c (Def [c > €/]5)
iff s = EPCy(¢’) and s = ¢ (IH)
iff s = EPCy(e') A c
iff s = EPCy(c > ¢€). (Def EPC)
L]




Precondition for effect [ to take place: epc;(e)

Connection to the normal form

Al Planning

Notice that in terms of EPC,(e) any operator (c, ¢) can be
expressed in normal form as

<c, /\ (EPCa(e) > a) A (EPC_q(e) > —|a)> .

a€A




Regression: definition for state variables

Al Planning

Regressing a state variable ‘

The formula EPC,(e) V (a A -EPC_,(e)) expresses the
value of a € A after applying o in terms of values of state
variables before applying o: Either

@ ¢ was true before and it did not become false, or

@ ¢ became true. )




Regression: definition for state variables
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Lete = (b>a)A(c> —a) AbA —d.

variable] EPC..(e)V (--- A —~EPC_..(e))
a bV (a A —c)

TV(A-L)=T
Lv(en-Ll)=¢c
Lv@dAn-T)=1

Q0 o




Regression: definition for state variables
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Let a be a state variable, o = (¢, e) € O an operator, s a
state and s’ = app,(s). Then
s E EPCq,(e) V (a A =EPC_,(e)) if and only if s’ = a.

Proof.

First prove the implication from left to right.
Assume s = EPC,(e) vV (a A =EPC_,(e)). Do a case
analysis on the two disjuncts.
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Let a be a state variable, o = (¢, e) € O an operator, s a
state and s’ = app,(s). Then
s E EPCq,(e) V (a A =EPC_,(e)) if and only if s’ = a.

Proof.

First prove the implication from left to right.
Assume s = EPC,(e) vV (a A =EPC_,(e)). Do a case
analysis on the two disjuncts.

© Assume that s = EPC,(e).
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Let a be a state variable, o = (¢, e) € O an operator, s a
state and s’ = app,(s). Then
s E EPCq,(e) V (a A =EPC_,(e)) if and only if s’ = a.

Proof.

First prove the implication from left to right.
Assume s = EPC,(e) vV (a A =EPC_,(e)). Do a case
analysis on the two disjuncts.

© Assume that s = EPC,(e). By Lemma B a € [¢]; and
hence s’ [ a.
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Let a be a state variable, o = (¢, e) € O an operator, s a
state and s’ = app,(s). Then
s E EPCq,(e) V (a A =EPC_,(e)) if and only if s’ = a.

Proof.

First prove the implication from left to right.
Assume s = EPC,(e) vV (a A =EPC_,(e)). Do a case
analysis on the two disjuncts.

© Assume that s = EPC,(e). By Lemma B a € [¢]; and
hence s’ [ a.

@ Assume that s = a A —=EPC_,(e).
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Let a be a state variable, o = (¢, e) € O an operator, s a
state and s’ = app,(s). Then
s E EPCq,(e) V (a A =EPC_,(e)) if and only if s’ = a.

Proof.

First prove the implication from left to right.
Assume s = EPC,(e) vV (a A =EPC_,(e)). Do a case
analysis on the two disjuncts.

© Assume that s = EPC,(e). By Lemma B a € [¢]; and
hence s’ [ a.

@ Assume that s = a A —-EPC_,(e). By Lemma B
—a ¢ [e]s. Hence a remains true in s'.




Regression: definition for state variables
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proof continues...

In the first part we showed that if the formula is true in s,

then a is true in s'.
For the second part of the equivalence we show that if the

formula is false in s, then a is false in s’.




Regression: definition for state variables

i Al Planni
proof continues... | anning

In the first part we showed that if the formula is true in s,

then a is true in s'.
For the second part of the equivalence we show that if the

formula is false in s, then a is false in s'.
@ So assume s £ EPC,(e) V (a A ~EPC_,(e)).

@ Hence s = -EPC,(e) A (—a vV EPC_,(e)) by de
Morgan’s law.
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In the first part we showed that if the formula is true in s,

then a is true in s'.
For the second part of the equivalence we show that if the

formula is false in s, then a is false in s'.
@ So assume s £ EPC,(e) V (a A ~EPC_,(e)).

@ Hence s = -EPC,(e) A (—a vV EPC_,(e)) by de
Morgan’s law.
© Analyze the two cases: a is true or it is false in s.
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proof continues... ‘

In the first part we showed that if the formula is true in s,
then a is true in s'.

For the second part of the equivalence we show that if the
formula is false in s, then a is false in s'.

@ So assume s £ EPC,(e) V (a A ~EPC_,(e)).
@ Hence s = -EPC,(e) A (—a vV EPC_,(e)) by de
Morgan’s law.
© Analyze the two cases: a is true or it is false in s.
@ Assume that s = a.

Al Planning
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proof continues... ‘

In the first part we showed that if the formula is true in s,
then a is true in s'.

For the second part of the equivalence we show that if the
formula is false in s, then a is false in s'.

@ So assume s £ EPC,(e) V (a A ~EPC_,(e)).

@ Hence s = -EPC,(e) A (—a vV EPC_,(e)) by de
Morgan’s law.

© Analyze the two cases: a is true or it is false in s.

@ Assume that s = a. Now s = EPC_,(e) because
s E —a Vv EPC_,(e).
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In the first part we showed that if the formula is true in s,
then a is true in s'.

For the second part of the equivalence we show that if the
formula is false in s, then a is false in s'.

@ So assume s £ EPC,(e) V (a A ~EPC_,(e)).

@ Hence s = -EPC,(e) A (—a vV EPC_,(e)) by de
Morgan’s law.

© Analyze the two cases: a is true or it is false in s.

@ Assume that s = a. Now s = EPC_,(e) because
s E —a Vv EPC_,(e). Hence by Lemma B —a € [¢]; and
we get s’ £ a.
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In the first part we showed that if the formula is true in s,
then a is true in s'.

For the second part of the equivalence we show that if the
formula is false in s, then a is false in s'.

@ So assume s £ EPC,(e) V (a A ~EPC_,(e)).

@ Hence s = -EPC,(e) A (—a vV EPC_,(e)) by de
Morgan’s law.
© Analyze the two cases: a is true or it is false in s.
@ Assume that s = a. Now s = EPC_,(e) because
s E —a Vv EPC_,(e). Hence by Lemma B —a € [¢]; and
we get s’ £ a.
@ Assume that s [~ a.
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proof continues... o

In the first part we showed that if the formula is true in s,
then a is true in s'.

For the second part of the equivalence we show that if the
formula is false in s, then a is false in s'.

@ So assume s £ EPC,(e) V (a A ~EPC_,(e)).

@ Hence s = -EPC,(e) A (—a vV EPC_,(e)) by de
Morgan’s law.
© Analyze the two cases: a is true or it is false in s.
@ Assume that s = a. Now s = EPC_,(e) because
s E —a Vv EPC_,(e). Hence by Lemma B —a € [¢]; and
we get s’ £ a.
@ Assume that s £~ a. Because s = —=EPC,(e), by
Lemma B a ¢ [e]s and hence s’ I~ a.




Regression: definition for state variables

. o
proof continues... o

In the first part we showed that if the formula is true in s,
then a is true in s'.

For the second part of the equivalence we show that if the
formula is false in s, then a is false in s'.

@ So assume s £ EPC,(e) V (a A ~EPC_,(e)).

@ Hence s = -EPC,(e) A (—a vV EPC_,(e)) by de
Morgan’s law.

© Analyze the two cases: a is true or it is false in s.

@ Assume that s = a. Now s = EPC_,(e) because
s E —a Vv EPC_,(e). Hence by Lemma B —a € [¢]; and
we get s’ £ a.

@ Assume that s £~ a. Because s = —=EPC,(e), by
Lemma B a ¢ [e]s and hence s’ I~ a.

Therefore in both cases s’ i~ a.




Regression: general definition

Al Planning

We base the definition of regression on formulae EPC,(e).

Let ¢ be a propositional formula and o = (¢, ¢) an operator.
The regression of ¢ with respect to o is

regro(¢) = ¢ AcA f

where

© ¢, is obtained from ¢ by replacing each a € A by
EPC,.(e) V (a A =EPC_4(€)), and

Q /= A,ca (EPCy(e) ANEPC_4(e)).

The formula f says that no state variable may become
simultaneously true and false.



Regression: examples

Al Planning

Il
S

Q regrip(b) = (an(TV(bA=1))



Regression: examples

Al Planning

Q regripy(d) =(an(TV(OA-L))=a

Q regri,pn(bAcAd) =
(an(TV(bA-L)A(VL(eA=L)A(LV(AA—L))) = ancnd R



Regression: examples

Al Planning

@ regr,p(b) = (@A (TV(bA-L))) =

Q regri pn(bAcAd) =
(an(TV(OA=L)Y)A(VL(cA=L))A(LV(AA-L))) = ancAd =

Q regrigesny(0) = (aA(cV(OA-L)))=aA(cVD)



Regression: examples

Al Planning

Q regripy(d) =(an(TV(OA-L))=a

Q regri pn(bAcAd) =
(an(TV(OA=L)Y)A(VL(cA=L))A(LV(AA-L))) = ancAd =

Q regrigepny(0) = (aA(cV(bA-L)))=aA(cVD)

Q regri, (copyn—b) (0) = (@A (cV (bA=D) A=(cAb)) =
aAcA b



Regression: examples

Al Planning

Q regripy(d) =(an(TV(OA-L))=a

Q regri pn(bAcAd) =
(an(TV(OA=L)Y)A(VL(cA=L))A(LV(AA-L))) = ancAd =

Q regrigepny(0) = (aA(cV(bA-L)))=aA(cVD)

Q regrq (oynpe-b) (0) = (@A (cV (bA b)) A ~(cAb)) =
a/cA—b

Q regriu (b () = (A (¢ V (b A=d)) A=(cAd)) =
aA(cVb)A(cV—d)A(—cV—d)



Regression: examples

Blocks World with conditional effects

Al Planning

Moving blocks A and B onto the table from any location if
they are clear.

o1 = (T, (AonB A Aclear) > (AonT A Bclear A —AonB))
o2 = (T, (BonA A Bclear) > (BonT A Aclear A =BonA))

Plan for putting both blocks onto the table from any blocks
world state is o3, 01. Proof by regression:

G = AonT A BonT
¢1 = regr,, (G) = (AonT Vv (AonB A Aclear)) A BonT
¢2 = regry,(¢1) = (AonT Vv (AonB A (Aclear v (BonA A Bclear))
A(BonT Vv (BonA A Bclear))

All three 2-block states satisfy ¢». Similar plans exist for any
number of blocks.



Regression: examples

Incrementing a binary number

Al Planning
(_\bo > bo)/\
((—\bl VAN bo) > (bl AN ﬂbo))/\
((ﬂbz Abr A bo) > (bz A by A ﬂbo))
EPCy,(e) = —b2 A b1 A by EPC_,(e) = L .
EPCy, (e) = b1 Abo EPCﬁbl(e) = by A b1 A bg
EPCy,(e) = —bo EPC_y,(e) = (=b1 Abo) V (mba A by A b

= (—|bl V —|52) A bg
Regression replaces state variables as follows.

bo by (bg A —|_L) V (—\b2 Abi A bo) =byV (bl AN bo)
b1 by (bl AN —|(—|bg A by A bo)) V (—|b1 VAN bo)

= (bl A (bg V —\bo)) V (—\bl VAN bo)
bo by (bo AN —|((—|b1 Vv —|b2) AN bo)) V —bg = (bl VAN b2) V —bg



Regression: properties

Lemma (D) ‘ Al Planning

Let ¢ be a formula, o an operator, s any state and
s’ = app,(s). Then s = regr,(¢) if and only if s’ = ¢.

Proof.
Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s = ¢/, iff ' = ¢, where ¢!, is ¢’
with every a € A replaced by EPC,(e) V (a A =EPC_,(e)).
Rest of regr,(¢) just states that o is applicable in s.

| A\

N\
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Lemma (D) ‘ Al Planning

Let ¢ be a formula, o an operator, s any state and
s’ = app,(s). Then s = regr,(¢) if and only if s’ = ¢.

Proof.
Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s = ¢/, iff ' = ¢, where ¢!, is ¢’
with every a € A replaced by EPC,(e) V (a A =EPC_,(e)).
Rest of regr,(¢) just states that o is applicable in s.

| A\

Induction hypothesis s = ¢.. if and only if s’ = ¢/'.

N\




Regression: properties

Lemma (D) ‘ Al Planning

Let ¢ be a formula, o an operator, s any state and
s’ = app,(s). Then s = regr,(¢) if and only if s’ = ¢.

Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s = ¢/, iff ' = ¢, where ¢!, is ¢’
with every a € A replaced by EPC,(e) V (a A =EPC_,(e)).
Rest of regr,(¢) just states that o is applicable in s.

Induction hypothesis s = ¢.. if and only if s’ = ¢/'.
Basecases1&2 ¢ =T or ¢/ = L: Trivial as ¢}, = ¢'.

N\




Regression: properties

Lemma (D) ‘

Let ¢ be a formula, o an operator, s any state and
s’ = app,(s). Then s = regr,(¢) if and only if s’ = ¢.

Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s = ¢/, iff ' = ¢, where ¢!, is ¢’
with every a € A replaced by EPC,(e) V (a A =EPC_,(e)).
Rest of regr,(¢) just states that o is applicable in s.

Induction hypothesis s = ¢.. if and only if s’ = ¢/'.
Basecases1&2 ¢ =T or ¢/ = L: Trivial as ¢}, = ¢'.

Base case 3 ¢’ = a for some a € A: Now
¢ = EPC,(e) V (a A =EPC_,(€)).

N\

Al Planning



Regression: properties

Lemma (D) ‘

Let ¢ be a formula, o an operator, s any state and
s’ = app,(s). Then s = regr,(¢) if and only if s’ = ¢.

Let e be the effect of 0. We show by structural induction over
subformulae ¢’ of ¢ that s = ¢/, iff ' = ¢, where ¢!, is ¢’
with every a € A replaced by EPC,(e) V (a A =EPC_,(e)).
Rest of regr,(¢) just states that o is applicable in s.

Induction hypothesis s = ¢.. if and only if s’ = ¢/'.
Base cases1& 2 ¢' =T or ¢/ = L: Trivial as ¢ = ¢'.
Base case 3 ¢’ = a for some a € A: Now
¢ = EPC,(e) V (a A =EPC_,(€)).
By LemmaC s | ¢ iff s’ = ¢'.

N\

Al Planning



Regression: properties

Al Planning

proof continues... ‘

Inductive case 1 ¢’ = —): By the induction hypothesis

s E Yy iff =1, Hence s |= ¢ iff ' = ¢/
by the truth-definition of —.




Regression: properties

Al Planning

proof continues... ‘

Inductive case 1 ¢’ = —): By the induction hypothesis

s E Yy iff =1, Hence s |= ¢ iff ' = ¢/
by the truth-definition of —.

Inductive case 2 ¢’ =+ V ¢': By the induction hypothesis Regressian
skE, iff =, and s E L iff ' =4,
Hence s | ¢/, iff s’ = ¢ by the
truth-definition of V.




Regression: properties

proof continues... ‘

Inductive case 1

Inductive case 2

Inductive case 3

¢' = —): By the induction hypothesis
sE, iff & =14. Hence s E ¢ iff ' = ¢’
by the truth-definition of —.

¢' =1 Vv 4': By the induction hypothesis
skE, iff =, and s E L iff ' =4,
Hence s | ¢/, iff s’ = ¢ by the
truth-definition of V.

¢’ =1 A)': By the induction hypothesis
sEY iff s =4, and s E ol iff ' =,
Hence s |= ¢/, iff s’ = ¢ by the
truth-definition of A.

Al Planning



Regression: complexity issues

Al Planning

The following two tests are useful when generating a search
tree with regression.

@ Testing that a formula regr,(¢) does not represent the
empty set (= search is in a blind alley). Complesiy
For example, regr, —y(p) =an L = L.

© Testing that a regression step does not make the set of
states smaller (= more difficult to reach).
For example, regr, .y(a) = a A b.

Both of these problems are NP-hard.



Regression: complexity issues

Al Planning

The formula regr,, (regr., (- - - regr,,, ,(regr,, (¢)))) may have
size O(|¢||o1]|oz2] - - - |on—1]|on]), i.€. the product of the sizes
of ¢ and the operators.

The size in the worst case O(2") is hence exponential in n.

Logical simplifications
QO L Np=L,TAp=0¢, LVod=0, TVH=T
Q@ avo=aVvo[l/a],~aVo=aV¢[T/a],
aNp=aAp[T/a]l, "aN¢=aAd¢[L/a]
To obtain the maximum benefit from the last equivalences,
e.g. for (a A b) A ¢(a), the equivalences for associativity and
commutativity are useful: (¢1 V ¢2) V ¢3 = ¢1 V (2 V ¢3),

P1V P2 = P2V o1, (d1 A d2) A p3 = ¢1 A (P2 A ¢3),
P1 NP2 = P2 A 1.

Complexity




Regression: generation of search trees

Al Planning

Problem Formulae obtained with regression may become
very big.
Cause Disjunctivity in the formulae. Formulae without
disjunctions easily convertible to small formulae
l1 A---Al, where [; are literals and n is at most
the number of state variables.
Solution Handle disjunctivity when generating search trees.
Alternatives:
@ Do nothing. (May lead to very big formulae!!!)
@ Always eliminate all disjunctivity.
© Reduce disjunctivity if formula becomes too
big.



Regression: generation of search trees

Unrestricted regression (= do nothing about formula size)

Al Planning

Reach goal a A b from state I such that I = —a A =b A —c.

—aNq
& 4)

(meva)Ab_ g

%‘ kbn
W(—w\/a)/\b

(mecVa)A-a



Regression: generation of search trees

Full splitting (= eliminate all disjunctivity)

Al Planning

@ Planners for STRIPS operators only need to use
formulae i; A --- AL, where [; are literals.
@ Some PDDL planners also restrict to this class of
formulae. This is done as follows.
@ regr,(¢) is transformed to disjunctive normal form
(DNF): (g A - AL )V - V(I A AL ).
@ Eachdisjunct /i A--- A, is handled in its own subtree
of the search tree.
© The DNF formulae need not exist in its entirety
explicitly: generate one disjunct at a time.
@ Hence branching is both on the choice of operator and
on the choice of the disjunct of the DNF formula.

@ This leads to an increased branching factor and bigger
search trees, but avoids big formulae.



Regression: generation of search trees

Full splitting

Al Planning

Reach goal a A b from state I such that I = —a A —b A —c.
(meVa)Abin DNFis (m¢ Ab) V (a A D).
Itis splitto -c A band a A b.

—a g




Regression: generation of search trees

Restricted splitting

Al Planning

@ With full splitting search tree can be exponentially
bigger than without splitting. (But it is not necessary to
construct the DNF formulae explicitly!)

@ Without splitting the formulae may have size that is
exponential in the number of state variables.

@ A compromise is to split formulae only when necessary:
combine benefits of the two extremes.

@ There are several ways to split a formula ¢ to ¢4, ..., ¢,
suchthat ¢ = ¢1 vV --- V ¢,. For example:

@ Transform ¢ to ¢, V - -- V ¢,, by equivalences like
distributivity (¢1 V ¢2) A ¢3 = (61 A ¢3) V (92 A ¢3).

@ Choose state variable a, set ¢; = a A ¢ and ¢, = —a A ¢,
and simplify with equivalences like a A ¢ = a A Y[T /al.
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