
AI Planning

Normal form
STRIPS operators

State-space
search

Normal form for effects

1 Similarly to normal forms in propositional logic (DNF,
CNF, NNF, ...) we can define a normal form for effects.

2 Nesting of conditionals, as in a B (b B c), can be
eliminated.

3 Restriction to atomic effects e in conditional effects
φ B e can be made.

4 Only a small polynomial increase in size by
transformation to normal form.
Compare: transformation to CNF or DNF may increase
formula size exponentially.

AI Planning

Normal form
STRIPS operators

State-space
search

Normal form for effects

1 Similarly to normal forms in propositional logic (DNF,
CNF, NNF, ...) we can define a normal form for effects.

2 Nesting of conditionals, as in a B (b B c), can be
eliminated.

3 Restriction to atomic effects e in conditional effects
φ B e can be made.

4 Only a small polynomial increase in size by
transformation to normal form.
Compare: transformation to CNF or DNF may increase
formula size exponentially.

AI Planning

Normal form
STRIPS operators

State-space
search

Normal form for effects

1 Similarly to normal forms in propositional logic (DNF,
CNF, NNF, ...) we can define a normal form for effects.

2 Nesting of conditionals, as in a B (b B c), can be
eliminated.

3 Restriction to atomic effects e in conditional effects
φ B e can be made.

4 Only a small polynomial increase in size by
transformation to normal form.
Compare: transformation to CNF or DNF may increase
formula size exponentially.

AI Planning

Normal form
STRIPS operators

State-space
search

Equivalences on effects

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (3)

e ∧ (c B e) ≡ e (4)

e ≡ > B e (5)

e ≡ > ∧ e (6)

e1 ∧ e2 ≡ e2 ∧ e1 (7)

(e1 ∧ e2) ∧ e3 ≡ e1 ∧ (e2 ∧ e3) (8)

AI Planning

Normal form
STRIPS operators

State-space
search

Equivalences on effects

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (3)

e ∧ (c B e) ≡ e (4)

e ≡ > B e (5)

e ≡ > ∧ e (6)

e1 ∧ e2 ≡ e2 ∧ e1 (7)

(e1 ∧ e2) ∧ e3 ≡ e1 ∧ (e2 ∧ e3) (8)

AI Planning

Normal form
STRIPS operators

State-space
search

Equivalences on effects

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (3)

e ∧ (c B e) ≡ e (4)

e ≡ > B e (5)

e ≡ > ∧ e (6)

e1 ∧ e2 ≡ e2 ∧ e1 (7)

(e1 ∧ e2) ∧ e3 ≡ e1 ∧ (e2 ∧ e3) (8)

AI Planning

Normal form
STRIPS operators

State-space
search

Equivalences on effects

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (3)

e ∧ (c B e) ≡ e (4)

e ≡ > B e (5)

e ≡ > ∧ e (6)

e1 ∧ e2 ≡ e2 ∧ e1 (7)

(e1 ∧ e2) ∧ e3 ≡ e1 ∧ (e2 ∧ e3) (8)

AI Planning

Normal form
STRIPS operators

State-space
search

Equivalences on effects

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (3)

e ∧ (c B e) ≡ e (4)

e ≡ > B e (5)

e ≡ > ∧ e (6)

e1 ∧ e2 ≡ e2 ∧ e1 (7)

(e1 ∧ e2) ∧ e3 ≡ e1 ∧ (e2 ∧ e3) (8)

AI Planning

Normal form
STRIPS operators

State-space
search

Equivalences on effects

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (3)

e ∧ (c B e) ≡ e (4)

e ≡ > B e (5)

e ≡ > ∧ e (6)

e1 ∧ e2 ≡ e2 ∧ e1 (7)

(e1 ∧ e2) ∧ e3 ≡ e1 ∧ (e2 ∧ e3) (8)

AI Planning

Normal form
STRIPS operators

State-space
search

Equivalences on effects

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (3)

e ∧ (c B e) ≡ e (4)

e ≡ > B e (5)

e ≡ > ∧ e (6)

e1 ∧ e2 ≡ e2 ∧ e1 (7)

(e1 ∧ e2) ∧ e3 ≡ e1 ∧ (e2 ∧ e3) (8)

AI Planning

Normal form
STRIPS operators

State-space
search

Equivalences on effects

c B (e1 ∧ · · · ∧ en) ≡ (c B e1) ∧ · · · ∧ (c B en) (1)

c1 B (c2 B e) ≡ (c1 ∧ c2) B e (2)

(c1 B e) ∧ (c2 B e) ≡ (c1 ∨ c2) B e (3)

e ∧ (c B e) ≡ e (4)

e ≡ > B e (5)

e ≡ > ∧ e (6)

e1 ∧ e2 ≡ e2 ∧ e1 (7)

(e1 ∧ e2) ∧ e3 ≡ e1 ∧ (e2 ∧ e3) (8)

AI Planning

Normal form
STRIPS operators

State-space
search

Normal form for operators and effects

Definition

An operator 〈c, e〉 is in normal form if for all occurrences of
c′ B e′ in e the effect e′ is either a or ¬a for some a ∈ A, and
there is at most one occurrence of any atomic effect in e.

Theorem
For every operator there is an equivalent one in normal
form.

Proof is constructive: we can transform any operator into
normal form by using the equivalences from the previous
slide.

AI Planning

Normal form
STRIPS operators

State-space
search

Normal form for effects
Example

Example

(a B (b∧
(c B (¬d ∧ e))))∧

(¬b B e)

transformed to normal form is

(a B b)∧
((a ∧ c) B ¬d)∧

((¬b ∨ (a ∧ c)) B e)

AI Planning

Normal form
STRIPS operators

State-space
search

STRIPS operators

Definition

An operator 〈c, e〉 is a STRIPS operator if
1 c is a conjunction of literals, and
2 e does not contain B.

Hence every STRIPS operator is of the form

〈l1 ∧ · · · ∧ ln, l′1 ∧ · · · ∧ l′m〉

where li are literals and l′j are atomic effects.

STRIPS

STanford Research Institute Planning System, Fikes &
Nilsson, 1971.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by state-space search

There are many alternative ways of doing planning by
state-space search.

1 different ways of expressing planning as a search
problem:

1 search direction: forward, backward
2 representation of search space: states, sets of states

2 different search algorithms: depth-first, breadth-first,
informed (heuristic) search (systematic: A∗, IDA∗,...;
local: hill-climbing, simulated annealing, ...), ...

3 different ways of controlling search:
1 heuristics for heuristic search algorithms
2 pruning techniques: invariants, symmetry elimination,...

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by forward search
with depth-first search

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by forward search
with depth-first search

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by forward search
with depth-first search

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by forward search
with depth-first search

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by forward search
with depth-first search

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by forward search
with depth-first search

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by forward search
with depth-first search

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by forward search
with depth-first search

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by forward search
with depth-first search

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by forward search
with depth-first search

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by backward search
with depth-first search, one state at a time

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by backward search
with depth-first search, one state at a time

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by backward search
with depth-first search, one state at a time

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by backward search
with depth-first search, one state at a time

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by backward search
with depth-first search, one state at a time

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by backward search
with depth-first search, one state at a time

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by backward search
with depth-first search, one state at a time

G

I

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by backward search
with depth-first search, for state sets (represented as formulae)

G

I

Gφ1φ1 = regr−→(G) φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by backward search
with depth-first search, for state sets (represented as formulae)

G

I

G

φ1φ1 = regr−→(G) φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by backward search
with depth-first search, for state sets (represented as formulae)

G

I

Gφ1φ1 = regr−→(G)

φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by backward search
with depth-first search, for state sets (represented as formulae)

G

I

Gφ1φ1 = regr−→(G) φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Planning by backward search
with depth-first search, for state sets (represented as formulae)

G

I

Gφ1φ1 = regr−→(G) φ2

φ2 = regr−→(φ1)

φ3

φ3 = regr−→(φ2), I |= φ3

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Progression

Progression means computing the successor state
appo(s) of s with respect to o.

Used in forward search: from the initial state toward the
goal states.

Very easy and efficient to implement.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression

Regression is computing the possible predecessor
states of a set of states.

The formula regro(φ) represents the states from which
a state represented by φ is reached by operator o.

Used in backward search: from the goal states toward
the initial states.

Regression is powerful because it allows handling sets
of states (progression: only one state at a time.)

Handling formulae is more complicated than handling
states: many questions about regression are NP-hard.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators

Regression for STRIPS operators is very simple.

Goals are conjunctions of literals l1 ∧ · · · ∧ ln.

First step: Choose an operator that makes some of
l1, . . . , ln true and makes none of them false.

Second step: Form a new goal by removing the fulfilled
goal literals and adding the preconditions of the
operator.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Definition

Definition

The STRIPS-regression regrstro (φ) of φ = l′′1 ∧ · · · ∧ l′′m′ with
respect to

o = 〈l1 ∧ · · · ∧ ln, l′1 ∧ · · · ∧ l′m〉

is the conjunction of literals∧ (
({l′′1 , . . . , l′′m′}\{l′1, . . . , l′m}) ∪ {l1, · · · , ln}

)
provided that {l′, . . . , l′m} ∩ {l′′1 , . . . , l′′m′} = ∅.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉
o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉
o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�

φ1 = regrstro3
(G) = �on� ∧�onT ∧�clr ∧�clr

φ2 = regrstro2
(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉
o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉
o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�

φ1 = regrstro3
(G) = �on� ∧�onT ∧�clr ∧�clr

φ2 = regrstro2
(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉
o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉

o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�

φ1 = regrstro3
(G) = �on� ∧�onT ∧�clr ∧�clr

φ2 = regrstro2
(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉
o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉

o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�

φ1 = regrstro3
(G) = �on� ∧�onT ∧�clr ∧�clr

φ2 = regrstro2
(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉
o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉

o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�
φ1 = regrstro3

(G) = �on� ∧�onT ∧�clr ∧�clr

φ2 = regrstro2
(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉
o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉
o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�

φ1 = regrstro3
(G) = �on� ∧�onT ∧�clr ∧�clr

φ2 = regrstro2
(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉

o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉

o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�

φ1 = regrstro3
(G) = �on� ∧�onT ∧�clr ∧�clr

φ2 = regrstro2
(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉

o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉

o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�

φ1 = regrstro3
(G) = �on� ∧�onT ∧�clr ∧�clr

φ2 = regrstro2
(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉

o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉

o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�

φ1 = regrstro3
(G) = �on� ∧�onT ∧�clr ∧�clr

φ2 = regrstro2
(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉
o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉
o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�
φ1 = regrstro3

(G) = �on� ∧�onT ∧�clr ∧�clr

φ2 = regrstro2
(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉

o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉
o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�
φ1 = regrstro3

(G) = �on� ∧�onT ∧�clr ∧�clr

φ2 = regrstro2
(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉

o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉
o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�
φ1 = regrstro3

(G) = �on� ∧�onT ∧�clr ∧�clr

φ2 = regrstro2
(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉

o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉
o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�
φ1 = regrstro3

(G) = �on� ∧�onT ∧�clr ∧�clr

φ2 = regrstro2
(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for STRIPS operators
Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

o3o2o1

o1 = 〈�on� ∧�clr,¬�on� ∧�onT ∧�clr〉
o2 = 〈�on� ∧�clr ∧�clr,¬�clr ∧ ¬�on� ∧�on� ∧�clr〉
o3 = 〈�onT ∧�clr ∧�clr,¬�clr ∧ ¬�onT ∧�on�〉

G = �on� ∧�on�
φ1 = regrstro3

(G) = �on� ∧�onT ∧�clr ∧�clr
φ2 = regrstro2

(φ1) = �onT ∧�clr ∧�on� ∧�clr

φ3 = regrstro1
(φ2) = �onT ∧�on� ∧�clr ∧�on�

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for general operators

With disjunction and conditional effects, things become
more tricky. How to regress A ∨ (B ∧ C) with respect to
〈Q,D B B〉?
The story about goals and subgoals and fulfilling
subgoals, as in the STRIPS case, is no longer useful.

We present a general method for doing regression for
any formula and any operator.

Now we extensively use the idea of representing sets of
states as formulae.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression for general operators

With disjunction and conditional effects, things become
more tricky. How to regress A ∨ (B ∧ C) with respect to
〈Q,D B B〉?
The story about goals and subgoals and fulfilling
subgoals, as in the STRIPS case, is no longer useful.

We present a general method for doing regression for
any formula and any operator.

Now we extensively use the idea of representing sets of
states as formulae.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Definition

Definition

The condition EPCl(e) for literal l to become true under
effect e is defined as follows.

EPCl(l) = >
EPCl(l

′) = ⊥ when l 6= l′ (for literals l′)
EPCl(>) = ⊥

EPCl(e1 ∧ · · · ∧ en) = EPCl(e1) ∨ · · · ∨ EPCl(en)
EPCl(c B e) = EPCl(e) ∧ c

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Example

Example

EPCa(b ∧ c) = ⊥ ∨⊥ ≡ ⊥
EPCa(a ∧ (b B a)) = > ∨ (> ∧ b) ≡ >

EPCa((c B a) ∧ (b B a)) = (> ∧ c) ∨ (> ∧ b) ≡ c ∨ b

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Example

Example

EPCa(b ∧ c) = ⊥ ∨⊥ ≡ ⊥
EPCa(a ∧ (b B a)) = > ∨ (> ∧ b) ≡ >

EPCa((c B a) ∧ (b B a)) = (> ∧ c) ∨ (> ∧ b) ≡ c ∨ b

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Example

Example

EPCa(b ∧ c) = ⊥ ∨⊥ ≡ ⊥
EPCa(a ∧ (b B a)) = > ∨ (> ∧ b) ≡ >

EPCa((c B a) ∧ (b B a)) = (> ∧ c) ∨ (> ∧ b) ≡ c ∨ b

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

Lemma (B)

Let s be a state, l a literal and e an effect. Then l ∈ [e]s if
and only if s |= EPCl(e).

Proof.

Induction on the structure of the effect e.
Base case 1, e = >: By definition of [>]s we have
l 6∈ [>]s = ∅ and by definition of EPCl(>) we have
s 6|= EPCl(>) = ⊥: Both sides of the equivalence are false.
Base case 2, e = l: l ∈ [l]s = {l} by definition, and
s |= EPCl(l) = > by definition. Both sides are true.
Base case 3, e = l′ for some literal l′ 6= l: l 6∈ [l′]s = {l′} by
definition, and s 6|= EPCl(l

′) = ⊥ by definition. Both sides
are false.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

Lemma (B)

Let s be a state, l a literal and e an effect. Then l ∈ [e]s if
and only if s |= EPCl(e).

Proof.

Induction on the structure of the effect e.
Base case 1, e = >: By definition of [>]s we have
l 6∈ [>]s = ∅ and by definition of EPCl(>) we have
s 6|= EPCl(>) = ⊥: Both sides of the equivalence are false.
Base case 2, e = l: l ∈ [l]s = {l} by definition, and
s |= EPCl(l) = > by definition. Both sides are true.
Base case 3, e = l′ for some literal l′ 6= l: l 6∈ [l′]s = {l′} by
definition, and s 6|= EPCl(l

′) = ⊥ by definition. Both sides
are false.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

Lemma (B)

Let s be a state, l a literal and e an effect. Then l ∈ [e]s if
and only if s |= EPCl(e).

Proof.

Induction on the structure of the effect e.
Base case 1, e = >: By definition of [>]s we have
l 6∈ [>]s = ∅ and by definition of EPCl(>) we have
s 6|= EPCl(>) = ⊥: Both sides of the equivalence are false.
Base case 2, e = l: l ∈ [l]s = {l} by definition, and
s |= EPCl(l) = > by definition. Both sides are true.
Base case 3, e = l′ for some literal l′ 6= l: l 6∈ [l′]s = {l′} by
definition, and s 6|= EPCl(l

′) = ⊥ by definition. Both sides
are false.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

Lemma (B)

Let s be a state, l a literal and e an effect. Then l ∈ [e]s if
and only if s |= EPCl(e).

Proof.

Induction on the structure of the effect e.
Base case 1, e = >: By definition of [>]s we have
l 6∈ [>]s = ∅ and by definition of EPCl(>) we have
s 6|= EPCl(>) = ⊥: Both sides of the equivalence are false.
Base case 2, e = l: l ∈ [l]s = {l} by definition, and
s |= EPCl(l) = > by definition. Both sides are true.
Base case 3, e = l′ for some literal l′ 6= l: l 6∈ [l′]s = {l′} by
definition, and s 6|= EPCl(l

′) = ⊥ by definition. Both sides
are false.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

proof continues...

Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]s iff l ∈ [e1]s ∪ · · · ∪ [en]s (Def [e1 ∧ · · · ∧ en]s)

iff l ∈ [e′]s for some e′ ∈ {e1, . . . , en}
iff s |= EPCl(e

′) for some e′ ∈ {e1, . . . , en} (IH)
iff s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
iff s |= EPCl(e1 ∧ · · · ∧ en). (Def EPC)

Inductive case 2, e = c B e′:
l ∈ [c B e′]s iff l ∈ [e′]s and s |= c (Def [c B e′]s)

iff s |= EPCl(e
′) and s |= c (IH)

iff s |= EPCl(e
′) ∧ c

iff s |= EPCl(c B e′). (Def EPC)

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

proof continues...

Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]s iff l ∈ [e1]s ∪ · · · ∪ [en]s (Def [e1 ∧ · · · ∧ en]s)

iff l ∈ [e′]s for some e′ ∈ {e1, . . . , en}
iff s |= EPCl(e

′) for some e′ ∈ {e1, . . . , en} (IH)
iff s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
iff s |= EPCl(e1 ∧ · · · ∧ en). (Def EPC)

Inductive case 2, e = c B e′:
l ∈ [c B e′]s iff l ∈ [e′]s and s |= c (Def [c B e′]s)

iff s |= EPCl(e
′) and s |= c (IH)

iff s |= EPCl(e
′) ∧ c

iff s |= EPCl(c B e′). (Def EPC)

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

proof continues...

Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]s iff l ∈ [e1]s ∪ · · · ∪ [en]s (Def [e1 ∧ · · · ∧ en]s)

iff l ∈ [e′]s for some e′ ∈ {e1, . . . , en}
iff s |= EPCl(e

′) for some e′ ∈ {e1, . . . , en} (IH)
iff s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
iff s |= EPCl(e1 ∧ · · · ∧ en). (Def EPC)

Inductive case 2, e = c B e′:
l ∈ [c B e′]s iff l ∈ [e′]s and s |= c (Def [c B e′]s)

iff s |= EPCl(e
′) and s |= c (IH)

iff s |= EPCl(e
′) ∧ c

iff s |= EPCl(c B e′). (Def EPC)

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

proof continues...

Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]s iff l ∈ [e1]s ∪ · · · ∪ [en]s (Def [e1 ∧ · · · ∧ en]s)

iff l ∈ [e′]s for some e′ ∈ {e1, . . . , en}
iff s |= EPCl(e

′) for some e′ ∈ {e1, . . . , en} (IH)
iff s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
iff s |= EPCl(e1 ∧ · · · ∧ en). (Def EPC)

Inductive case 2, e = c B e′:
l ∈ [c B e′]s iff l ∈ [e′]s and s |= c (Def [c B e′]s)

iff s |= EPCl(e
′) and s |= c (IH)

iff s |= EPCl(e
′) ∧ c

iff s |= EPCl(c B e′). (Def EPC)

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

proof continues...

Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]s iff l ∈ [e1]s ∪ · · · ∪ [en]s (Def [e1 ∧ · · · ∧ en]s)

iff l ∈ [e′]s for some e′ ∈ {e1, . . . , en}
iff s |= EPCl(e

′) for some e′ ∈ {e1, . . . , en} (IH)
iff s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
iff s |= EPCl(e1 ∧ · · · ∧ en). (Def EPC)

Inductive case 2, e = c B e′:
l ∈ [c B e′]s iff l ∈ [e′]s and s |= c (Def [c B e′]s)

iff s |= EPCl(e
′) and s |= c (IH)

iff s |= EPCl(e
′) ∧ c

iff s |= EPCl(c B e′). (Def EPC)

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

proof continues...

Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]s iff l ∈ [e1]s ∪ · · · ∪ [en]s (Def [e1 ∧ · · · ∧ en]s)

iff l ∈ [e′]s for some e′ ∈ {e1, . . . , en}
iff s |= EPCl(e

′) for some e′ ∈ {e1, . . . , en} (IH)
iff s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
iff s |= EPCl(e1 ∧ · · · ∧ en). (Def EPC)

Inductive case 2, e = c B e′:
l ∈ [c B e′]s iff l ∈ [e′]s and s |= c (Def [c B e′]s)

iff s |= EPCl(e
′) and s |= c (IH)

iff s |= EPCl(e
′) ∧ c

iff s |= EPCl(c B e′). (Def EPC)

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

proof continues...

Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]s iff l ∈ [e1]s ∪ · · · ∪ [en]s (Def [e1 ∧ · · · ∧ en]s)

iff l ∈ [e′]s for some e′ ∈ {e1, . . . , en}
iff s |= EPCl(e

′) for some e′ ∈ {e1, . . . , en} (IH)
iff s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
iff s |= EPCl(e1 ∧ · · · ∧ en). (Def EPC)

Inductive case 2, e = c B e′:
l ∈ [c B e′]s iff l ∈ [e′]s and s |= c (Def [c B e′]s)

iff s |= EPCl(e
′) and s |= c (IH)

iff s |= EPCl(e
′) ∧ c

iff s |= EPCl(c B e′). (Def EPC)

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Connection to [e]s

proof continues...

Inductive case 1, e = e1 ∧ · · · ∧ en:
l ∈ [e]s iff l ∈ [e1]s ∪ · · · ∪ [en]s (Def [e1 ∧ · · · ∧ en]s)

iff l ∈ [e′]s for some e′ ∈ {e1, . . . , en}
iff s |= EPCl(e

′) for some e′ ∈ {e1, . . . , en} (IH)
iff s |= EPCl(e1) ∨ · · · ∨ EPCl(en)
iff s |= EPCl(e1 ∧ · · · ∧ en). (Def EPC)

Inductive case 2, e = c B e′:
l ∈ [c B e′]s iff l ∈ [e′]s and s |= c (Def [c B e′]s)

iff s |= EPCl(e
′) and s |= c (IH)

iff s |= EPCl(e
′) ∧ c

iff s |= EPCl(c B e′). (Def EPC)

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Precondition for effect l to take place: EPCl(e)
Connection to the normal form

Remark

Notice that in terms of EPCa(e) any operator 〈c, e〉 can be
expressed in normal form as〈

c,
∧
a∈A

(EPCa(e) B a) ∧ (EPC¬a(e) B ¬a)

〉
.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

Regressing a state variable

The formula EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) expresses the
value of a ∈ A after applying o in terms of values of state
variables before applying o: Either

a was true before and it did not become false, or

a became true.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

Example

Let e = (b B a) ∧ (c B ¬a) ∧ b ∧ ¬d.

variable EPC···(e) ∨ (· · · ∧ ¬EPC¬···(e))

a b ∨ (a ∧ ¬c)
b > ∨ (b ∧ ¬⊥) ≡ >
c ⊥ ∨ (c ∧ ¬⊥) ≡ c
d ⊥ ∨ (d ∧ ¬>) ≡ ⊥

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

Lemma (C)

Let a be a state variable, o = 〈c, e〉 ∈ O an operator, s a
state and s′ = appo(s). Then
s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s′ |= a.

Proof.

First prove the implication from left to right.
Assume s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Do a case
analysis on the two disjuncts.

1 Assume that s |= EPCa(e). By Lemma B a ∈ [e]s and
hence s′ |= a.

2 Assume that s |= a ∧ ¬EPC¬a(e). By Lemma B
¬a 6∈ [e]s. Hence a remains true in s′.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

Lemma (C)

Let a be a state variable, o = 〈c, e〉 ∈ O an operator, s a
state and s′ = appo(s). Then
s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s′ |= a.

Proof.

First prove the implication from left to right.
Assume s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Do a case
analysis on the two disjuncts.

1 Assume that s |= EPCa(e). By Lemma B a ∈ [e]s and
hence s′ |= a.

2 Assume that s |= a ∧ ¬EPC¬a(e). By Lemma B
¬a 6∈ [e]s. Hence a remains true in s′.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

Lemma (C)

Let a be a state variable, o = 〈c, e〉 ∈ O an operator, s a
state and s′ = appo(s). Then
s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s′ |= a.

Proof.

First prove the implication from left to right.
Assume s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Do a case
analysis on the two disjuncts.

1 Assume that s |= EPCa(e). By Lemma B a ∈ [e]s and
hence s′ |= a.

2 Assume that s |= a ∧ ¬EPC¬a(e). By Lemma B
¬a 6∈ [e]s. Hence a remains true in s′.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

Lemma (C)

Let a be a state variable, o = 〈c, e〉 ∈ O an operator, s a
state and s′ = appo(s). Then
s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s′ |= a.

Proof.

First prove the implication from left to right.
Assume s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Do a case
analysis on the two disjuncts.

1 Assume that s |= EPCa(e). By Lemma B a ∈ [e]s and
hence s′ |= a.

2 Assume that s |= a ∧ ¬EPC¬a(e). By Lemma B
¬a 6∈ [e]s. Hence a remains true in s′.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

Lemma (C)

Let a be a state variable, o = 〈c, e〉 ∈ O an operator, s a
state and s′ = appo(s). Then
s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)) if and only if s′ |= a.

Proof.

First prove the implication from left to right.
Assume s |= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)). Do a case
analysis on the two disjuncts.

1 Assume that s |= EPCa(e). By Lemma B a ∈ [e]s and
hence s′ |= a.

2 Assume that s |= a ∧ ¬EPC¬a(e). By Lemma B
¬a 6∈ [e]s. Hence a remains true in s′.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s,
then a is true in s′.
For the second part of the equivalence we show that if the
formula is false in s, then a is false in s′.

1 So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
2 Hence s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) by de

Morgan’s law.
3 Analyze the two cases: a is true or it is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a ∨ EPC¬a(e). Hence by Lemma B ¬a ∈ [e]s and
we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by
Lemma B a 6∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s,
then a is true in s′.
For the second part of the equivalence we show that if the
formula is false in s, then a is false in s′.

1 So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
2 Hence s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) by de

Morgan’s law.
3 Analyze the two cases: a is true or it is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a ∨ EPC¬a(e). Hence by Lemma B ¬a ∈ [e]s and
we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by
Lemma B a 6∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s,
then a is true in s′.
For the second part of the equivalence we show that if the
formula is false in s, then a is false in s′.

1 So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
2 Hence s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) by de

Morgan’s law.
3 Analyze the two cases: a is true or it is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a ∨ EPC¬a(e). Hence by Lemma B ¬a ∈ [e]s and
we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by
Lemma B a 6∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s,
then a is true in s′.
For the second part of the equivalence we show that if the
formula is false in s, then a is false in s′.

1 So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
2 Hence s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) by de

Morgan’s law.
3 Analyze the two cases: a is true or it is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a ∨ EPC¬a(e). Hence by Lemma B ¬a ∈ [e]s and
we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by
Lemma B a 6∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s,
then a is true in s′.
For the second part of the equivalence we show that if the
formula is false in s, then a is false in s′.

1 So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
2 Hence s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) by de

Morgan’s law.
3 Analyze the two cases: a is true or it is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a ∨ EPC¬a(e). Hence by Lemma B ¬a ∈ [e]s and
we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by
Lemma B a 6∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s,
then a is true in s′.
For the second part of the equivalence we show that if the
formula is false in s, then a is false in s′.

1 So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
2 Hence s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) by de

Morgan’s law.
3 Analyze the two cases: a is true or it is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a ∨ EPC¬a(e). Hence by Lemma B ¬a ∈ [e]s and
we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by
Lemma B a 6∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s,
then a is true in s′.
For the second part of the equivalence we show that if the
formula is false in s, then a is false in s′.

1 So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
2 Hence s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) by de

Morgan’s law.
3 Analyze the two cases: a is true or it is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a ∨ EPC¬a(e). Hence by Lemma B ¬a ∈ [e]s and
we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by
Lemma B a 6∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s,
then a is true in s′.
For the second part of the equivalence we show that if the
formula is false in s, then a is false in s′.

1 So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
2 Hence s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) by de

Morgan’s law.
3 Analyze the two cases: a is true or it is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a ∨ EPC¬a(e). Hence by Lemma B ¬a ∈ [e]s and
we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by
Lemma B a 6∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s,
then a is true in s′.
For the second part of the equivalence we show that if the
formula is false in s, then a is false in s′.

1 So assume s 6|= EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
2 Hence s |= ¬EPCa(e) ∧ (¬a ∨ EPC¬a(e)) by de

Morgan’s law.
3 Analyze the two cases: a is true or it is false in s.

1 Assume that s |= a. Now s |= EPC¬a(e) because
s |= ¬a ∨ EPC¬a(e). Hence by Lemma B ¬a ∈ [e]s and
we get s′ 6|= a.

2 Assume that s 6|= a. Because s |= ¬EPCa(e), by
Lemma B a 6∈ [e]s and hence s′ 6|= a.

Therefore in both cases s′ 6|= a.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: general definition

We base the definition of regression on formulae EPCl(e).

Definition

Let φ be a propositional formula and o = 〈c, e〉 an operator.
The regression of φ with respect to o is

regro(φ) = φr ∧ c ∧ f

where
1 φr is obtained from φ by replacing each a ∈ A by

EPCa(e) ∨ (a ∧ ¬EPC¬a(e)), and
2 f =

∧
a∈A ¬(EPCa(e) ∧ EPC¬a(e)).

The formula f says that no state variable may become
simultaneously true and false.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: examples

1 regr〈a,b〉(b) = (a ∧ (> ∨ (b ∧ ¬⊥))) ≡ a

2 regr〈a,b〉(b ∧ c ∧ d) =
(a∧(>∨(b∧¬⊥))∧(∨⊥(c∧¬⊥))∧(⊥∨(d∧¬⊥))) ≡ a∧c∧d

3 regr〈a,cBb〉(b) = (a ∧ (c ∨ (b ∧ ¬⊥))) ≡ a ∧ (c ∨ b)
4 regr〈a,(cBb)∧(bB¬b)〉(b) = (a ∧ (c ∨ (b ∧ ¬b)) ∧ ¬(c ∧ b)) ≡
a ∧ c ∧ ¬b

5 regr〈a,(cBb)∧(dB¬b)〉(b) = (a ∧ (c ∨ (b ∧ ¬d)) ∧ ¬(c ∧ d)) ≡
a ∧ (c ∨ b) ∧ (c ∨ ¬d) ∧ (¬c ∨ ¬d)

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: examples

1 regr〈a,b〉(b) = (a ∧ (> ∨ (b ∧ ¬⊥))) ≡ a

2 regr〈a,b〉(b ∧ c ∧ d) =
(a∧(>∨(b∧¬⊥))∧(∨⊥(c∧¬⊥))∧(⊥∨(d∧¬⊥))) ≡ a∧c∧d

3 regr〈a,cBb〉(b) = (a ∧ (c ∨ (b ∧ ¬⊥))) ≡ a ∧ (c ∨ b)
4 regr〈a,(cBb)∧(bB¬b)〉(b) = (a ∧ (c ∨ (b ∧ ¬b)) ∧ ¬(c ∧ b)) ≡
a ∧ c ∧ ¬b

5 regr〈a,(cBb)∧(dB¬b)〉(b) = (a ∧ (c ∨ (b ∧ ¬d)) ∧ ¬(c ∧ d)) ≡
a ∧ (c ∨ b) ∧ (c ∨ ¬d) ∧ (¬c ∨ ¬d)

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: examples

1 regr〈a,b〉(b) = (a ∧ (> ∨ (b ∧ ¬⊥))) ≡ a

2 regr〈a,b〉(b ∧ c ∧ d) =
(a∧(>∨(b∧¬⊥))∧(∨⊥(c∧¬⊥))∧(⊥∨(d∧¬⊥))) ≡ a∧c∧d

3 regr〈a,cBb〉(b) = (a ∧ (c ∨ (b ∧ ¬⊥))) ≡ a ∧ (c ∨ b)
4 regr〈a,(cBb)∧(bB¬b)〉(b) = (a ∧ (c ∨ (b ∧ ¬b)) ∧ ¬(c ∧ b)) ≡
a ∧ c ∧ ¬b

5 regr〈a,(cBb)∧(dB¬b)〉(b) = (a ∧ (c ∨ (b ∧ ¬d)) ∧ ¬(c ∧ d)) ≡
a ∧ (c ∨ b) ∧ (c ∨ ¬d) ∧ (¬c ∨ ¬d)

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: examples

1 regr〈a,b〉(b) = (a ∧ (> ∨ (b ∧ ¬⊥))) ≡ a

2 regr〈a,b〉(b ∧ c ∧ d) =
(a∧(>∨(b∧¬⊥))∧(∨⊥(c∧¬⊥))∧(⊥∨(d∧¬⊥))) ≡ a∧c∧d

3 regr〈a,cBb〉(b) = (a ∧ (c ∨ (b ∧ ¬⊥))) ≡ a ∧ (c ∨ b)
4 regr〈a,(cBb)∧(bB¬b)〉(b) = (a ∧ (c ∨ (b ∧ ¬b)) ∧ ¬(c ∧ b)) ≡
a ∧ c ∧ ¬b

5 regr〈a,(cBb)∧(dB¬b)〉(b) = (a ∧ (c ∨ (b ∧ ¬d)) ∧ ¬(c ∧ d)) ≡
a ∧ (c ∨ b) ∧ (c ∨ ¬d) ∧ (¬c ∨ ¬d)

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: examples

1 regr〈a,b〉(b) = (a ∧ (> ∨ (b ∧ ¬⊥))) ≡ a

2 regr〈a,b〉(b ∧ c ∧ d) =
(a∧(>∨(b∧¬⊥))∧(∨⊥(c∧¬⊥))∧(⊥∨(d∧¬⊥))) ≡ a∧c∧d

3 regr〈a,cBb〉(b) = (a ∧ (c ∨ (b ∧ ¬⊥))) ≡ a ∧ (c ∨ b)
4 regr〈a,(cBb)∧(bB¬b)〉(b) = (a ∧ (c ∨ (b ∧ ¬b)) ∧ ¬(c ∧ b)) ≡
a ∧ c ∧ ¬b

5 regr〈a,(cBb)∧(dB¬b)〉(b) = (a ∧ (c ∨ (b ∧ ¬d)) ∧ ¬(c ∧ d)) ≡
a ∧ (c ∨ b) ∧ (c ∨ ¬d) ∧ (¬c ∨ ¬d)

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: examples
Blocks World with conditional effects

Moving blocks A and B onto the table from any location if
they are clear.

o1 = 〈>, (AonB ∧ Aclear) B (AonT ∧ Bclear ∧ ¬AonB)〉
o2 = 〈>, (BonA ∧ Bclear) B (BonT ∧ Aclear ∧ ¬BonA)〉

Plan for putting both blocks onto the table from any blocks
world state is o2, o1. Proof by regression:

G = AonT ∧ BonT
φ1 = regro1(G) = (AonT ∨ (AonB ∧ Aclear)) ∧ BonT
φ2 = regro2(φ1) = (AonT ∨ (AonB ∧ (Aclear ∨ (BonA ∧ Bclear))))

∧(BonT ∨ (BonA ∧ Bclear))

All three 2-block states satisfy φ2. Similar plans exist for any
number of blocks.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: examples
Incrementing a binary number

(¬b0 B b0)∧
((¬b1 ∧ b0) B (b1 ∧ ¬b0))∧

((¬b2 ∧ b1 ∧ b0) B (b2 ∧ ¬b1 ∧ ¬b0))

EPCb2(e) = ¬b2 ∧ b1 ∧ b0 EPC¬b2(e) = ⊥
EPCb1(e) = ¬b1 ∧ b0 EPC¬b1(e) = ¬b2 ∧ b1 ∧ b0
EPCb0(e) = ¬b0 EPC¬b0(e) = (¬b1 ∧ b0) ∨ (¬b2 ∧ b1 ∧ b0)

≡ (¬b1 ∨ ¬b2) ∧ b0

Regression replaces state variables as follows.

b2 by (b2 ∧ ¬⊥) ∨ (¬b2 ∧ b1 ∧ b0) ≡ b2 ∨ (b1 ∧ b0)
b1 by (b1 ∧ ¬(¬b2 ∧ b1 ∧ b0)) ∨ (¬b1 ∧ b0)

≡ (b1 ∧ (b2 ∨ ¬b0)) ∨ (¬b1 ∧ b0)
b0 by (b0 ∧ ¬((¬b1 ∨ ¬b2) ∧ b0)) ∨ ¬b0 ≡ (b1 ∧ b2) ∨ ¬b0

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: properties

Lemma (D)

Let φ be a formula, o an operator, s any state and
s′ = appo(s). Then s |= regro(φ) if and only if s′ |= φ.

Proof.

Let e be the effect of o. We show by structural induction over
subformulae φ′ of φ that s |= φ′r iff s′ |= φ′, where φ′r is φ′

with every a ∈ A replaced by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
Rest of regro(φ) just states that o is applicable in s.

Induction hypothesis s |= φ′r if and only if s′ |= φ′.

Base cases 1 & 2 φ′ = > or φ′ = ⊥: Trivial as φ′r = φ′.

Base case 3 φ′ = a for some a ∈ A: Now
φ′r = EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
By Lemma C s |= φ′r iff s′ |= φ′.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: properties

Lemma (D)

Let φ be a formula, o an operator, s any state and
s′ = appo(s). Then s |= regro(φ) if and only if s′ |= φ.

Proof.

Let e be the effect of o. We show by structural induction over
subformulae φ′ of φ that s |= φ′r iff s′ |= φ′, where φ′r is φ′

with every a ∈ A replaced by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
Rest of regro(φ) just states that o is applicable in s.

Induction hypothesis s |= φ′r if and only if s′ |= φ′.

Base cases 1 & 2 φ′ = > or φ′ = ⊥: Trivial as φ′r = φ′.

Base case 3 φ′ = a for some a ∈ A: Now
φ′r = EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
By Lemma C s |= φ′r iff s′ |= φ′.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: properties

Lemma (D)

Let φ be a formula, o an operator, s any state and
s′ = appo(s). Then s |= regro(φ) if and only if s′ |= φ.

Proof.

Let e be the effect of o. We show by structural induction over
subformulae φ′ of φ that s |= φ′r iff s′ |= φ′, where φ′r is φ′

with every a ∈ A replaced by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
Rest of regro(φ) just states that o is applicable in s.

Induction hypothesis s |= φ′r if and only if s′ |= φ′.

Base cases 1 & 2 φ′ = > or φ′ = ⊥: Trivial as φ′r = φ′.

Base case 3 φ′ = a for some a ∈ A: Now
φ′r = EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
By Lemma C s |= φ′r iff s′ |= φ′.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: properties

Lemma (D)

Let φ be a formula, o an operator, s any state and
s′ = appo(s). Then s |= regro(φ) if and only if s′ |= φ.

Proof.

Let e be the effect of o. We show by structural induction over
subformulae φ′ of φ that s |= φ′r iff s′ |= φ′, where φ′r is φ′

with every a ∈ A replaced by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
Rest of regro(φ) just states that o is applicable in s.

Induction hypothesis s |= φ′r if and only if s′ |= φ′.

Base cases 1 & 2 φ′ = > or φ′ = ⊥: Trivial as φ′r = φ′.

Base case 3 φ′ = a for some a ∈ A: Now
φ′r = EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
By Lemma C s |= φ′r iff s′ |= φ′.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: properties

Lemma (D)

Let φ be a formula, o an operator, s any state and
s′ = appo(s). Then s |= regro(φ) if and only if s′ |= φ.

Proof.

Let e be the effect of o. We show by structural induction over
subformulae φ′ of φ that s |= φ′r iff s′ |= φ′, where φ′r is φ′

with every a ∈ A replaced by EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
Rest of regro(φ) just states that o is applicable in s.

Induction hypothesis s |= φ′r if and only if s′ |= φ′.

Base cases 1 & 2 φ′ = > or φ′ = ⊥: Trivial as φ′r = φ′.

Base case 3 φ′ = a for some a ∈ A: Now
φ′r = EPCa(e) ∨ (a ∧ ¬EPC¬a(e)).
By Lemma C s |= φ′r iff s′ |= φ′.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: properties

proof continues...

Inductive case 1 φ′ = ¬ψ: By the induction hypothesis
s |= ψr iff s′ |= ψ. Hence s |= φ′r iff s′ |= φ′

by the truth-definition of ¬.

Inductive case 2 φ′ = ψ ∨ ψ′: By the induction hypothesis
s |= ψr iff s′ |= ψ, and s |= ψ′r iff s′ |= ψ′.
Hence s |= φ′r iff s′ |= φ′ by the
truth-definition of ∨.

Inductive case 3 φ′ = ψ ∧ ψ′: By the induction hypothesis
s |= ψr iff s′ |= ψ, and s |= ψ′r iff s′ |= ψ′.
Hence s |= φ′r iff s′ |= φ′ by the
truth-definition of ∧.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: properties

proof continues...

Inductive case 1 φ′ = ¬ψ: By the induction hypothesis
s |= ψr iff s′ |= ψ. Hence s |= φ′r iff s′ |= φ′

by the truth-definition of ¬.

Inductive case 2 φ′ = ψ ∨ ψ′: By the induction hypothesis
s |= ψr iff s′ |= ψ, and s |= ψ′r iff s′ |= ψ′.
Hence s |= φ′r iff s′ |= φ′ by the
truth-definition of ∨.

Inductive case 3 φ′ = ψ ∧ ψ′: By the induction hypothesis
s |= ψr iff s′ |= ψ, and s |= ψ′r iff s′ |= ψ′.
Hence s |= φ′r iff s′ |= φ′ by the
truth-definition of ∧.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: properties

proof continues...

Inductive case 1 φ′ = ¬ψ: By the induction hypothesis
s |= ψr iff s′ |= ψ. Hence s |= φ′r iff s′ |= φ′

by the truth-definition of ¬.

Inductive case 2 φ′ = ψ ∨ ψ′: By the induction hypothesis
s |= ψr iff s′ |= ψ, and s |= ψ′r iff s′ |= ψ′.
Hence s |= φ′r iff s′ |= φ′ by the
truth-definition of ∨.

Inductive case 3 φ′ = ψ ∧ ψ′: By the induction hypothesis
s |= ψr iff s′ |= ψ, and s |= ψ′r iff s′ |= ψ′.
Hence s |= φ′r iff s′ |= φ′ by the
truth-definition of ∧.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: complexity issues

The following two tests are useful when generating a search
tree with regression.

1 Testing that a formula regro(φ) does not represent the
empty set (= search is in a blind alley).
For example, regr〈a,¬p〉(p) = a ∧ ⊥ ≡ ⊥.

2 Testing that a regression step does not make the set of
states smaller (= more difficult to reach).
For example, regr〈b,c〉(a) = a ∧ b.

Both of these problems are NP-hard.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: complexity issues

The formula regro1(regro2(· · · regron−1(regron(φ)))) may have
size O(|φ||o1||o2| · · · |on−1||on|), i.e. the product of the sizes
of φ and the operators.
The size in the worst case O(2n) is hence exponential in n.

Logical simplifications

1 ⊥ ∧ φ ≡ ⊥, > ∧ φ ≡ φ, ⊥ ∨ φ ≡ φ, > ∨ φ ≡ >
2 a ∨ φ ≡ a ∨ φ[⊥/a], ¬a ∨ φ ≡ a ∨ φ[>/a],
a ∧ φ ≡ a ∧ φ[>/a], ¬a ∧ φ ≡ a ∧ φ[⊥/a]

To obtain the maximum benefit from the last equivalences,
e.g. for (a ∧ b) ∧ φ(a), the equivalences for associativity and
commutativity are useful: (φ1 ∨ φ2) ∨ φ3 ≡ φ1 ∨ (φ2 ∨ φ3),
φ1 ∨ φ2 ≡ φ2 ∨ φ1, (φ1 ∧ φ2) ∧ φ3 ≡ φ1 ∧ (φ2 ∧ φ3),
φ1 ∧ φ2 ≡ φ2 ∧ φ1.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: generation of search trees

Problem Formulae obtained with regression may become
very big.

Cause Disjunctivity in the formulae. Formulae without
disjunctions easily convertible to small formulae
l1 ∧ · · · ∧ ln where li are literals and n is at most
the number of state variables.

Solution Handle disjunctivity when generating search trees.
Alternatives:

1 Do nothing. (May lead to very big formulae!!!)
2 Always eliminate all disjunctivity.
3 Reduce disjunctivity if formula becomes too

big.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: generation of search trees
Unrestricted regression (= do nothing about formula size)

Reach goal a ∧ b from state I such that I |= ¬a ∧ ¬b ∧ ¬c.

G = a ∧ b

¬a ∧ a

(¬c ∨ a) ∧ b

(¬c ∨ a) ∧ ¬a

(¬c ∨ a) ∧ b

〈¬a, b〉

〈b,¬c
B a〉

〈¬a, b〉

〈b,¬c B a〉

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: generation of search trees
Full splitting (= eliminate all disjunctivity)

Planners for STRIPS operators only need to use
formulae l1 ∧ · · · ∧ ln where li are literals.
Some PDDL planners also restrict to this class of
formulae. This is done as follows.

1 regro(φ) is transformed to disjunctive normal form
(DNF): (l11 ∧ · · · ∧ l1n1

) ∨ · · · ∨ (ln1 ∧ · · · ∧ lnnn
).

2 Each disjunct li1 ∧ · · · ∧ iin1
is handled in its own subtree

of the search tree.
3 The DNF formulae need not exist in its entirety

explicitly: generate one disjunct at a time.

Hence branching is both on the choice of operator and
on the choice of the disjunct of the DNF formula.

This leads to an increased branching factor and bigger
search trees, but avoids big formulae.

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: generation of search trees
Full splitting

Reach goal a ∧ b from state I such that I |= ¬a ∧ ¬b ∧ ¬c.
(¬c ∨ a) ∧ b in DNF is (¬c ∧ b) ∨ (a ∧ b).
It is split to ¬c ∧ b and a ∧ b.

G = a ∧ b

¬a ∧ a

¬c ∧ b

a ∧ b

¬c ∧ ¬a

¬c ∧ b

a ∧ ¬a

a ∧ b

¬c ∧ b 〈¬a, b〉

〈b,¬
c B a〉

〈b,¬c B a〉

〈¬a, b〉

〈¬a, b〉

〈b,¬c B a〉

〈b,¬c B a〉

〈b,¬c B a〉

AI Planning

Normal form

State-space
search
Ideas

Progression

Regression

Complexity

Branching

Regression: generation of search trees
Restricted splitting

With full splitting search tree can be exponentially
bigger than without splitting. (But it is not necessary to
construct the DNF formulae explicitly!)

Without splitting the formulae may have size that is
exponential in the number of state variables.

A compromise is to split formulae only when necessary:
combine benefits of the two extremes.

There are several ways to split a formula φ to φ1, . . . , φn

such that φ ≡ φ1 ∨ · · · ∨ φn. For example:
1 Transform φ to φ1 ∨ · · · ∨ φn by equivalences like

distributivity (φ1 ∨ φ2) ∧ φ3 ≡ (φ1 ∧ φ3) ∨ (φ2 ∧ φ3).
2 Choose state variable a, set φ1 = a∧φ and φ2 = ¬a∧φ,

and simplify with equivalences like a ∧ ψ ≡ a ∧ ψ[>/a].

	Normal form for effects
	STRIPS operators

	Planning by state-space search
	Ideas
	Progression
	Regression
	Complexity
	Branching

