Normal form for effects

- Similarly to normal forms in propositional logic (DNF, CNF, NNF, ...) we can define a normal form for effects.
- 2 Nesting of conditionals, as in *a* ▷ (*b* ▷ *c*), can be eliminated.
- 3 Restriction to atomic effects e in conditional effects $\phi \triangleright e$ can be made.
- Only a small polynomial increase in size by transformation to normal form.
 Compare: transformation to CNF or DNF may increase formula size exponentially.

AI Planning

Normal form STRIPS operators

Normal form for effects

- Similarly to normal forms in propositional logic (DNF, CNF, NNF, ...) we can define a normal form for effects.
- Nesting of conditionals, as in *a* ▷ (*b* ▷ *c*), can be eliminated.
- Solution Restriction to atomic effects e in conditional effects $\phi \triangleright e$ can be made.
- Only a small polynomial increase in size by transformation to normal form.
 Compare: transformation to CNF or DNF may increase formula size exponentially.

AI Planning

Normal form STRIPS operators

Normal form for effects

- Similarly to normal forms in propositional logic (DNF, CNF, NNF, ...) we can define a normal form for effects.
- Nesting of conditionals, as in *a* ▷ (*b* ▷ *c*), can be eliminated.
- Solution Restriction to atomic effects e in conditional effects $\phi \triangleright e$ can be made.
- Only a small polynomial increase in size by transformation to normal form.
 Compare: transformation to CNF or DNF may increase formula size exponentially.

AI Planning

Normal form STRIPS operators

 $c \triangleright (e_1 \wedge \dots \wedge e_n) \equiv (c \triangleright e_1) \wedge \dots \wedge (c \triangleright e_n)$ (1) $c_1 \triangleright (c_2 \triangleright e) \equiv (c_1 \wedge c_2) \triangleright e$ (2) $(c_1 \triangleright e) \wedge (c_2 \triangleright e) \equiv (c_1 \vee c_2) \triangleright e$ (3) $e \wedge (c \triangleright e) \equiv e$ (4) $e \equiv \top \triangleright e$ (5) $e \equiv \top \wedge e$ (6) $e_1 \wedge e_2 \equiv e_2 \wedge e_1$ (7) $(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3)$ (8)

AI Planning

Normal form

 $c \triangleright (e_1 \wedge \dots \wedge e_n) \equiv (c \triangleright e_1) \wedge \dots \wedge (c \triangleright e_n)$ (1) $c_1 \triangleright (c_2 \triangleright e) \equiv (c_1 \wedge c_2) \triangleright e$ (2) $(c_1 \triangleright e) \wedge (c_2 \triangleright e) \equiv (c_1 \vee c_2) \triangleright e$ (3) $e \wedge (c \triangleright e) \equiv e$ (4) $e \equiv \top \triangleright e$ (5) $e \equiv \top \wedge e$ (6) $e_1 \wedge e_2 \equiv e_2 \wedge e_1$ (7) $(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3)$ (8) AI Planning

Normal form

 $c \triangleright (e_1 \wedge \dots \wedge e_n) \equiv (c \triangleright e_1) \wedge \dots \wedge (c \triangleright e_n)$ (1) $c_1 \triangleright (c_2 \triangleright e) \equiv (c_1 \wedge c_2) \triangleright e$ (2) $(c_1 \triangleright e) \wedge (c_2 \triangleright e) \equiv (c_1 \vee c_2) \triangleright e$ (3) $e \wedge (c \triangleright e) \equiv e$ (4) $e \equiv \top \triangleright e$ (5) $e \equiv \top \wedge e$ (6) $e_1 \wedge e_2 \equiv e_2 \wedge e_1$ (7) $(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3)$ (8)

AI Planning

Normal form

 $c \triangleright (e_{1} \land \dots \land e_{n}) \equiv (c \triangleright e_{1}) \land \dots \land (c \triangleright e_{n})$ (1) $c_{1} \triangleright (c_{2} \triangleright e) \equiv (c_{1} \land c_{2}) \triangleright e$ (2) $(c_{1} \triangleright e) \land (c_{2} \triangleright e) \equiv (c_{1} \lor c_{2}) \triangleright e$ (3) $e \land (c \triangleright e) \equiv e$ (4) $e \equiv \top \triangleright e$ (5) $e \equiv \top \land e$ (6) $e_{1} \land e_{2} \equiv e_{2} \land e_{1}$ (7) $(e_{1} \land e_{2}) \land e_{3} \equiv e_{1} \land (e_{2} \land e_{3})$ (8)

AI Planning

Normal form

 $c \triangleright (e_{1} \land \dots \land e_{n}) \equiv (c \triangleright e_{1}) \land \dots \land (c \triangleright e_{n})$ (1) $c_{1} \triangleright (c_{2} \triangleright e) \equiv (c_{1} \land c_{2}) \triangleright e$ (2) $(c_{1} \triangleright e) \land (c_{2} \triangleright e) \equiv (c_{1} \lor c_{2}) \triangleright e$ (3) $e \land (c \triangleright e) \equiv e$ (4) $e \equiv \top \triangleright e$ (5) $e \equiv \top \land e$ (6) $e_{1} \land e_{2} \equiv e_{2} \land e_{1}$ (7) $(e_{1} \land e_{2}) \land e_{3} \equiv e_{1} \land (e_{2} \land e_{3})$ (8)

AI Planning

Normal form

 $c \triangleright (e_{1} \land \dots \land e_{n}) \equiv (c \triangleright e_{1}) \land \dots \land (c \triangleright e_{n})$ (1) $c_{1} \triangleright (c_{2} \triangleright e) \equiv (c_{1} \land c_{2}) \triangleright e$ (2) $(c_{1} \triangleright e) \land (c_{2} \triangleright e) \equiv (c_{1} \lor c_{2}) \triangleright e$ (3) $e \land (c \triangleright e) \equiv e$ (4) $e \equiv \top \triangleright e$ (5) $e \equiv \top \land e$ (6) $e_{1} \land e_{2} \equiv e_{2} \land e_{1}$ (7) $(e_{1} \land e_{2}) \land e_{3} \equiv e_{1} \land (e_{2} \land e_{3})$ (8)

AI Planning

Normal form

 $c \triangleright (e_1 \wedge \dots \wedge e_n) \equiv (c \triangleright e_1) \wedge \dots \wedge (c \triangleright e_n)$ (1) $c_1 \triangleright (c_2 \triangleright e) \equiv (c_1 \wedge c_2) \triangleright e$ (2) $(c_1 \triangleright e) \wedge (c_2 \triangleright e) \equiv (c_1 \vee c_2) \triangleright e$ (3) $e \wedge (c \triangleright e) \equiv e$ (4) $e \equiv \top \triangleright e$ (5) $e \equiv \top \wedge e$ (6) $e_1 \wedge e_2 \equiv e_2 \wedge e_1$ (7) $(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3)$ (8)

AI Planning

Normal form

 $c \triangleright (e_1 \wedge \dots \wedge e_n) \equiv (c \triangleright e_1) \wedge \dots \wedge (c \triangleright e_n)$ (1) $c_1 \triangleright (c_2 \triangleright e) \equiv (c_1 \wedge c_2) \triangleright e$ (2) $(c_1 \triangleright e) \land (c_2 \triangleright e) \equiv (c_1 \lor c_2) \triangleright e$ (3) $e \wedge (c \triangleright e) \equiv e$ (4)(5) $e \equiv \top \triangleright e$ (6) $e \equiv \top \wedge e$ (7) $e_1 \wedge e_2 \equiv e_2 \wedge e_1$ (8) $(e_1 \wedge e_2) \wedge e_3 \equiv e_1 \wedge (e_2 \wedge e_3)$

AI Planning

Normal form

Normal form for operators and effects

Definition

An operator $\langle c, e \rangle$ is in normal form if for all occurrences of $c' \triangleright e'$ in *e* the effect e' is either *a* or $\neg a$ for some $a \in A$, and there is at most one occurrence of any atomic effect in *e*.

Theorem

For every operator there is an equivalent one in normal form.

Proof is constructive: we can transform any operator into normal form by using the equivalences from the previous slide. AI Planning

Normal form STRIPS operators

Normal form for effects Example

Example

$$(a arphi (b \land (c arphi (\neg d \land e)))) \land (\neg b arphi e)$$

transformed to normal form is

 $(a \rhd b) \land \ ((a \land c) \rhd \neg d) \land \ ((\neg b \lor (a \land c)) \rhd e)$

AI Planning

Normal form STRIPS operators

STRIPS operators

Definition

An operator $\langle c, e \rangle$ is a STRIPS operator if

- c is a conjunction of literals, and
- 2 e does not contain \triangleright .

Hence every STRIPS operator is of the form

 $\langle l_1 \wedge \cdots \wedge l_n, \ l'_1 \wedge \cdots \wedge l'_m \rangle$

where l_i are literals and l'_i are atomic effects.

STRIPS

STanford Research Institute Planning System, Fikes & Nilsson, 1971.

AI Planning

Normal form STRIPS operators

Planning by state-space search

There are many alternative ways of doing planning by state-space search.

- different ways of expressing planning as a search problem:
 - search direction: forward, backward
 - Prepresentation of search space: states, sets of states
- different search algorithms: depth-first, breadth-first, informed (heuristic) search (systematic: A*, IDA*,...; local: hill-climbing, simulated annealing, ...), ...
- I different ways of controlling search:
 - heuristics for heuristic search algorithms
 - pruning techniques: invariants, symmetry elimination,...

AI Planning

Normal form

State-space search Ideas Progression Regression

AI Planning

Normal form

AI Planning

Normal form

AI Planning

Normal form

AI Planning

Normal form

AI Planning

Normal form

AI Planning

Normal form

with depth-first search, one state at a time

AI Planning

Normal form

with depth-first search, for state sets (represented as formulae)

AI Planning

Normal form

with depth-first search, for state sets (represented as formulae)

with depth-first search, for state sets (represented as formulae)

with depth-first search, for state sets (represented as formulae)

Planning by backward search

with depth-first search, for state sets (represented as formulae)

Progression

- Progression means computing the successor state app_o(s) of s with respect to o.
- Used in forward search: from the initial state toward the goal states.
- Very easy and efficient to implement.

AI Planning

Normal form

Regression

- Regression is computing the possible predecessor states of a set of states.
- The formula *regr_o(φ)* represents the states from which a state represented by φ is reached by operator o.
- Used in backward search: from the goal states toward the initial states.
- Regression is powerful because it allows handling sets of states (progression: only one state at a time.)
- Handling formulae is more complicated than handling states: many questions about regression are NP-hard.

AI Planning

Normal form

- Regression for STRIPS operators is very simple.
- Goals are conjunctions of literals $l_1 \wedge \cdots \wedge l_n$.
- First step: Choose an operator that makes some of l_1, \ldots, l_n true and makes none of them false.
- Second step: Form a new goal by removing the fulfilled goal literals and adding the preconditions of the operator.

AI Planning

Normal form

Definition

The STRIPS-regression $regr_o^{str}(\phi)$ of $\phi = l_1'' \wedge \cdots \wedge l_{m'}''$ with respect to

$$o = \langle l_1 \wedge \dots \wedge l_n, \ l'_1 \wedge \dots \wedge l'_m \rangle$$

is the conjunction of literals

$$\bigwedge \left(\left(\{l''_1, \dots, l''_{m'}\} \setminus \{l'_1, \dots, l'_m\} \right) \cup \{l_1, \cdots, l_n\} \right)$$

provided that $\{l', \ldots, l'_m\} \cap \{\overline{l''_1}, \ldots, \overline{l''_{m'}}\} = \emptyset$.

AI Planning

Normal form

AI Planning

Normal form

 $o_3 = \langle \texttt{lonT} \land \texttt{lcir} \land \texttt{lcir}, \neg \texttt{lcir} \land \neg \texttt{lonT} \land \texttt{lon} \rangle$

AI Planning

Normal form

Regression for STRIPS operators Example

AI Planning

AI Planning

Normal form

State-space search Ideas Progression Regression Complexity Branching

$\phi_1 = \operatorname{regr}_{o_3}^{str}(G) = \blacksquare on \blacksquare \land \blacksquare on \intercal \land \blacksquare clr \land \blacksquare clr$

 $\phi_1 = \operatorname{regr}_{o_3}^{str}(G) = \blacksquare on \blacksquare \land \blacksquare on \top \land \blacksquare clr \land \blacksquare clr$

$$\phi_1 = \operatorname{regr}_{o_3}^{str}(G) = \operatorname{lon} \land \operatorname{lon} \land \operatorname{lclr} \land \operatorname{lcl$$

AI Planning

Normal form

State-space search Ideas Progression Regression Complexity Branching

 $\phi_2 = regr_{o_2}^{str}(\phi_1) =$ on T \land Clr \land On

$o_1 = \langle \texttt{on} \land \texttt{oclr}, \neg \texttt{on} \land \texttt{on} \land \texttt{oclr} \rangle$

$$\phi_2 = \operatorname{regr}_{o_2}^{str}(\phi_1) = \operatorname{lon} \wedge \operatorname{lclr} \wedge \operatorname{lon} \wedge \operatorname{lclr}$$

AI Planning

Normal form

$o_1 = \langle \texttt{onm} \land \texttt{clr}, \neg \texttt{onm} \land \texttt{onT} \land \texttt{clr} \rangle$

$$\phi_2 = \textit{regr}^{str}_{o_2}(\phi_1) = \blacksquare \text{onT} \land \blacksquare \text{cir} \land \blacksquare \text{on}\blacksquare \land \blacksquare \text{cir}$$

AI Planning

Normal form

$o_1 = \langle \texttt{onm} \land \texttt{clr}, \neg \texttt{onm} \land \texttt{onT} \land \texttt{clr} \rangle$

AI Planning

Normal form

AI Planning

Normal form

Regression for general operators

- With disjunction and conditional effects, things become more tricky. How to regress A ∨ (B ∧ C) with respect to ⟨Q, D ▷ B⟩?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.

AI Planning

Normal form

Regression for general operators

- With disjunction and conditional effects, things become more tricky. How to regress A ∨ (B ∧ C) with respect to ⟨Q, D ▷ B⟩?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.

AI Planning

Normal form

Precondition for effect l to take place: $EPC_l(e)$ Definition

Definition

The condition $EPC_l(e)$ for literal *l* to become true under effect *e* is defined as follows.

$$\begin{aligned} \mathsf{EPC}_l(l) &= \top \\ \mathsf{EPC}_l(l') &= \bot \text{ when } l \neq l' \text{ (for literals } l') \\ \mathsf{EPC}_l(\top) &= \bot \\ \mathsf{EPC}_l(e_1 \wedge \cdots \wedge e_n) &= \mathsf{EPC}_l(e_1) \vee \cdots \vee \mathsf{EPC}_l(e_n) \\ \mathsf{EPC}_l(c \rhd e) &= \mathsf{EPC}_l(e) \wedge c \end{aligned}$$

AI Planning

Normal form

Precondition for effect l to take place: $EPC_l(e)$ Example

Precondition for effect l to take place: $EPC_l(e)$ Example

Precondition for effect l to take place: $EPC_l(e)$ Example

Example

$$\begin{aligned} EPC_a(b \wedge c) &= \bot \lor \bot \equiv \bot \\ EPC_a(a \wedge (b \rhd a)) &= \top \lor (\top \land b) \equiv \top \\ EPC_a((c \rhd a) \land (b \rhd a)) &= (\top \land c) \lor (\top \land b) \equiv c \lor b \end{aligned}$$

AI Planning

Normal form

Lemma (B)

Let *s* be a state, *l* a literal and *e* an effect. Then $l \in [e]_s$ if and only if $s \models EPC_l(e)$.

Proof.

Induction on the structure of the effect e.

Base case 1, $e = \top$: By definition of $[\top]_s$ we have $l \notin [\top]_s = \emptyset$ and by definition of $EPC_l(\top)$ we have $s \not\models EPC_l(\top) = \bot$: Both sides of the equivalence are false. Base case 2, e = l: $l \in [l]_s = \{l\}$ by definition, and $s \models EPC_l(l) = \top$ by definition. Both sides are true. Base case 3, e = l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are false.

AI Planning

Normal form

Lemma (B)

Let *s* be a state, *l* a literal and *e* an effect. Then $l \in [e]_s$ if and only if $s \models EPC_l(e)$.

Proof.

Induction on the structure of the effect *e*. Base case 1, $e = \top$: By definition of $[\top]_s$ we have $l \notin [\top]_s = \emptyset$ and by definition of $EPC_l(\top)$ we have $s \not\models EPC_l(\top) = \bot$: Both sides of the equivalence are false. Base case 2, e = l: $l \in [l]_s = \{l\}$ by definition, and $s \models EPC_l(l) = \top$ by definition. Both sides are true. Base case 3, e = l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are false. AI Planning

Normal form

Lemma (B)

Let *s* be a state, *l* a literal and *e* an effect. Then $l \in [e]_s$ if and only if $s \models EPC_l(e)$.

Proof.

Induction on the structure of the effect *e*. Base case 1, $e = \top$: By definition of $[\top]_s$ we have $l \notin [\top]_s = \emptyset$ and by definition of $EPC_l(\top)$ we have $s \not\models EPC_l(\top) = \bot$: Both sides of the equivalence are false. Base case 2, e = l: $l \in [l]_s = \{l\}$ by definition, and $s \models EPC_l(l) = \top$ by definition. Both sides are true. Base case 3, e = l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are false. AI Planning

Normal form

Lemma (B)

Let *s* be a state, *l* a literal and *e* an effect. Then $l \in [e]_s$ if and only if $s \models EPC_l(e)$.

Proof.

Induction on the structure of the effect *e*. Base case 1, $e = \top$: By definition of $[\top]_s$ we have $l \notin [\top]_s = \emptyset$ and by definition of $EPC_l(\top)$ we have $s \not\models EPC_l(\top) = \bot$: Both sides of the equivalence are false. Base case 2, e = l: $l \in [l]_s = \{l\}$ by definition, and $s \models EPC_l(l) = \top$ by definition. Both sides are true. Base case 3, e = l' for some literal $l' \neq l$: $l \notin [l']_s = \{l'\}$ by definition, and $s \not\models EPC_l(l') = \bot$ by definition. Both sides are true. AI Planning

Normal form

proof continues...

Inductive case 1, $e = e_1 \wedge \cdots \wedge e_n$: $l \in [e]_s$ iff $l \in [e_1]_s \cup \cdots \cup [e_n]_s$ (Def $[e_1 \wedge \cdots \wedge e_n]_s$) iff $l \in [e']_s$ for some $e' \in \{e_1, \ldots, e_n\}$

AI Planning

proof continues...

AI Planning

proof continues...

AI Planning

proof continues...

AI Planning

proof continues...

AI Planning

proof continues...

Inductive case 1,
$$e = e_1 \land \dots \land e_n$$
:
 $l \in [e]_s$ iff $l \in [e_1]_s \cup \dots \cup [e_n]_s$ (Def $[e_1 \land \dots \land e_n]_s$)
iff $l \in [e']_s$ for some $e' \in \{e_1, \dots, e_n\}$
iff $s \models EPC_l(e')$ for some $e' \in \{e_1, \dots, e_n\}$ (IH)
iff $s \models EPC_l(e_1) \lor \dots \lor EPC_l(e_n)$
iff $s \models EPC_l(e_1 \land \dots \land e_n)$. (Def *EPC*)
Inductive case 2, $e = c \triangleright e'$:
 $l \in [c \triangleright e']_s$ iff $l \in [e']_s$ and $s \models c$ (Def $[c \triangleright e']_s$)
iff $s \models EPC_l(e') \land c$
iff $s \models EPC_l(c) \land c$
iff $s \models EPC_l(c \triangleright e')$. (Def *EPC*)

AI Planning

proof continues...

Inductive case 1,
$$e = e_1 \land \dots \land e_n$$
:
 $l \in [e]_s$ iff $l \in [e_1]_s \cup \dots \cup [e_n]_s$ (Def $[e_1 \land \dots \land e_n]_s$)
iff $l \in [e']_s$ for some $e' \in \{e_1, \dots, e_n\}$
iff $s \models EPC_l(e')$ for some $e' \in \{e_1, \dots, e_n\}$ (IH)
iff $s \models EPC_l(e_1) \lor \dots \lor EPC_l(e_n)$
iff $s \models EPC_l(e_1 \land \dots \land e_n)$. (Def *EPC*)
Inductive case 2, $e = c \triangleright e'$:
 $l \in [c \triangleright e']_s$ iff $l \in [e']_s$ and $s \models c$ (Def $[c \triangleright e']_s$)
iff $s \models EPC_l(e') \land c$
iff $s \models EPC_l(c) \land c$
iff $s \models EPC_l(c \triangleright e')$. (Def *EPC*)

AI Planning
Precondition for effect l to take place: $EPC_l(e)$ Connection to $[e]_s$

proof continues...

Inductive case 1,
$$e = e_1 \land \dots \land e_n$$
:
 $l \in [e]_s$ iff $l \in [e_1]_s \cup \dots \cup [e_n]_s$ (Def $[e_1 \land \dots \land e_n]_s$)
iff $l \in [e']_s$ for some $e' \in \{e_1, \dots, e_n\}$
iff $s \models EPC_l(e')$ for some $e' \in \{e_1, \dots, e_n\}$ (IH)
iff $s \models EPC_l(e_1) \lor \dots \lor EPC_l(e_n)$
iff $s \models EPC_l(e_1 \land \dots \land e_n)$. (Def *EPC*)
Inductive case 2, $e = c \triangleright e'$:
 $l \in [c \triangleright e']_s$ iff $l \in [e']_s$ and $s \models c$ (Def $[c \triangleright e']_s$)
iff $s \models EPC_l(e') \land c$
iff $s \models EPC_l(c') \land c$
iff $s \models EPC_l(c \triangleright e')$. (Def *EPC*)

AI Planning

Precondition for effect l to take place: $EPC_l(e)$ Connection to the normal form

Remark

Notice that in terms of $EPC_a(e)$ any operator $\langle c, e \rangle$ can be expressed in normal form as

$$\left\langle c, \bigwedge_{a \in A} (EPC_a(e) \rhd a) \land (EPC_{\neg a}(e) \rhd \neg a) \right\rangle.$$

AI Planning

Normal form

Regressing a state variable

The formula $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ expresses the value of $a \in A$ after applying *o* in terms of values of state variables before applying *o*: Either

- a was true before and it did not become false, or
- a became true.

AI Planning

Normal form

Example

Let
$$e = (b \rhd a) \land (c \rhd \neg a) \land b \land \neg d$$
.

AI Planning

Normal form

Lemma (C)

Let *a* be a state variable, $o = \langle c, e \rangle \in O$ an operator, *s* a state and $s' = app_o(s)$. Then $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

First prove the implication from left to right. Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Do a case analysis on the two disjuncts.

• Assume that $s \models EPC_a(e)$. By Lemma B $a \in [e]_s$ and hence $s' \models a$.

Assume that s ⊨ a ∧ ¬EPC_{¬a}(e). By Lemma B ¬a ∉ [e]_s. Hence a remains true in s'. AI Planning

Normal form

Lemma (C)

Let *a* be a state variable, $o = \langle c, e \rangle \in O$ an operator, *s* a state and $s' = app_o(s)$. Then $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

First prove the implication from left to right. Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Do a case analysis on the two disjuncts.

• Assume that $s \models EPC_a(e)$. By Lemma B $a \in [e]_s$ and hence $s' \models a$.

Assume that s ⊨ a ∧ ¬EPC_{¬a}(e). By Lemma B ¬a ∉ [e]_s. Hence a remains true in s'.

AI Planning

Normal form

Lemma (C)

Let *a* be a state variable, $o = \langle c, e \rangle \in O$ an operator, *s* a state and $s' = app_o(s)$. Then $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

First prove the implication from left to right. Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Do a case analysis on the two disjuncts.

• Assume that $s \models EPC_a(e)$. By Lemma B $a \in [e]_s$ and hence $s' \models a$.

Assume that s ⊨ a ∧ ¬EPC_{¬a}(e). By Lemma B ¬a ∉ [e]_s. Hence a remains true in s'. AI Planning

Normal form

Lemma (C)

Let a be a state variable, $o = \langle c, e \rangle \in O$ an operator, s a state and $s' = app_o(s)$. Then $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

First prove the implication from left to right. Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Do a case analysis on the two disjuncts.

(1) Assume that $s \models EPC_a(e)$. By Lemma B $a \in [e]_s$ and hence $s' \models a$.

2 Assume that $s \models a \land \neg EPC_{\neg a}(e)$. By Lemma B

AI Planning

Regression

Lemma (C)

Let *a* be a state variable, $o = \langle c, e \rangle \in O$ an operator, *s* a state and $s' = app_o(s)$. Then $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ if and only if $s' \models a$.

Proof.

First prove the implication from left to right. Assume $s \models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Do a case analysis on the two disjuncts.

• Assume that $s \models EPC_a(e)$. By Lemma B $a \in [e]_s$ and hence $s' \models a$.

② Assume that s ⊨ a ∧ ¬EPC_{¬a}(e). By Lemma B ¬a ∉ [e]_s. Hence a remains true in s'.

AI Planning

Normal form

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s'.

For the second part of the equivalence we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- ② Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ by de Morgan's law.

Analyze the two cases: a is true or it is false in s.

 Assume that s ⊨ a. Now s ⊨ EPC_{¬a}(e) because s ⊨ ¬a ∨ EPC_{¬a}(e). Hence by Lemma B ¬a ∈ [e]_s and we get s' ⊭ a.

2 Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma B $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

AI Planning

Normal form

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s'.

For the second part of the equivalence we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- 2 Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ by de Morgan's law.

Analyze the two cases: a is true or it is false in s.

• Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma B $\neg a \in [e]_s$ and we get $s' \not\models a$.

2 Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma B $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

AI Planning

Normal form

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s'.

For the second part of the equivalence we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- 2 Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ by de Morgan's law.

Analyze the two cases: a is true or it is false in s.

- Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma B $\neg a \in [e]_s$ and we get $s' \not\models a$.
- 2 Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma B $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

AI Planning

Normal form

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s'.

For the second part of the equivalence we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- 2 Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ by de Morgan's law.

Analyze the two cases: a is true or it is false in s.

- Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma B $\neg a \in [e]_s$ and we get $s' \not\models a$.
- 2 Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma B $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

AI Planning

Normal form

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s'.

For the second part of the equivalence we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- ② Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ by de Morgan's law.

Analyze the two cases: a is true or it is false in s.

 Assume that s ⊨ a. Now s ⊨ EPC_{¬a}(e) because s ⊨ ¬a ∨ EPC_{¬a}(e). Hence by Lemma B ¬a ∈ [e]_s and we get s' ⊭ a.

② Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma B $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

AI Planning

Normal form

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s'.

For the second part of the equivalence we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- ② Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ by de Morgan's law.

Analyze the two cases: a is true or it is false in s.

• Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma B $\neg a \in [e]_s$ and we get $s' \not\models a$.

2 Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma B $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s' \not\models a$.

AI Planning

Normal form

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s'.

For the second part of the equivalence we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- ② Hence *s* $\models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ by de Morgan's law.

Analyze the two cases: a is true or it is false in s.

- Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma B $\neg a \in [e]_s$ and we get $s' \not\models a$.
- ② Assume that $s \not\models a$. Because $s \models \neg EPC_a(e)$, by Lemma B $a \notin [e]_s$ and hence $s' \not\models a$.

Therefore in both cases $s'
ot \models a$

AI Planning

Normal form

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s'.

For the second part of the equivalence we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- ② Hence *s* $\models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ by de Morgan's law.

Analyze the two cases: a is true or it is false in s.

- Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma B $\neg a \in [e]_s$ and we get $s' \not\models a$.
- Assume that s ⊭ a. Because s ⊨ ¬EPC_a(e), by Lemma B a ∉ [e]_s and hence s' ⊭ a.

Therefore in both cases $s' \not\models a$

AI Planning

Normal form

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s'.

For the second part of the equivalence we show that if the formula is false in s, then a is false in s'.

- So assume $s \not\models EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$.
- ② Hence $s \models \neg EPC_a(e) \land (\neg a \lor EPC_{\neg a}(e))$ by de Morgan's law.

Analyze the two cases: a is true or it is false in s.

• Assume that $s \models a$. Now $s \models EPC_{\neg a}(e)$ because $s \models \neg a \lor EPC_{\neg a}(e)$. Hence by Lemma B $\neg a \in [e]_s$ and we get $s' \not\models a$.

Assume that s ⊭ a. Because s ⊨ ¬EPC_a(e), by Lemma B a ∉ [e]_s and hence s' ⊭ a.

Therefore in both cases $s' \not\models a$.

AI Planning

Normal form

We base the definition of regression on formulae $EPC_l(e)$.

Definition

Let ϕ be a propositional formula and $o = \langle c, e \rangle$ an operator. The regression of ϕ with respect to o is

$$\textit{regr}_o(\phi) = \phi_r \wedge c \wedge f$$

where

• ϕ_r is obtained from ϕ by replacing each $a \in A$ by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$, and

2
$$f = \bigwedge_{a \in A} \neg (EPC_a(e) \land EPC_{\neg a}(e)).$$

The formula f says that no state variable may become simultaneously true and false.

AI Planning

Normal form

• regr $_{(a,b)}(b) = (a \land (\top \lor (b \land \neg \bot))) \equiv a$

$egr_{\langle a,b\rangle}(b \wedge c \wedge d) =$ $(a \wedge (\top \vee (b \wedge \neg \bot)) \wedge (\vee \bot (c \wedge \neg \bot)) \wedge (\bot \vee (d \wedge \neg \bot))) \equiv a \wedge c \wedge d$

3
$$\operatorname{regr}_{(a,c \triangleright b)}(b) = (a \land (c \lor (b \land \neg \bot))) \equiv a \land (c \lor b)$$

$$regr_{(a,(c \triangleright b) \land (b \triangleright \neg b))}(b) = (a \land (c \lor (b \land \neg b)) \land \neg (c \land b)) \equiv a \land c \land \neg b$$

$$segr_{(a,(c \rhd b) \land (d \rhd \neg b))}(b) = (a \land (c \lor (b \land \neg d)) \land \neg (c \land d)) \equiv a \land (c \lor b) \land (c \lor \neg d) \land (\neg c \lor \neg d)$$

AI Planning

Normal form

$$1 regr_{(a,b)}(b) = (a \land (\top \lor (b \land \neg \bot))) \equiv a$$

2
$$\operatorname{regr}_{(a,b)}(b \wedge c \wedge d) =$$

 $(a \wedge (\top \vee (b \wedge \neg \bot)) \wedge (\vee \bot (c \wedge \neg \bot)) \wedge (\bot \vee (d \wedge \neg \bot))) \equiv a \wedge c \wedge d$

3 $\operatorname{regr}_{(a,c \rhd b)}(b) = (a \land (c \lor (b \land \neg \bot))) \equiv a \land (c \lor b)$

(a) $\operatorname{regr}_{(a,(c \rhd b) \land (b \rhd \neg b))}(b) = (a \land (c \lor (b \land \neg b)) \land \neg (c \land b)) \equiv a \land c \land \neg b$

$$segr_{(a,(c \triangleright b) \land (d \triangleright \neg b))}(b) = (a \land (c \lor (b \land \neg d)) \land \neg (c \land d)) \equiv a \land (c \lor b) \land (c \lor \neg d) \land (\neg c \lor \neg d)$$

AI Planning

Normal form

1

2
$$\operatorname{regr}_{\langle a,b\rangle}(b \wedge c \wedge d) = (a \wedge (\top \vee (b \wedge \neg \bot)) \wedge (\vee \bot (c \wedge \neg \bot)) \wedge (\bot \vee (d \wedge \neg \bot))) \equiv a \wedge c \wedge d$$

 $regr_{(a,(c \rhd b) \land (b \rhd \neg b))}(b) = (a \land (c \lor (b \land \neg b)) \land \neg (c \land b)) \equiv a \land c \land \neg b$

$$segr_{(a,(c \rhd b) \land (d \rhd \neg b))}(b) = (a \land (c \lor (b \land \neg d)) \land \neg (c \land d)) \equiv a \land (c \lor b) \land (c \lor \neg d) \land (\neg c \lor \neg d)$$

AI Planning

Normal form

1

•
$$\operatorname{regr}_{\langle a,b\rangle}(b) = (a \land (\top \lor (b \land \neg \bot))) \equiv a$$

$$\begin{array}{l} & \operatorname{regr}_{\langle a,b\rangle}(b\wedge c\wedge d) = \\ & (a\wedge(\top\vee(b\wedge\neg\bot))\wedge(\vee\bot(c\wedge\neg\bot))\wedge(\bot\vee(d\wedge\neg\bot))) \equiv a\wedge c\wedge d \end{array}$$

 $a \wedge c \wedge \neg b (b) \wedge (b) \wedge (b) = (a \wedge (c \vee (b \wedge \neg b)) \wedge \neg (c \wedge b)) = a \wedge c \wedge \neg b$

$$segr_{(a,(c \rhd b) \land (d \rhd \neg b))}(b) = (a \land (c \lor (b \land \neg d)) \land \neg (c \land d)) \equiv a \land (c \lor b) \land (c \lor \neg d) \land (\neg c \lor \neg d)$$

AI Planning

Normal form

•
$$\operatorname{regr}_{\langle a,b\rangle}(b) = (a \land (\top \lor (b \land \neg \bot))) \equiv a$$

• $\operatorname{regr}_{\langle a,b\rangle}(b \land c \land d) = (a \land (\top \lor (b \land \neg \bot)) \land (\lor (c \land \neg \bot)) \land (\bot \lor (d \land \neg \bot))) \equiv a \land c \land d$

•
$$\operatorname{regr}_{\langle a, (c \rhd b) \land (b \rhd \neg b) \rangle}(b) = (a \land (c \lor (b \land \neg b)) \land \neg (c \land b)) \equiv a \land c \land \neg b$$

$$segr_{(a,(c \rhd b) \land (d \rhd \neg b))}(b) = (a \land (c \lor (b \land \neg d)) \land \neg (c \land d)) \equiv a \land (c \lor b) \land (c \lor \neg d) \land (\neg c \lor \neg d)$$

AI Planning

Normal form

Moving blocks A and B onto the table from any location if they are clear.

$$o_1 = \langle \top, (AonB \land Aclear)
angle (AonT \land Bclear \land \neg AonB) \rangle$$

 $o_2 = \langle \top, (BonA \land Bclear)
angle (BonT \land Aclear \land \neg BonA) \rangle$

Plan for putting both blocks onto the table from any blocks world state is o_2, o_1 . Proof by regression:

 $G = AonT \land BonT$ $\phi_1 = regr_{o_1}(G) = (AonT \lor (AonB \land Aclear)) \land BonT$ $\phi_2 = regr_{o_2}(\phi_1) = (AonT \lor (AonB \land (Aclear \lor (BonA \land Bclear)))$ $\land (BonT \lor (BonA \land Bclear))$

All three 2-block states satisfy ϕ_2 . Similar plans exist for any number of blocks.

AI Planning

Normal form

Regression: examples Incrementing a binary number

$$(
eglebox[(
eglebox[b]{b_0} arpi b_0) \land ((
eglebox[b]{b_1} \land b_0) arpi (b_1 \land \neg b_0)) \land ((
eglebox[(
eglebox[b]{b_1} \land b_0) arpi (b_2 \land \neg b_1 \land \neg b_0)))$$

$$\begin{aligned} \mathsf{EPC}_{b_2}(e) &= \neg b_2 \wedge b_1 \wedge b_0 \ \mathsf{EPC}_{\neg b_2}(e) = \bot \\ \mathsf{EPC}_{b_1}(e) &= \neg b_1 \wedge b_0 \qquad \mathsf{EPC}_{\neg b_1}(e) = \neg b_2 \wedge b_1 \wedge b_0 \\ \mathsf{EPC}_{b_0}(e) &= \neg b_0 \qquad \mathsf{EPC}_{\neg b_0}(e) = (\neg b_1 \wedge b_0) \vee (\neg b_2 \wedge b_1 \wedge b_0) \\ &\equiv (\neg b_1 \vee \neg b_2) \wedge b_0 \end{aligned}$$

Regression replaces state variables as follows.

$$b_2 by (b_2 \land \neg \bot) \lor (\neg b_2 \land b_1 \land b_0) \equiv b_2 \lor (b_1 \land b_0)$$

$$b_1 by (b_1 \land \neg (\neg b_2 \land b_1 \land b_0)) \lor (\neg b_1 \land b_0)$$

$$\equiv (b_1 \land (b_2 \lor \neg b_0)) \lor (\neg b_1 \land b_0)$$

$$b_0 by (b_0 \land \neg ((\neg b_1 \lor \neg b_2) \land b_0)) \lor \neg b_0 \equiv (b_1 \land b_2) \lor \neg b_0$$

AI Planning

Normal form

Lemma (D)

Let ϕ be a formula, o an operator, s any state and $s' = app_o(s)$. Then $s \models regr_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let *e* be the effect of *o*. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Rest of $regr_o(\phi)$ just states that *o* is applicable in *s*.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$. Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: Trivial as $\phi'_r = \phi'$. Base case 3 $\phi' = a$ for some $a \in A$: Now $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. By Lemma C $s \models \phi'_r$ iff $s' \models \phi'$.

AI Planning

Normal form

Lemma (D)

Let ϕ be a formula, o an operator, s any state and $s' = app_o(s)$. Then $s \models regr_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let *e* be the effect of *o*. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Rest of $regr_o(\phi)$ just states that *o* is applicable in *s*.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$.

Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: Trivial as $\phi'_r = \phi'$. Base case 3 $\phi' = a$ for some $a \in A$: Now $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$ By Lemma C $s \models \phi'_r$ iff $s' \models \phi'$.

AI Planning

Normal form

Lemma (D)

Let ϕ be a formula, o an operator, s any state and $s' = app_o(s)$. Then $s \models regr_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let *e* be the effect of *o*. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Rest of $regr_o(\phi)$ just states that *o* is applicable in *s*.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$.

Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: Trivial as $\phi'_r = \phi'$.

Base case 3 $\phi' = a$ for some $a \in A$: Now $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$ By Lemma C $s \models \phi'_r$ iff $s' \models \phi'$.

AI Planning

Normal form

Lemma (D)

Let ϕ be a formula, o an operator, s any state and $s' = app_o(s)$. Then $s \models regr_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let *e* be the effect of *o*. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Rest of $regr_o(\phi)$ just states that *o* is applicable in *s*.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$. Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: Trivial as $\phi'_r = \phi'$. Base case 3 $\phi' = a$ for some $a \in A$: Now $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$ By Lemma C $s \models \phi'_r$ iff $s' \models \phi'$.

AI Planning

Normal form

Lemma (D)

Let ϕ be a formula, o an operator, s any state and $s' = app_o(s)$. Then $s \models regr_o(\phi)$ if and only if $s' \models \phi$.

Proof.

Let *e* be the effect of *o*. We show by structural induction over subformulae ϕ' of ϕ that $s \models \phi'_r$ iff $s' \models \phi'$, where ϕ'_r is ϕ' with every $a \in A$ replaced by $EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e))$. Rest of $regr_o(\phi)$ just states that *o* is applicable in *s*.

Induction hypothesis $s \models \phi'_r$ if and only if $s' \models \phi'$. Base cases 1 & 2 $\phi' = \top$ or $\phi' = \bot$: Trivial as $\phi'_r = \phi'$. Base case 3 $\phi' = a$ for some $a \in A$: Now $\phi'_r = EPC_a(e) \lor (a \land \neg EPC_{\neg a}(e)).$ By Lemma C $s \models \phi'_r$ iff $s' \models \phi'$.

AI Planning

Normal form

proof continues...

Inductive case 1 $\phi' = \neg \psi$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \neg . Inductive case 2 $\phi' = \psi \lor \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'$ iff $s' \models \phi'$ by the

truth-definition of \lor .

Inductive case 3 $\phi' = \psi \land \psi'$: By the induction hypothesis $s \models \psi_r \text{ iff } s' \models \psi, \text{ and } s \models \psi'_r \text{ iff } s' \models \psi'.$ Hence $s \models \phi'_r \text{ iff } s' \models \phi'$ by the truth-definition of \land .

AI Planning

Normal form

proof continues...

Inductive case 1 $\phi' = \neg \psi$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \neg .

Inductive case 2 $\phi' = \psi \lor \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \lor .

Inductive case 3 $\phi' = \psi \land \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \land .

AI Planning

Normal form

proof continues...

Inductive case 1 $\phi' = \neg \psi$: By the induction hypothesis $s \models \psi_r \text{ iff } s' \models \psi$. Hence $s \models \phi'_r \text{ iff } s' \models \phi'$ by the truth-definition of \neg .

Inductive case 2 $\phi' = \psi \lor \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \lor .

Inductive case 3 $\phi' = \psi \land \psi'$: By the induction hypothesis $s \models \psi_r$ iff $s' \models \psi$, and $s \models \psi'_r$ iff $s' \models \psi'$. Hence $s \models \phi'_r$ iff $s' \models \phi'$ by the truth-definition of \land .

AI Planning

Normal form

The following two tests are useful when generating a search tree with regression.

- Testing that a formula *regr_o(φ)* does not represent the empty set (= search is in a blind alley).
 For example, *regr_(a,¬p)(p) = a ∧ ⊥ ≡ ⊥*.
- Testing that a regression step does not make the set of states smaller (= more difficult to reach).
 For example, *regr*_(b,c)(a) = a ∧ b.

Both of these problems are NP-hard.

AI Planning

Normal form

Regression: complexity issues

The formula $regr_{o_1}(regr_{o_2}(\cdots regr_{o_{n-1}}(regr_{o_n}(\phi))))$ may have size $\mathcal{O}(|\phi||o_1||o_2|\cdots |o_{n-1}||o_n|)$, i.e. the product of the sizes of ϕ and the operators.

The size in the worst case $\mathcal{O}(2^n)$ is hence exponential in *n*.

Logical simplifications

2
$$a \lor \phi \equiv a \lor \phi[\bot/a], \neg a \lor \phi \equiv a \lor \phi[\top/a], a \land \phi \equiv a \land \phi[\top/a], \neg a \land \phi \equiv a \land \phi[\bot/a], \neg a \land \phi \equiv a \land \phi[\bot/a]$$

To obtain the maximum benefit from the last equivalences, e.g. for $(a \wedge b) \wedge \phi(a)$, the equivalences for associativity and commutativity are useful: $(\phi_1 \vee \phi_2) \vee \phi_3 \equiv \phi_1 \vee (\phi_2 \vee \phi_3)$, $\phi_1 \vee \phi_2 \equiv \phi_2 \vee \phi_1$, $(\phi_1 \wedge \phi_2) \wedge \phi_3 \equiv \phi_1 \wedge (\phi_2 \wedge \phi_3)$, $\phi_1 \wedge \phi_2 \equiv \phi_2 \wedge \phi_1$.

AI Planning

Normal form
- Problem Formulae obtained with regression may become very big.
 - Cause Disjunctivity in the formulae. Formulae without disjunctions easily convertible to small formulae $l_1 \land \cdots \land l_n$ where l_i are literals and n is at most the number of state variables.
- Solution Handle disjunctivity when generating search trees. Alternatives:
 - Do nothing. (May lead to very big formulae!!!)
 - Always eliminate all disjunctivity.
 - Reduce disjunctivity if formula becomes too big.

AI Planning

Normal form

State-space search Ideas Progression Regression Complexity Branching

Unrestricted regression (= do nothing about formula size)

Reach goal $a \wedge b$ from state *I* such that $I \models \neg a \wedge \neg b \wedge \neg c$.

AI Planning

Normal form

State-spac search Ideas Progression Regression Complexity Branching

Regression: generation of search trees Full splitting (= eliminate all disjunctivity)

- Planners for STRIPS operators only need to use formulae $l_1 \land \cdots \land l_n$ where l_i are literals.
- Some PDDL planners also restrict to this class of formulae. This is done as follows.
 - $regr_o(\phi)$ is transformed to disjunctive normal form (DNF): $(l_1^1 \land \cdots \land l_{n_1}^1) \lor \cdots \lor (l_1^n \land \cdots \land l_{n_n}^n)$.
 - 2 Each disjunct $l_1^i \wedge \cdots \wedge i_{n_1}^i$ is handled in its own subtree of the search tree.
 - The DNF formulae need not exist in its entirety explicitly: generate one disjunct at a time.
- Hence branching is both on the choice of operator and on the choice of the disjunct of the DNF formula.
- This leads to an increased branching factor and bigger search trees, but avoids big formulae.

AI Planning

Normal form

State-space search Ideas Progression Regression Complexity Branching

Reach goal $a \wedge b$ from state *I* such that $I \models \neg a \wedge \neg b \wedge \neg c$. $(\neg c \vee a) \wedge b$ in DNF is $(\neg c \wedge b) \vee (a \wedge b)$. It is split to $\neg c \wedge b$ and $a \wedge b$.

AI Planning

Normal forr State-space search Ideas Progression Regression Complexity Branching

- With full splitting search tree can be exponentially bigger than without splitting. (But it is not necessary to construct the DNF formulae explicitly!)
- Without splitting the formulae may have size that is exponential in the number of state variables.
- A compromise is to split formulae only when necessary: combine benefits of the two extremes.
- There are several ways to split a formula φ to φ₁,..., φ_n such that φ ≡ φ₁ ∨ ··· ∨ φ_n. For example:
 - Transform ϕ to $\phi_1 \lor \cdots \lor \phi_n$ by equivalences like distributivity $(\phi_1 \lor \phi_2) \land \phi_3 \equiv (\phi_1 \land \phi_3) \lor (\phi_2 \land \phi_3)$.
 - Choose state variable *a*, set φ₁ = a ∧ φ and φ₂ = ¬a ∧ φ, and simplify with equivalences like a ∧ ψ ≡ a ∧ ψ[⊤/a].

AI Planning

Normal form

State-space search Ideas Progression Regression Complexity Branching