Normal form for effects

© Similarly to normal forms in propositional logic (DNF, CNF, NNF, ...) we can define a normal form for effects.
(2) Nesting of conditionals, as in $a \triangleright(b \triangleright c)$, can be eliminated.
(3) Restriction to atomic effects e in conditional effects $\phi \triangleright e$ can be made.
(4) Only a small polynomial increase in size by transformation to normal form. Compare: transformation to CNF or DNF may increase formula size exponentially.

Normal form for effects

(1) Similarly to normal forms in propositional logic (DNF, CNF, NNF, ...) we can define a normal form for effects.
(2) Nesting of conditionals, as in $a \triangleright(b \triangleright c)$, can be eliminated.
(3) Restriction to atomic effects e in conditional effects $\phi \triangleright e$ can be made.

- Only a small polynomial increase in size by
transformation to normal form.
Compare: transformation to CNF or DNF may increase formula size exponentially.

Normal form for effects

(1) Similarly to normal forms in propositional logic (DNF, CNF, NNF, ...) we can define a normal form for effects.
(2) Nesting of conditionals, as in $a \triangleright(b \triangleright c)$, can be eliminated.
(3) Restriction to atomic effects e in conditional effects $\phi \triangleright e$ can be made.
(1) Only a small polynomial increase in size by transformation to normal form.
Compare: transformation to CNF or DNF may increase formula size exponentially.

Equivalences on effects

$$
\begin{align*}
c \triangleright\left(e_{1} \wedge \cdots \wedge e_{n}\right) & \equiv\left(c \triangleright e_{1}\right) \wedge \cdots \wedge\left(c \triangleright e_{n}\right) \tag{1}\\
c_{1} \triangleright\left(c_{2} \triangleright e\right. & \equiv\left(c_{1} \wedge c_{2}\right) \triangleright e \\
\left(c_{1} \triangleright e\right) \wedge\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \vee c_{2}\right) \triangleright c \\
c \wedge(c \triangleright e) & \equiv e \\
e & \equiv T \triangleright e^{2} \\
e & \equiv T \wedge e \\
e_{1} \wedge e_{2} & \equiv e_{2} \wedge e_{1} \\
\left(e_{1} \wedge e_{2}\right) \wedge e_{3} & \equiv e_{1} \wedge\left(e_{2} \wedge e_{3}\right)
\end{align*}
$$

Equivalences on effects

$$
\begin{align*}
c \triangleright\left(e_{1} \wedge \cdots \wedge e_{n}\right) & \equiv\left(c \triangleright e_{1}\right) \wedge \cdots \wedge\left(c \triangleright e_{n}\right) \tag{1}\\
c_{1} \triangleright\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \wedge c_{2}\right) \triangleright e \tag{2}\\
c \wedge(c \triangleright e) & \equiv e \\
e & \left.\equiv T \triangleright c_{2}\right) \\
\left.c_{1} \triangleright e\right) \wedge\left(c_{2} \triangleright e\right. & \equiv\left(c_{1} \wedge c_{2}\right) \triangleright e \\
e_{1} \wedge e_{2} & \equiv e_{2} \wedge e_{1} \\
\left(e_{1} \wedge e_{2}\right) \wedge e_{3} & \equiv e_{1} \wedge\left(e_{2} \wedge e_{3}\right)
\end{align*}
$$

Equivalences on effects

$$
\begin{align*}
c \triangleright\left(e_{1} \wedge \cdots \wedge e_{n}\right) & \equiv\left(c \triangleright e_{1}\right) \wedge \cdots \wedge\left(c \triangleright e_{n}\right) \tag{1}\\
c_{1} \triangleright\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \wedge c_{2}\right) \triangleright e \tag{2}\\
\left(c_{1} \triangleright e\right) \wedge\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \vee c_{2}\right) \triangleright e
\end{align*}
$$

Equivalences on effects

$$
\begin{align*}
c \triangleright\left(e_{1} \wedge \cdots \wedge e_{n}\right) & \equiv\left(c \triangleright e_{1}\right) \wedge \cdots \wedge\left(c \triangleright e_{n}\right) \tag{1}\\
c_{1} \triangleright\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \wedge c_{2}\right) \triangleright e \tag{2}\\
\left(c_{1} \triangleright e\right) \wedge\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \vee c_{2}\right) \triangleright e \\
e \wedge(c \triangleright e) & \equiv e
\end{align*}
$$

Equivalences on effects

$$
\begin{align*}
c \triangleright\left(e_{1} \wedge \cdots \wedge e_{n}\right) & \equiv\left(c \triangleright e_{1}\right) \wedge \cdots \wedge\left(c \triangleright e_{n}\right) \tag{1}\\
c_{1} \triangleright\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \wedge c_{2}\right) \triangleright e \tag{2}\\
\left(c_{1} \triangleright e\right) \wedge\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \vee c_{2}\right) \triangleright e \\
e \wedge(c \triangleright e) & \equiv e \\
e & \equiv \top \triangleright e
\end{align*}
$$

Equivalences on effects

$$
\begin{align*}
c \triangleright\left(e_{1} \wedge \cdots \wedge e_{n}\right) & \equiv\left(c \triangleright e_{1}\right) \wedge \cdots \wedge\left(c \triangleright e_{n}\right) \tag{1}\\
c_{1} \triangleright\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \wedge c_{2}\right) \triangleright e \tag{2}\\
\left(c_{1} \triangleright e\right) \wedge\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \vee c_{2}\right) \triangleright e \\
e \wedge(c \triangleright e) & \equiv e \\
e & \equiv \top \triangleright e \\
e & \equiv \top \wedge e
\end{align*}
$$

Equivalences on effects

$$
\begin{align*}
c \triangleright\left(e_{1} \wedge \cdots \wedge e_{n}\right) & \equiv\left(c \triangleright e_{1}\right) \wedge \cdots \wedge\left(c \triangleright e_{n}\right) \tag{1}\\
c_{1} \triangleright\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \wedge c_{2}\right) \triangleright e \tag{2}\\
\left(c_{1} \triangleright e\right) \wedge\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \vee c_{2}\right) \triangleright e \\
e \wedge(c \triangleright e) & \equiv e \tag{4}\\
e & \equiv \top \triangleright e \tag{5}\\
e & \equiv \top \wedge e \tag{6}\\
e_{1} \wedge e_{2} & \equiv e_{2} \wedge e_{1}
\end{align*}
$$

Equivalences on effects

$$
\begin{align*}
c \triangleright\left(e_{1} \wedge \cdots \wedge e_{n}\right) & \equiv\left(c \triangleright e_{1}\right) \wedge \cdots \wedge\left(c \triangleright e_{n}\right) \tag{1}\\
c_{1} \triangleright\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \wedge c_{2}\right) \triangleright e \tag{2}\\
\left(c_{1} \triangleright e\right) \wedge\left(c_{2} \triangleright e\right) & \equiv\left(c_{1} \vee c_{2}\right) \triangleright e \\
e \wedge(c \triangleright e) & \equiv e \tag{4}\\
e & \equiv \top \triangleright e \tag{5}\\
e & \equiv \top \wedge e \tag{6}\\
e_{1} \wedge e_{2} & \equiv e_{2} \wedge e_{1} \tag{7}\\
\left(e_{1} \wedge e_{2}\right) \wedge e_{3} & \equiv e_{1} \wedge\left(e_{2} \wedge e_{3}\right) \tag{8}
\end{align*}
$$

Normal form for operators and effects

Definition

An operator $\langle c, e\rangle$ is in normal form if for all occurrences of $c^{\prime} \triangleright e^{\prime}$ in e the effect e^{\prime} is either a or $\neg a$ for some $a \in A$, and there is at most one occurrence of any atomic effect in e.

Theorem

For every operator there is an equivalent one in normal form.

Proof is constructive: we can transform any operator into normal form by using the equivalences from the previous slide.

Normal form for effects

Example

Example

$$
\begin{aligned}
& (a \triangleright(b \wedge \\
& \quad(c \triangleright(\neg d \wedge e)))) \wedge \\
& (\neg b \triangleright e)
\end{aligned}
$$

transformed to normal form is

$$
\begin{gathered}
(a \triangleright b) \wedge \\
((a \wedge c) \triangleright \neg d) \wedge \\
((\neg b \vee(a \wedge c)) \triangleright e)
\end{gathered}
$$

STRIPS operators

Definition

An operator $\langle c, e\rangle$ is a STRIPS operator if
(1) c is a conjunction of literals, and
(2) e does not contain \triangleright.

Hence every STRIPS operator is of the form

$$
\left\langle l_{1} \wedge \cdots \wedge l_{n}, \quad l_{1}^{\prime} \wedge \cdots \wedge l_{m}^{\prime}\right\rangle
$$

where l_{i} are literals and l_{j}^{\prime} are atomic effects.

STRIPS

STanford Research Institute Planning System, Fikes \& Nilsson, 1971.

Planning by state-space search

There are many alternative ways of doing planning by state-space search.

- different ways of expressing planning as a search problem:
(1) search direction: forward, backward
(2) representation of search space: states, sets of states

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching
(2) different search algorithms: depth-first, breadth-first, informed (heuristic) search (systematic: $\mathrm{A} *$, IDA $*, \ldots$; local: hill-climbing, simulated annealing, ...), ...
(3) different ways of controlling search:
(1) heuristics for heuristic search algorithms
(2) pruning techniques: invariants, symmetry elimination,...

Planning by forward search
 with depth-first search

Progression
Regression
Complexity
Branching

Planning by forward search with depth-first search

Planning by forward search

 with depth-first search

Planning by forward search with depth-first search

Planning by backward search

with depth-first search, one state at a time

Progression
Regression
Complexity
Branching

Planning by backward search

with depth-first search, one state at a time

Progression
Regression
Complexity
Branching

Planning by backward search

with depth-first search, one state at a time

Progression
Regression
Complexity
Branching

Planning by backward search

with depth-first search, one state at a time

Progression
Regression
Complexity
Branching

Planning by backward search

with depth-first search, one state at a time

Planning by backward search

with depth-first search, one state at a time

Progression
Regression
Complexity
Branching

Planning by backward search

with depth-first search, one state at a time

Progression
Regression
Complexity
Branching

Planning by backward search

with depth-first search, for state sets (represented as formulae)

Progression

Planning by backward search

with depth-first search, for state sets (represented as formulae)

Progression
Regression
Complexity
Branching

Planning by backward search

with depth-first search, for state sets (represented as formulae)

$$
\phi_{1}=\operatorname{regr}_{\longrightarrow}(G) \quad \phi_{1} \longrightarrow G
$$

Planning by backward search

with depth-first search, for state sets (represented as formulae)

Al Planning

$$
\begin{aligned}
\phi_{1} & =\operatorname{regr}_{\longrightarrow}(G) \\
\phi_{2} & =\operatorname{regr}_{\longrightarrow}\left(\phi_{1}\right)
\end{aligned} \quad \phi_{2} \longrightarrow \phi_{1} \longrightarrow G
$$

Planning by backward search

with depth-first search, for state sets (represented as formulae)

Al Planning

$$
\begin{aligned}
& \phi_{1}=\operatorname{regr}_{\longrightarrow}(G) \quad \phi_{3} \longrightarrow \phi_{2} \longrightarrow \phi_{1} \longrightarrow G \\
& \phi_{2}=\operatorname{regr}_{\longrightarrow}\left(\phi_{1}\right) \\
& \phi_{3}=\operatorname{regr}_{\longrightarrow}\left(\phi_{2}\right), I \models \phi_{3}
\end{aligned}
$$

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching

Progression

- Progression means computing the successor state $\operatorname{app}_{o}(s)$ of s with respect to o.
- Used in forward search: from the initial state toward the goal states.
- Very easy and efficient to implement.

Regression

- Regression is computing the possible predecessor states of a set of states.
- The formula regro (ϕ) represents the states from which a state represented by ϕ is reached by operator o.
- Used in backward search: from the goal states toward the initial states.
- Regression is powerful because it allows handling sets of states (progression: only one state at a time.)
- Handling formulae is more complicated than handling states: many questions about regression are NP-hard.

Regression for STRIPS operators

- Regression for STRIPS operators is very simple.
- Goals are conjunctions of literals $l_{1} \wedge \cdots \wedge l_{n}$.
- First step: Choose an operator that makes some of l_{1}, \ldots, l_{n} true and makes none of them false.
- Second step: Form a new goal by removing the fulfilled goal literals and adding the preconditions of the operator.

Regression for STRIPS operators

Definition

Definition

The STRIPS-regression regrs ${ }_{o}^{s t r}(\phi)$ of $\phi=l_{1}^{\prime \prime} \wedge \cdots \wedge l_{m^{\prime}}^{\prime \prime}$ with respect to

$$
o=\left\langle l_{1} \wedge \cdots \wedge l_{n}, \quad l_{1}^{\prime} \wedge \cdots \wedge l_{m}^{\prime}\right\rangle
$$

is the conjunction of literals

$$
\bigwedge\left(\left(\left\{l_{1}^{\prime \prime}, \ldots, l_{m^{\prime}}^{\prime \prime}\right\} \backslash\left\{l_{1}^{\prime}, \ldots, l_{m}^{\prime}\right\}\right) \cup\left\{l_{1}, \cdots, l_{n}\right\}\right)
$$

provided that $\left\{l^{\prime}, \ldots, l_{m}^{\prime}\right\} \cap\left\{\overline{l_{1}^{\prime \prime}}, \ldots, \overline{l_{m}^{\prime \prime}}\right\}=\emptyset$.

Regression for STRIPS operators

Example

NOTE: Predecessor states are in general not unique.
This picture is just for illustration purposes.

$$
\begin{aligned}
& o_{1}=\langle\text { ■on■ } \wedge \text { ■clr, } \neg \text { ■on■ } \wedge \text { ■onT } \wedge \text { ■clr }\rangle
\end{aligned}
$$

$$
\begin{aligned}
& G=\square \mathrm{on} \square \wedge \square \mathrm{on} \square
\end{aligned}
$$

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching

Regression for STRIPS operators

Example

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching
$G=\square \mathrm{on} \square \wedge$ ■on■

Regression for STRIPS operators

Example

$$
\begin{aligned}
& G=\square o n \square \wedge \square \text { on } \square
\end{aligned}
$$

Regression for STRIPS operators

Example

Regression for STRIPS operators

Example

$$
\begin{aligned}
& G=\square \text { on } \square \wedge \text { ■on } \square \\
& \phi_{1}=\operatorname{regr}_{o_{3}}^{s t r}(G)=\square \mathrm{on} \square \wedge \square \mathrm{onT} \wedge \square \mathrm{clr} \wedge \square \mathrm{clr}
\end{aligned}
$$

Regression for STRIPS operators

Example

$$
\phi_{1}=\operatorname{reg}_{o_{3}}^{s t r}(G)=\square \mathrm{on} \square \wedge \square \mathrm{onT} \wedge \square \mathrm{clr} \wedge \square \mathrm{clr}
$$

Regression for STRIPS operators

Example

Al Planning

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching

$$
\phi_{1}=\operatorname{regr}_{o_{3}}^{s t r}(G)=\square \mathrm{on} \square \wedge \square \mathrm{on} \top \wedge \square \mathrm{clr} \wedge \square \mathrm{clr}
$$

Regression for STRIPS operators

Example

Al Planning

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching

$$
\phi_{1}=\operatorname{reg}_{o_{3}}^{s t r}(G)=\square \mathrm{on} \square \wedge \square \mathrm{onT} \wedge \square \mathrm{clr} \wedge \square \mathrm{clr}
$$

Regression for STRIPS operators

Example

Al Planning

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching

$$
\begin{aligned}
& \phi_{1}=\operatorname{regrg}_{o_{3}}^{s t r}(G)=\square o n \square \wedge \square o n T \wedge \wedge \mathrm{clr} \wedge \square \mathrm{clr} \\
& \phi_{2}=\operatorname{regr}_{o_{2}}^{s t r}\left(\phi_{1}\right)=\square \mathrm{onT} \wedge \square \mathrm{clr} \wedge \square \mathrm{on} \square \wedge \square \mathrm{clr}
\end{aligned}
$$

Regression for STRIPS operators

Example

Regression for STRIPS operators

Example

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching

$$
o_{1}=\langle\square \mathrm{n} \square \wedge \square \mathrm{clr}, \square \square \mathrm{n} \square \wedge \square \mathrm{nT} \wedge \square \mathrm{clr}\rangle
$$

$$
\phi_{2}=\operatorname{regr}_{o_{2}}^{s t r}\left(\phi_{1}\right)=\square \circ \mathrm{T} T \wedge \square \mathrm{clr} \wedge \square \mathrm{on} \square \wedge \square \mathrm{clr}
$$

Regression for STRIPS operators

Example

Al Planning

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching
$\phi_{2}=\operatorname{regr}_{o_{2}}^{s t r}\left(\phi_{1}\right)=\square \mathrm{onT} \wedge \square \mathrm{clr} \wedge \square \mathrm{on} \square \wedge \square \mathrm{clr}$

Regression for STRIPS operators

Example

Regression for STRIPS operators

Example

'

Regression for general operators

- With disjunction and conditional effects, things become more tricky. How to regress $A \vee(B \wedge C)$ with respect to $\langle Q, D \triangleright B\rangle$?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.

Regression for general operators

- With disjunction and conditional effects, things become more tricky. How to regress $A \vee(B \wedge C)$ with respect to $\langle Q, D \triangleright B\rangle$?
- The story about goals and subgoals and fulfilling subgoals, as in the STRIPS case, is no longer useful.
- We present a general method for doing regression for any formula and any operator.
- Now we extensively use the idea of representing sets of states as formulae.

Precondition for effect l to take place: $E P C_{l}(e)$ Definition

Definition

The condition $E P C_{l}(e)$ for literal l to become true under effect e is defined as follows.

$$
\begin{aligned}
E P C_{l}(l) & =\top \\
E P C_{l}\left(l^{\prime}\right) & =\perp \text { when } l \neq l^{\prime}\left(\text { for literals } l^{\prime}\right) \\
E P C_{l}(T) & =\perp \\
E P C_{l}\left(e_{1} \wedge \cdots \wedge e_{n}\right) & =E P C_{l}\left(e_{1}\right) \vee \cdots \vee E P C_{l}\left(e_{n}\right) \\
E P C_{l}(c \triangleright e) & =E P C_{l}(e) \wedge c
\end{aligned}
$$

Precondition for effect l to take place: $E P C_{l}(e)$

Example

Example

$$
E P C_{a}(b \wedge c)=\perp \vee \perp \equiv \perp
$$

Precondition for effect l to take place: $E P C_{l}(e)$

Example

Example

$$
\begin{aligned}
E P C_{a}(b \wedge c) & =\perp \vee \perp \equiv \perp \\
E P C_{a}(a \wedge(b \triangleright a)) & =\top \vee(T \wedge b) \equiv \top
\end{aligned}
$$

Precondition for effect l to take place: $E P C_{l}(e)$

Example

Example

$$
\begin{aligned}
E P C_{a}(b \wedge c) & =\perp \vee \perp \equiv \perp \\
E P C_{a}(a \wedge(b \triangleright a)) & =\top \vee(\top \wedge b) \equiv \top \\
E P C_{a}((c \triangleright a) \wedge(b \triangleright a)) & =(\top \wedge c) \vee(\top \wedge b) \equiv c \vee b
\end{aligned}
$$

Normal form
State-space search

Ideas
Progression
Regression
Complexity
Branching

Precondition for effect l to take place: $E P C_{l}(e)$

 Connection to $[e]_{s}$
Lemma (B)

Let s be a state, l a literal and e an effect. Then $l \in[e]_{s}$ if and only if $s \models E P C_{l}(e)$.

Proof.

Induction on the structure of the effect e.

Precondition for effect l to take place: $E P C_{l}(e)$

 Connection to $[e]_{s}$
Lemma (B)

Let s be a state, l a literal and e an effect. Then $l \in[e]_{s}$ if and only if $s=E P C_{l}(e)$.

Proof.

Induction on the structure of the effect e.
Base case 1, $e=T$: By definition of $[T]_{s}$ we have $l \notin[T]_{s}=\emptyset$ and by definition of $E P C_{l}(T)$ we have
$s \not \models E P C_{l}(T)=\perp$: Both sides of the equivalence are false.
Base case 2, $e=l: l \in[l]_{s}=\{l\}$ by definition, and
$s \vDash E P C_{l}(l)=T$ by definition. Both sides are true.
Base case 3, $e=l^{\prime}$ for some literal $l^{\prime} \neq l: l \notin\left[l^{\prime}\right]_{s}=\left\{l^{\prime}\right\}$ by definition, and $s \neq E P C_{l}\left(l^{\prime}\right)=\perp$ by definition. Both sides are false.

Precondition for effect l to take place: $E P C_{l}(e)$

 Connection to $[e]_{s}$
Lemma (B)

Let s be a state, l a literal and e an effect. Then $l \in[e]_{s}$ if and only if $s=E P C_{l}(e)$.

Proof.

Induction on the structure of the effect e.
Base case 1, $e=T$: By definition of $[T]_{s}$ we have $l \notin[\top]_{s}=\emptyset$ and by definition of $E P C_{l}(T)$ we have
$s \not \models E P C_{l}(T)=\perp$: Both sides of the equivalence are false.
Base case 2, $e=l: l \in[l]_{s}=\{l\}$ by definition, and $s \models E P C_{l}(l)=\top$ by definition. Both sides are true.
Base case 3, $e=l^{\prime}$ for some literal $l^{\prime} \neq l: l \notin\left[l^{\prime}\right]_{s}=\left\{l^{\prime}\right\}$ by definition, and $s \neq E P C_{l}\left(l^{\prime}\right)=\perp$ by definition. Both sides

Precondition for effect l to take place: $E P C_{l}(e)$ Connection to $[e]_{s}$

Lemma (B)

Let s be a state, l a literal and e an effect. Then $l \in[e]_{s}$ if and only if $s=E P C_{l}(e)$.

State-space search
Ideas
Progression
Regression
Complexity
Branching

Induction on the structure of the effect e.
Base case 1, $e=T$: By definition of $[T]_{s}$ we have $l \notin[T]_{s}=\emptyset$ and by definition of $E P C_{l}(T)$ we have
$s \not \vDash E P C_{l}(T)=\perp$: Both sides of the equivalence are false.
Base case 2, $e=l: l \in[l]_{s}=\{l\}$ by definition, and $s \models E P C_{l}(l)=\top$ by definition. Both sides are true. Base case 3, $e=l^{\prime}$ for some literal $l^{\prime} \neq l: l \notin\left[l^{\prime}\right]_{s}=\left\{l^{\prime}\right\}$ by definition, and $s \not \vDash E P C_{l}\left(l^{\prime}\right)=\perp$ by definition. Both sides are false.

Precondition for effect l to take place: $E P C_{l}(e)$ Connection to $[e]_{s}$

proof continues...

Inductive case 1, $e=e_{1} \wedge \cdots \wedge e_{n}$:
$l \in[e]_{s} \quad$ iff $l \in\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s} \quad$ (Def $\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}$)
iff $l \in\left[e^{\prime}\right]_{s}$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}$

Ideas
Progression
Regression
Complexity
Branching

Precondition for effect l to take place: $E P C_{l}(e)$ Connection to $[e]_{s}$

proof continues...

Inductive case 1, $e=e_{1} \wedge \cdots \wedge e_{n}$:
$l \in[e]_{s} \quad$ iff $l \in\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s} \quad\left(D e f\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}\right)$
iff $l \in\left[e^{\prime}\right]_{s}$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}$
iff $s=E P C_{l}\left(e^{\prime}\right)$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}$

Inductive case

Precondition for effect l to take place: $E P C_{l}(e)$ Connection to $[e]_{s}$

proof continues...

Inductive case 1, $e=e_{1} \wedge \cdots \wedge e_{n}$:
$l \in[e]_{s} \quad$ iff $l \in\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s} \quad\left(D e f\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}\right)$ iff $l \in\left[e^{\prime}\right]_{s}$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}$
iff $s=E P C_{l}\left(e^{\prime}\right)$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\} \quad$ (IH)
Normal form
State-space
search
Ideas
Progression
Regression
iff $s=E P C_{l}\left(e_{1}\right) \vee \cdots \vee E P C_{l}\left(e_{n}\right)$
Complexity
Branching

Inductive case

Precondition for effect l to take place: $E P C_{l}(e)$
Connection to $[e]_{s}$

proof continues...

Inductive case 1, $e=e_{1} \wedge \cdots \wedge e_{n}$:
$l \in[e]_{s} \quad$ iff $l \in\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s} \quad\left(D e f\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}\right)$ iff $l \in\left[e^{\prime}\right]_{s}$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}$
iff $s=E P C_{l}\left(e^{\prime}\right)$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\} \quad$ (IH)
Normal form
State-space
search
Ideas
Progression
Regression
iff $s=E P C_{l}\left(e_{1}\right) \vee \cdots \vee E P C_{l}\left(e_{n}\right)$
iff $s \vDash E P C_{l}\left(e_{1} \wedge \cdots \wedge e_{n}\right)$. (Def EPC)

Inductive case

Precondition for effect l to take place: $E P C_{l}(e)$
Connection to $[e]_{s}$

proof continues...

Inductive case 1, $e=e_{1} \wedge \cdots \wedge e_{n}$:
$\begin{array}{ll}l \in[e]_{s} & \left.\text { iff } l \in\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s} \quad \text { (Def }\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}\right) \\ & \text { iff } l \in\left[e^{\prime}\right]_{s} \text { for some } e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\} \\ & \text { iff } s \neq E P C_{l}\left(e^{\prime}\right) \text { for some } e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\} \\ & \text { iff } s=E P C_{l}\left(e_{1}\right) \vee \cdots \vee E P C_{l}\left(e_{n}\right) \\ & \text { iff } s \neq E P C_{l}\left(e_{1} \wedge \cdots \wedge e_{n}\right) . \quad \text { (Def } E P C \text {) }\end{array}$
$\begin{array}{ll}l \in[e]_{s} & \left.\text { iff } l \in\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s} \quad \text { (Def }\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}\right) \\ & \text { iff } l \in\left[e^{\prime}\right]_{s} \text { for some } e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\} \\ & \text { iff } s \neq E P C_{l}\left(e^{\prime}\right) \text { for some } e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\} \\ & \text { iff } s=E P C_{l}\left(e_{1}\right) \vee \cdots \vee E P C_{l}\left(e_{n}\right) \\ & \text { iff } s \neq E P C_{l}\left(e_{1} \wedge \cdots \wedge e_{n}\right) . \quad \text { (Def } E P C \text {) }\end{array}$
$\begin{aligned} l \in[e]_{s} \quad & \left.\text { iff } l \in\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s} \quad \quad \quad \text { Def }\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}\right) \\ & \text { iff } l \in\left[e^{\prime}\right]_{s} \text { for some } e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\} \\ & \text { iff } s \neq E P C_{l}\left(e^{\prime}\right) \text { for some } e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\} \quad \text { (IH) } \\ & \text { iff } s \neq E P C_{l}\left(e_{1}\right) \vee \cdots \vee E P C_{l}\left(e_{n}\right) \\ & \text { iff } s=E P C_{l}\left(e_{1} \wedge \cdots \wedge e_{n}\right) . \quad \text { (Def } E P C \text {) }\end{aligned}$
Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching

Inductive case 2, $e=c \triangleright e^{\prime}$:
$l \in\left[c \triangleright e^{\prime}\right]_{s} \quad$ iff $l \in\left[e^{\prime}\right]_{s}$ and $s \models c \quad$ (Def $\left[c \triangleright e^{\prime}\right]_{s}$)

Precondition for effect l to take place: $E P C_{l}(e)$
Connection to $[e]_{s}$

proof continues...

Inductive case 1, $e=e_{1} \wedge \cdots \wedge e_{n}$:
$l \in[e]_{s} \quad$ iff $l \in\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s} \quad\left(D e f\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}\right)$ iff $l \in\left[e^{\prime}\right]_{s}$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}$
iff $s=E P C_{l}\left(e^{\prime}\right)$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\} \quad$ (IH)
iff $s=E P C_{l}\left(e_{1}\right) \vee \cdots \vee E P C_{l}\left(e_{n}\right)$
iff $s=E P C_{l}\left(e_{1} \wedge \cdots \wedge e_{n}\right)$.
(Def EPC)
Inductive case 2, $e=c \triangleright e^{\prime}$:

$$
\begin{array}{llc}
l \in\left[c \triangleright e^{\prime}\right]_{s} & \text { iff } l \in\left[e^{\prime}\right]_{s} \text { and } s \models c & \text { (Def } \left.\left[c \triangleright e^{\prime}\right]_{s}\right) \\
& \text { iff } s \models E P C_{l}\left(e^{\prime}\right) \text { and } s \models c & \text { (IH) }
\end{array}
$$

$$
\text { iff } \left.s \models E P C_{l}\left(c \triangleright e^{\prime}\right) . \quad \text { (Def } E P C\right)
$$

Precondition for effect l to take place: $E P C_{l}(e)$
Connection to $[e]_{s}$

proof continues...

Inductive case 1, $e=e_{1} \wedge \cdots \wedge e_{n}$:
$l \in[e]_{s} \quad$ iff $l \in\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s} \quad\left(D e f\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}\right)$ iff $l \in\left[e^{\prime}\right]_{s}$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}$
iff $s=E P C_{l}\left(e^{\prime}\right)$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\} \quad$ (IH)
iff $s=E P C_{l}\left(e_{1}\right) \vee \cdots \vee E P C_{l}\left(e_{n}\right)$
iff $s=E P C_{l}\left(e_{1} \wedge \cdots \wedge e_{n}\right)$.
(Def EPC)
Inductive case 2, $e=c \triangleright e^{\prime}$:

$$
\begin{array}{llc}
l \in\left[c \triangleright e^{\prime}\right]_{s} & \text { iff } l \in\left[e^{\prime}\right]_{s} \text { and } s \models c & \text { (Def } \left.\left[c \triangleright e^{\prime}\right]_{s}\right) \\
& \text { iff } s \models E P C_{l}\left(e^{\prime}\right) \text { and } s \models c & \text { (IH) } \\
& \text { iff } s \models E P C_{l}\left(e^{\prime}\right) \wedge c &
\end{array}
$$

Precondition for effect l to take place: $E P C_{l}(e)$
Connection to $[e]_{s}$

proof continues...

Inductive case 1, $e=e_{1} \wedge \cdots \wedge e_{n}$:
$l \in[e]_{s} \quad$ iff $l \in\left[e_{1}\right]_{s} \cup \cdots \cup\left[e_{n}\right]_{s} \quad\left(D e f\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}\right)$ iff $l \in\left[e^{\prime}\right]_{s}$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\}$
iff $s=E P C_{l}\left(e^{\prime}\right)$ for some $e^{\prime} \in\left\{e_{1}, \ldots, e_{n}\right\} \quad$ (IH)
iff $s=E P C_{l}\left(e_{1}\right) \vee \cdots \vee E P C_{l}\left(e_{n}\right)$
iff $s=E P C_{l}\left(e_{1} \wedge \cdots \wedge e_{n}\right)$.
(Def EPC)
Inductive case 2, $e=c \triangleright e^{\prime}$:

$$
\begin{array}{ll}
l \in\left[c \triangleright e^{\prime}\right]_{s} & \left.\begin{array}{l}
\text { iff } l \in\left[e^{\prime}\right]_{s} \text { and } s \models c \\
\text { iff } s=E P C_{l}\left(e^{\prime}\right) \text { and } s \models c
\end{array} \quad \begin{array}{c}
\text { (Def }[c \triangleright \\
\text { (IH) } \\
\text { iff } s=E P C_{l}\left(e^{\prime}\right) \wedge c \\
\text { iff } s \vDash E P C_{l}\left(c \triangleright e^{\prime}\right) .
\end{array} \quad \text { (Def } E P C\right)
\end{array}
$$

Precondition for effect l to take place: $E P C_{l}(e)$

 Connection to the normal form
Remark

Notice that in terms of $E P C_{a}(e)$ any operator $\langle c, e\rangle$ can be expressed in normal form as

$$
\left\langle c, \bigwedge_{a \in A}\left(E P C_{a}(e) \triangleright a\right) \wedge\left(E P C_{\neg a}(e) \triangleright \neg a\right)\right\rangle .
$$

Regression: definition for state variables

Regressing a state variable

The formula $E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$ expresses the value of $a \in A$ after applying o in terms of values of state

- a was true before and it did not become false, or
- a became true.

Regression: definition for state variables

Example

Let $e=(b \triangleright a) \wedge(c \triangleright \neg a) \wedge b \wedge \neg d$.

variable	$E P C \ldots(e) \vee\left(\cdots \wedge \neg E P C_{\neg \ldots(e))}\right.$
a	$b \vee(a \wedge \neg c)$
b	$\top \vee(b \wedge \neg \perp) \equiv \top$
c	$\perp \vee(c \wedge \neg \perp) \equiv c$
d	$\perp \vee(d \wedge \neg \top) \equiv \perp$

Normal form
State-space search

Ideas
Progression
Regression
Complexity
Branching

Regression: definition for state variables

Lemma (C)

Let a be a state variable, $o=\langle c, e\rangle \in O$ an operator, s a state and $s^{\prime}=\operatorname{app}_{o}(s)$. Then $s \models E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$ if and only if $s^{\prime} \models a$.

Proof.

First prove the implication from left to right. Assume $s \vDash E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$. Do a case analysis on the two disjuncts.

Regression: definition for state variables

Lemma (C)

Let a be a state variable, $o=\langle c, e\rangle \in O$ an operator, s a

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching

First prove the implication from left to right.
Assume $s \vDash E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$. Do a case analysis on the two disjuncts.
(1) Assume that $s \models E P C_{a}(e)$. By Lemma $\mathrm{B} a \in[e]_{s}$ and
(2) Assume that $s \models a \wedge \neg E P C_{\neg a}(e)$. By Lemma B $\neg a \notin[e]_{s}$. Hence a remains true in s^{\prime}.

Regression: definition for state variables

Lemma (C)

Let a be a state variable, $o=\langle c, e\rangle \in O$ an operator, s a state and $s^{\prime}=\operatorname{app}_{o}(s)$. Then $s \models E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$ if and only if $s^{\prime} \models a$.

Proof.

State-space

First prove the implication from left to right. Assume $s=E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$. Do a case analysis on the two disjuncts.
(1) Assume that $s \models E P C_{a}(e)$. By Lemma B $a \in[e]_{s}$ and hence $s^{\prime} \models a$.
(2) Assume that $s=a \wedge \neg E P C_{\neg a}(e)$. By Lemma B $\neg a \notin[e]_{s}$. Hence a remains true in s^{\prime}.

Regression: definition for state variables

Lemma (C)

Let a be a state variable, $o=\langle c, e\rangle \in O$ an operator, s a

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching

First prove the implication from left to right. Assume $s=E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$. Do a case analysis on the two disjuncts.
(1) Assume that $s \models E P C_{a}(e)$. By Lemma B $a \in[e]_{s}$ and hence $s^{\prime} \models a$.
(2) Assume that $s \models a \wedge \neg E P C_{\neg a}(e)$. By Lemma B

Regression: definition for state variables

Lemma (C)

Let a be a state variable, $o=\langle c, e\rangle \in O$ an operator, s a

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching

First prove the implication from left to right. Assume $s=E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$. Do a case analysis on the two disjuncts.
(1) Assume that $s \models E P C_{a}(e)$. By Lemma B $a \in[e]_{s}$ and hence $s^{\prime} \models a$.
(2) Assume that $s \vDash a \wedge \neg E P C_{\neg a}(e)$. By Lemma B $\neg a \notin[e]_{s}$. Hence a remains true in s^{\prime}.

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s^{\prime}.
For the second part of the equivalence we show that if the formula is false in s, then a is false in s^{\prime}.

[^0]
Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s^{\prime}.
For the second part of the equivalence we show that if the formula is false in s, then a is false in s^{\prime}.
(1) So assume $s \not \vDash E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$.
(2) Hence $s \vDash \neg E P C_{a}(e) \wedge\left(\neg a \vee E P C_{\neg a}(e)\right)$ by de Morgan's law.
 Therefore in both cases $s^{\prime} \not \vDash a$.

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s^{\prime}.
For the second part of the equivalence we show that if the formula is false in s, then a is false in s^{\prime}.
(1) So assume $s \not \vDash E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$.
(2) Hence $s \models \neg E P C_{a}(e) \wedge\left(\neg a \vee E P C_{\neg a}(e)\right)$ by de Morgan's law.
(3) Analyze the two cases: a is true or it is false in s.

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s^{\prime}.
For the second part of the equivalence we show that if the formula is false in s, then a is false in s^{\prime}.
(1) So assume $s \not \vDash E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$.
(2) Hence $s \models \neg E P C_{a}(e) \wedge\left(\neg a \vee E P C_{\neg a}(e)\right)$ by de Morgan's law.
(3) Analyze the two cases: a is true or it is false in s.
(1) Assume that $s \models a$. \square
-
Hence by Lemma B
 Lemma B $a \notin[e]_{s}$ and hence $s^{\prime} \notin a$. Therefore in both cases $s^{\prime} \not \neq a$.

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s^{\prime}.
For the second part of the equivalence we show that if the formula is false in s, then a is false in s^{\prime}.
(1) So assume $s \not \vDash E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$.
(2) Hence $s \vDash \neg E P C_{a}(e) \wedge\left(\neg a \vee E P C_{\neg a}(e)\right)$ by de Morgan's law.
(3) Analyze the two cases: a is true or it is false in s.
(1) Assume that $s \models a$. Now $s=E P C_{\neg a}(e)$ because $s \models \neg a \vee E P C_{\neg a}(e)$.
(2) Assume that $s \neq a$. Because $s \neq \neg E P C_{a}(e)$, by Lemma B $a \notin[e]_{s}$ and hence $s^{\prime} \neq a$.

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s^{\prime}.
For the second part of the equivalence we show that if the formula is false in s, then a is false in s^{\prime}.
(1) So assume $s \not \vDash E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$.
(2) Hence $s \models \neg E P C_{a}(e) \wedge\left(\neg a \vee E P C_{\neg a}(e)\right)$ by de Morgan's law.
(3) Analyze the two cases: a is true or it is false in s.
(1) Assume that $s \models a$. Now $s=E P C_{\neg a}(e)$ because $s \models \neg a \vee E P C_{\neg a}(e)$. Hence by Lemma B $\neg a \in[e]_{s}$ and we get $s^{\prime} \not \vDash a$.

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s^{\prime}.
For the second part of the equivalence we show that if the formula is false in s, then a is false in s^{\prime}.
(1) So assume $s \not \vDash E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$.
(2) Hence $s \vDash \neg E P C_{a}(e) \wedge\left(\neg a \vee E P C_{\neg a}(e)\right)$ by de Morgan's law.
(3) Analyze the two cases: a is true or it is false in s.
(1) Assume that $s \models a$. Now $s=E P C_{\neg a}(e)$ because $s \models \neg a \vee E P C_{\neg a}(e)$. Hence by Lemma B $\neg a \in[e]_{s}$ and we get $s^{\prime} \not \vDash a$.
(2) Assume that $s \not \vDash a$. Because $s=-E P C_{a}(e)$, by Lemma B $a \notin[e]_{s}$ and hence

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s^{\prime}.
For the second part of the equivalence we show that if the formula is false in s, then a is false in s^{\prime}.
(1) So assume $s \not \vDash E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$.
(2) Hence $s \vDash \neg E P C_{a}(e) \wedge\left(\neg a \vee E P C_{\neg a}(e)\right)$ by de Morgan's law.
(3) Analyze the two cases: a is true or it is false in s.
(1) Assume that $s \models a$. Now $s=E P C_{\neg a}(e)$ because $s \models \neg a \vee E P C_{\neg a}(e)$. Hence by Lemma B $\neg a \in[e]_{s}$ and we get $s^{\prime} \not \vDash a$.
(2) Assume that $s \not \models a$. Because $s \models \neg E P C_{a}(e)$, by Lemma $\mathrm{B} a \notin[e]_{s}$ and hence $s^{\prime} \not \models a$.

Regression: definition for state variables

proof continues...

In the first part we showed that if the formula is true in s, then a is true in s^{\prime}.
For the second part of the equivalence we show that if the formula is false in s, then a is false in s^{\prime}.
(1) So assume $s \not \vDash E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$.
(2) Hence $s \models \neg E P C_{a}(e) \wedge\left(\neg a \vee E P C_{\neg a}(e)\right)$ by de Morgan's law.
(3) Analyze the two cases: a is true or it is false in s.
(1) Assume that $s \models a$. Now $s=E P C_{\neg a}(e)$ because $s \models \neg a \vee E P C_{\neg a}(e)$. Hence by Lemma B $\neg a \in[e]_{s}$ and we get $s^{\prime} \not \vDash a$.
(2) Assume that $s \not \models a$. Because $s \models \neg E P C_{a}(e)$, by Lemma $\mathrm{B} a \notin[e]_{s}$ and hence $s^{\prime} \not \models a$.
Therefore in both cases $s^{\prime} \not \models a$.

Regression: general definition

We base the definition of regression on formulae $E P C_{l}(e)$.

Definition

Let ϕ be a propositional formula and $o=\langle c, e\rangle$ an operator. The regression of ϕ with respect to o is

$$
\operatorname{regr}_{o}(\phi)=\phi_{r} \wedge c \wedge f
$$

where
(1) ϕ_{r} is obtained from ϕ by replacing each $a \in A$ by $E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$, and
(2) $f=\bigwedge_{a \in A} \neg\left(E P C_{a}(e) \wedge E P C_{\neg a}(e)\right)$.

The formula f says that no state variable may become simultaneously true and false.

Regression: examples

(1) $\operatorname{regr}_{\langle a, b\rangle}(b)=(a \wedge(T \vee(b \wedge \neg \perp))) \equiv a$
(2) $\operatorname{regr}_{\langle a, b\rangle}(b \wedge c \wedge d)=$ $(a \wedge(T \vee(b \wedge \neg \perp)) \wedge(\vee \perp(c \wedge \neg \perp)) \wedge(\perp \vee(d \wedge \neg \perp))) \equiv a \wedge c \wedge d$
(3) $\operatorname{regr}_{\langle a, c \triangleright b\rangle}(b)=(a \wedge(c \vee(b \wedge \neg \perp))) \equiv a \wedge(c \vee b)$
(a) $\operatorname{regr}_{\langle a,(c>b) \wedge(b>-b)\rangle}(b)=(a \wedge(c \vee(b \wedge \neg b)) \wedge \neg(c \wedge b)) \equiv$ $a \wedge c \wedge \neg b$
(3) $\operatorname{regr}_{\langle a,(c \triangleright b) \wedge(d \triangleright \neg b)\rangle}(b)=(a \wedge(c \vee(b \wedge \neg d)) \wedge \neg(c \wedge d)) \equiv$ $a \wedge(c \vee b) \wedge(c \vee \neg d) \wedge(\neg c \vee \neg d)$

Regression: examples

(1) $\operatorname{regr}_{\langle a, b\rangle}(b)=(a \wedge(T \vee(b \wedge \neg \perp))) \equiv a$
(2) $\operatorname{regr}_{\langle a, b\rangle}(b \wedge c \wedge d)=$ $(a \wedge(T \vee(b \wedge \neg \perp)) \wedge(\vee \perp(c \wedge \neg \perp)) \wedge(\perp \vee(d \wedge \neg \perp))) \equiv a \wedge c \wedge d$
(3) $\operatorname{regr}_{\langle a, c \triangleright b\rangle}(b)=(a \wedge(c \vee(b \wedge \neg \perp))) \equiv a \wedge(c \vee b)$

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching
(4) $\operatorname{regr}_{\langle a,(c \triangleright b) \wedge(b \triangleright \neg b)\rangle}(b)=(a \wedge(c \vee(b \wedge \neg b)) \wedge \neg(c \wedge b)) \equiv$ $a \wedge c \wedge \neg b$
(5 $\operatorname{regr}_{\langle a,(c \triangleright b) \wedge(d \triangleright \neg b)\rangle}(b)=(a \wedge(c \vee(b \wedge \neg d)) \wedge \neg(c \wedge d)) \equiv$ $a \wedge(c \vee b) \wedge(c \vee \neg d) \wedge(\neg c \vee \neg d)$

Regression: examples

(1) $\operatorname{regr}_{\langle a, b\rangle}(b)=(a \wedge(T \vee(b \wedge \neg \perp))) \equiv a$
(2) $\operatorname{regr}_{\langle a, b\rangle}(b \wedge c \wedge d)=$
$(a \wedge(T \vee(b \wedge \neg \perp)) \wedge(\vee \perp(c \wedge \neg \perp)) \wedge(\perp \vee(d \wedge \neg \perp))) \equiv a \wedge c \wedge d$
(3) $\operatorname{regr}_{\langle a, c \triangleright b\rangle}(b)=(a \wedge(c \vee(b \wedge \neg \perp))) \equiv a \wedge(c \vee b)$

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching

Regression: examples

(1) $\operatorname{regr}_{\langle a, b\rangle}(b)=(a \wedge(T \vee(b \wedge \neg \perp))) \equiv a$
(2) $\operatorname{regr}_{\langle a, b\rangle}(b \wedge c \wedge d)=$
$(a \wedge(T \vee(b \wedge \neg \perp)) \wedge(\vee \perp(c \wedge \neg \perp)) \wedge(\perp \vee(d \wedge \neg \perp))) \equiv a \wedge c \wedge d$
(3) $\operatorname{regr}_{\langle a, c \triangleright b\rangle}(b)=(a \wedge(c \vee(b \wedge \neg \perp))) \equiv a \wedge(c \vee b)$
(4) $\operatorname{regr}_{\langle a,(c \triangleright b) \wedge(b \triangleright \neg b)\rangle}(b)=(a \wedge(c \vee(b \wedge \neg b)) \wedge \neg(c \wedge b)) \equiv$ $a \wedge c \wedge \neg b$
(6) $\operatorname{regr}_{\langle a,(c \triangleright b) \wedge(d \triangleright \neg b)\rangle}(b)=(a \wedge(c \vee(b \wedge \neg d)) \wedge \neg(c \wedge d)) \equiv$ $a \wedge(c \vee b) \wedge(c \vee \neg d) \wedge(\neg c \vee \neg d)$

Regression: examples

(1) $\operatorname{regr}_{\langle a, b\rangle}(b)=(a \wedge(T \vee(b \wedge \neg \perp))) \equiv a$
(2) $\operatorname{regr}_{\langle a, b\rangle}(b \wedge c \wedge d)=$
$(a \wedge(T \vee(b \wedge \neg \perp)) \wedge(\vee \perp(c \wedge \neg \perp)) \wedge(\perp \vee(d \wedge \neg \perp))) \equiv a \wedge c \wedge d$
(3) $\operatorname{regr}_{\langle a, c \triangleright b\rangle}(b)=(a \wedge(c \vee(b \wedge \neg \perp))) \equiv a \wedge(c \vee b)$
(4) $\operatorname{regr}_{\langle a,(c \triangleright b) \wedge(b \triangleright \neg b)\rangle}(b)=(a \wedge(c \vee(b \wedge \neg b)) \wedge \neg(c \wedge b)) \equiv$ $a \wedge c \wedge \neg b$
(5) $\operatorname{regr}_{\langle a,(c \triangleright b) \wedge(d \triangleright \neg b)\rangle}(b)=(a \wedge(c \vee(b \wedge \neg d)) \wedge \neg(c \wedge d)) \equiv$ $a \wedge(c \vee b) \wedge(c \vee \neg d) \wedge(\neg c \vee \neg d)$

Regression: examples

Blocks World with conditional effects

Moving blocks A and B onto the table from any location if they are clear.

$$
\begin{aligned}
& o_{1}=\langle\top,(\text { Aon } B \wedge \text { Aclear }) \triangleright(\text { Aon } T \wedge \text { Bclear } \wedge \neg \text { AonB })\rangle \\
& o_{2}=\langle T,(\text { BonA } \wedge \text { Bclear }) \triangleright(\text { Bon } T \wedge \text { Aclear } \wedge \neg \text { BonA })\rangle
\end{aligned}
$$

Plan for putting both blocks onto the table from any blocks world state is o_{2}, o_{1}. Proof by regression:

$$
\begin{aligned}
G= & A o n T \wedge B o n T \\
\phi_{1}=\operatorname{regr}_{o_{1}}(G)= & (A o n T \vee(\text { Aon } B \wedge \text { Aclear })) \wedge \text { Bon } T \\
\phi_{2}=\operatorname{regr}_{o_{2}}\left(\phi_{1}\right)= & (A o n T \vee(A o n B \wedge(\text { Aclear } \vee(B o n A \wedge B c l e a r)) \\
& \wedge(\text { Bon } T \vee(\text { Bon } A \wedge \text { Bclear }))
\end{aligned}
$$

All three 2-block states satisfy ϕ_{2}. Similar plans exist for any number of blocks.

Regression: examples

Incrementing a binary number

$$
\begin{gathered}
\left(\neg b_{0} \triangleright b_{0}\right) \wedge \\
\left(\left(\neg b_{1} \wedge b_{0}\right) \triangleright\left(b_{1} \wedge \neg b_{0}\right)\right) \wedge \\
\left(\left(\neg b_{2} \wedge b_{1} \wedge b_{0}\right) \triangleright\left(b_{2} \wedge \neg b_{1} \wedge \neg b_{0}\right)\right)
\end{gathered}
$$

Al Planning
$E P C_{b_{2}}(e)=\neg b_{2} \wedge b_{1} \wedge b_{0} E P C_{\neg b_{2}}(e)=\perp$
$E P C_{b_{1}}(e)=\neg b_{1} \wedge b_{0} \quad E P C_{\neg b_{1}}(e)=\neg b_{2} \wedge b_{1} \wedge b_{0}$
$E P C_{b_{0}}(e)=\neg b_{0}$

$$
\begin{aligned}
E P C_{\neg b_{0}}(e) & =\left(\neg b_{1} \wedge b_{0}\right) \vee\left(\neg b_{2} \wedge b_{1} \wedge b\right. \\
& \equiv\left(\neg b_{1} \vee \neg b_{2}\right) \wedge b_{0}
\end{aligned}
$$

Regression replaces state variables as follows.

$$
\begin{aligned}
& b_{2} \text { by }\left(b_{2} \wedge \neg \perp\right) \vee\left(\neg b_{2} \wedge b_{1} \wedge b_{0}\right) \equiv b_{2} \vee\left(b_{1} \wedge b_{0}\right) \\
& b_{1} \text { by }\left(b_{1} \wedge \neg\left(\neg b_{2} \wedge b_{1} \wedge b_{0}\right)\right) \vee\left(\neg b_{1} \wedge b_{0}\right) \\
& \quad \equiv\left(b_{1} \wedge\left(b_{2} \vee \neg b_{0}\right)\right) \vee\left(\neg b_{1} \wedge b_{0}\right) \\
& \left.b_{0} \text { by }\left(b_{0} \wedge \neg \neg\left(\neg b_{1} \vee \neg b_{2}\right) \wedge b_{0}\right)\right) \vee \neg b_{0} \equiv\left(b_{1} \wedge b_{2}\right) \vee \neg b_{0}
\end{aligned}
$$

Regression: properties

Lemma (D)

Let ϕ be a formula, o an operator, s any state and $s^{\prime}=\operatorname{app}_{o}(s)$. Then $s \models \operatorname{regr}_{o}(\phi)$ if and only if $s^{\prime} \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ^{\prime} of ϕ that $s=\phi_{r}^{\prime}$ iff $s^{\prime}=\phi^{\prime}$, where ϕ_{r}^{\prime} is ϕ^{\prime} with every $a \in A$ replaced by $E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$. Rest of $r e g r_{o}(\phi)$ just states that o is applicable in s.

Regression: properties

Lemma (D)

Let ϕ be a formula, o an operator, s any state and $s^{\prime}=\operatorname{app}_{o}(s)$. Then $s \models \operatorname{regr}_{o}(\phi)$ if and only if $s^{\prime} \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ^{\prime} of ϕ that $s=\phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$, where ϕ_{r}^{\prime} is ϕ^{\prime} with every $a \in A$ replaced by $E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$. Rest of $r e g r_{o}(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi_{r}^{\prime}$ if and only if $s^{\prime} \models \phi^{\prime}$.
Base cases $1 \& 2 \phi^{\prime}=\top$ or $\phi^{\prime}=\perp$: Trivial as $\phi_{r}^{\prime}=\phi^{\prime}$. Base case $3 \phi^{\prime}=a$ for some $a \in A$: Now

Regression: properties

Lemma (D)

Let ϕ be a formula, o an operator, s any state and $s^{\prime}=\operatorname{app}_{o}(s)$. Then $s \models$ regro (ϕ) if and only if $s^{\prime} \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ^{\prime} of ϕ that $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$, where ϕ_{r}^{\prime} is ϕ^{\prime} with every $a \in A$ replaced by $E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$. Rest of $r e g r_{o}(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi_{r}^{\prime}$ if and only if $s^{\prime} \models \phi^{\prime}$.
Base cases $1 \& 2 \phi^{\prime}=\mathrm{T}$ or $\phi^{\prime}=\perp$: Trivial as $\phi_{r}^{\prime}=\phi^{\prime}$.

Regression: properties

Lemma (D)

Let ϕ be a formula, o an operator, s any state and $s^{\prime}=\operatorname{app}_{o}(s)$. Then $s \models \operatorname{regr}_{o}(\phi)$ if and only if $s^{\prime} \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ^{\prime} of ϕ that $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$, where ϕ_{r}^{\prime} is ϕ^{\prime} with every $a \in A$ replaced by $E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$. Rest of $r e g r_{o}(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi_{r}^{\prime}$ if and only if $s^{\prime} \models \phi^{\prime}$.
Base cases $1 \& 2 \phi^{\prime}=\mathrm{T}$ or $\phi^{\prime}=\perp$: Trivial as $\phi_{r}^{\prime}=\phi^{\prime}$.
Base case $3 \phi^{\prime}=a$ for some $a \in A$: Now

$$
\phi_{r}^{\prime}=E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right) .
$$

Regression: properties

Lemma (D)

Let ϕ be a formula, o an operator, s any state and $s^{\prime}=\operatorname{app}_{o}(s)$. Then $s \models \operatorname{regr}_{o}(\phi)$ if and only if $s^{\prime} \models \phi$.

Proof.

Let e be the effect of o. We show by structural induction over subformulae ϕ^{\prime} of ϕ that $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$, where ϕ_{r}^{\prime} is ϕ^{\prime} with every $a \in A$ replaced by $E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$. Rest of $r e g r_{o}(\phi)$ just states that o is applicable in s.

Induction hypothesis $s \models \phi_{r}^{\prime}$ if and only if $s^{\prime} \models \phi^{\prime}$.
Base cases $1 \& 2 \phi^{\prime}=\mathrm{T}$ or $\phi^{\prime}=\perp$: Trivial as $\phi_{r}^{\prime}=\phi^{\prime}$.
Base case $3 \phi^{\prime}=a$ for some $a \in A$: Now $\phi_{r}^{\prime}=E P C_{a}(e) \vee\left(a \wedge \neg E P C_{\neg a}(e)\right)$. By Lemma C $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$.

Regression: properties

proof continues...

Inductive case $1 \phi^{\prime}=\neg \psi$: By the induction hypothesis $s \models \psi_{r}$ iff $s^{\prime} \models \psi$. Hence $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$ by the truth-definition of \neg.

Inductive case 2

Inductive case $3 \phi^{\prime}=\psi \wedge \psi^{\prime}$: By the induction hypothesis

Regression: properties

proof continues...

Inductive case $1 \phi^{\prime}=\neg \psi$: By the induction hypothesis $s \models \psi_{r}$ iff $s^{\prime} \models \psi$. Hence $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$ by the truth-definition of \neg.
Inductive case $2 \phi^{\prime}=\psi \vee \psi^{\prime}$: By the induction hypothesis $s \models \psi_{r}$ iff $s^{\prime} \models \psi$, and $s \models \psi_{r}^{\prime}$ iff $s^{\prime} \models \psi^{\prime}$.
Hence $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$ by the truth-definition of V.

Inductive case 3 $\phi^{\prime}=\psi \wedge \psi^{\prime}:$ By the induction hypothesis
$s=\psi_{r}$ iff $s^{\prime}=\psi$, and $s=\psi_{r}^{\prime}$ iff $s^{\prime}=\psi^{\prime}$.
Hence $s=\phi_{r}^{\prime}$ iff $s^{\prime}=\phi^{\prime}$ by the
truth-definition of \wedge.

Regression: properties

proof continues...

Inductive case $1 \phi^{\prime}=\neg \psi$: By the induction hypothesis $s \models \psi_{r}$ iff $s^{\prime} \models \psi$. Hence $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$ by the truth-definition of \neg.
Inductive case $2 \phi^{\prime}=\psi \vee \psi^{\prime}$: By the induction hypothesis Hence $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$ by the truth-definition of V.
Inductive case $3 \phi^{\prime}=\psi \wedge \psi^{\prime}$: By the induction hypothesis $s \models \psi_{r}$ iff $s^{\prime} \models \psi$, and $s \models \psi_{r}^{\prime}$ iff $s^{\prime} \models \psi^{\prime}$. Hence $s \models \phi_{r}^{\prime}$ iff $s^{\prime} \models \phi^{\prime}$ by the truth-definition of \wedge.

Regression: complexity issues

The following two tests are useful when generating a search tree with regression.
(1) Testing that a formula regro (ϕ) does not represent the empty set (= search is in a blind alley).

Normal form
State-space
search
Ideas
Progression
Regression For example, $\operatorname{regr}_{\langle a, \neg p\rangle}(p)=a \wedge \perp \equiv \perp$.
(2) Testing that a regression step does not make the set of states smaller (= more difficult to reach). For example, regr $_{\langle b, c\rangle}(a)=a \wedge b$.
Both of these problems are NP-hard.

Regression: complexity issues

The formula regr $r_{o_{1}}\left(\right.$ regr $_{o_{2}}\left(\cdots\right.$ regr $_{o_{n-1}}\left(\right.$ regr $\left.\left.\left._{o_{n}}(\phi)\right)\right)\right)$ may have size $\mathcal{O}\left(|\phi|\left|o_{1}\right|\left|o_{2}\right| \cdots\left|o_{n-1}\right|\left|o_{n}\right|\right)$, i.e. the product of the sizes of ϕ and the operators.
The size in the worst case $\mathcal{O}\left(2^{n}\right)$ is hence exponential in n.

Logical simplifications

(1) $\perp \wedge \phi \equiv \perp, \top \wedge \phi \equiv \phi, \perp \vee \phi \equiv \phi, \top \vee \phi \equiv \top$
(2) $a \vee \phi \equiv a \vee \phi[\perp / a], \neg a \vee \phi \equiv a \vee \phi[\top / a]$, $a \wedge \phi \equiv a \wedge \phi[\top / a], \neg a \wedge \phi \equiv a \wedge \phi[\perp / a]$
To obtain the maximum benefit from the last equivalences, e.g. for $(a \wedge b) \wedge \phi(a)$, the equivalences for associativity and commutativity are useful: $\left(\phi_{1} \vee \phi_{2}\right) \vee \phi_{3} \equiv \phi_{1} \vee\left(\phi_{2} \vee \phi_{3}\right)$,

$$
\begin{aligned}
& \phi_{1} \vee \phi_{2} \equiv \phi_{2} \vee \phi_{1}, \quad\left(\phi_{1} \wedge \phi_{2}\right) \wedge \phi_{3} \equiv \phi_{1} \wedge\left(\phi_{2} \wedge \phi_{3}\right), \\
& \phi_{1} \wedge \phi_{2} \equiv \phi_{2} \wedge \phi_{1} .
\end{aligned}
$$

Regression: generation of search trees

Problem Formulae obtained with regression may become very big.
Cause Disjunctivity in the formulae. Formulae without disjunctions easily convertible to small formulae $l_{1} \wedge \cdots \wedge l_{n}$ where l_{i} are literals and n is at most the number of state variables.
Solution Handle disjunctivity when generating search trees. Alternatives:
(1) Do nothing. (May lead to very big formulae!!!)
(2) Always eliminate all disjunctivity.
(3) Reduce disjunctivity if formula becomes too big.

Regression: generation of search trees

Unrestricted regression (= do nothing about formula size)

Al Planning

Reach goal $a \wedge b$ from state I such that $I \models \neg a \wedge \neg b \wedge \neg c$.

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching

Regression: generation of search trees
 Full splitting (= eliminate all disjunctivity)

- Planners for STRIPS operators only need to use formulae $l_{1} \wedge \cdots \wedge l_{n}$ where l_{i} are literals.
- Some PDDL planners also restrict to this class of formulae. This is done as follows.
(1) $\operatorname{regr}_{o}(\phi)$ is transformed to disjunctive normal form (DNF): $\left(l_{1}^{1} \wedge \cdots \wedge l_{n_{1}}^{1}\right) \vee \cdots \vee\left(l_{1}^{n} \wedge \cdots \wedge l_{n_{n}}^{n}\right)$.
(2) Each disjunct $l_{1}^{i} \wedge \cdots \wedge i_{n_{1}}^{i}$ is handled in its own subtree of the search tree.
(3) The DNF formulae need not exist in its entirety explicitly: generate one disjunct at a time.
- Hence branching is both on the choice of operator and on the choice of the disjunct of the DNF formula.
- This leads to an increased branching factor and bigger search trees, but avoids big formulae.

Regression: generation of search trees

Full splitting

Reach goal $a \wedge b$ from state I such that $I \models \neg a \wedge \neg b \wedge \neg c$. $(\neg c \vee a) \wedge b$ in DNF is $(\neg c \wedge b) \vee(a \wedge b)$.
It is split to $\neg c \wedge b$ and $a \wedge b$.

Normal form
State-space
search
Ideas
Progression
Regression
Complexity
Branching

Regression: generation of search trees

Restricted splitting

- With full splitting search tree can be exponentially bigger than without splitting. (But it is not necessary to construct the DNF formulae explicitly!)
- Without splitting the formulae may have size that is exponential in the number of state variables.
- A compromise is to split formulae only when necessary: combine benefits of the two extremes.
- There are several ways to split a formula ϕ to $\phi_{1}, \ldots, \phi_{n}$ such that $\phi \equiv \phi_{1} \vee \cdots \vee \phi_{n}$. For example:
(1) Transform ϕ to $\phi_{1} \vee \cdots \vee \phi_{n}$ by equivalences like distributivity $\left(\phi_{1} \vee \phi_{2}\right) \wedge \phi_{3} \equiv\left(\phi_{1} \wedge \phi_{3}\right) \vee\left(\phi_{2} \wedge \phi_{3}\right)$.
(2) Choose state variable a, set $\phi_{1}=a \wedge \phi$ and $\phi_{2}=\neg a \wedge \phi$, and simplify with equivalences like $a \wedge \psi \equiv a \wedge \psi[\top / a]$.

[^0]: Therefore in both cases

