Transition systems (April 13, 2005)

Transition systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct transition systems
State variables
Propositional logic
Operators
Schematic operators
(Albert-Ludwigs-Universität Freiburg)

Transition systems
Formalization of the dynamics of the world/application

Definition
A transition system is $\left\langle S, I,\left\{a_{1}, \ldots, a_{n}\right\}, G\right\rangle$ where

- S is a finite set of states (the state space),
- $I \subseteq S$ is a finite set of initial states,
- every action $a_{i} \subseteq S \times S$ is a binary relation on S,
- $G \subseteq S$ is a finite set of goal states.

Definition
An action a is applicable in a state s if $s a s^{\prime}$ for at least one state s^{\prime}.
(Albert-Ludwigs-Universität Freiburg)

Transition systems Example

Blocks world

The rules of the game
Location on the table does not matter

Location on a block does not matter

At most one block on/under a block is allowed

Blocks world

Properties blocks	states
1	1
2	3
3	13
4	73
5	501
6	4051
7	37633
8	394353
9	4596553
10	58941091

1. Finding a solution is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration)
2. Finding a shortest solution is NP-complete (for a compact description of the problem).
3. If there are n states, each action (a binary relation) corresponds to an $n \times n$ matrix: Element at row i and column j is 1 if the action maps state i to state j, and 0 otherwise.
For deterministic actions there is at most one non-zero element in each row.
4. Matrix multiplication corresponds to sequential composition: taking action M_{1} followed by action M_{2} is the product $M_{1} M_{2}$. (This also corresponds to the join of the relations.)
5. The unit matrix $I_{n \times n}$ is the NO-OP action: every state is mapped to itself.

Example

	A	B	C	D	E	F
A	0	0	0	0	0	0
B	0	0	0	0	0	0
C	0	0	0	0	0	1
D	1	0	0	0	0	0
E	0	0	0	1	0	0
F	1	0	0	0	0	0

(Albert-Ludwigs-Universität Freiburg)

Example

$\begin{array}{lll}\text { (Albert-Ludwigs-Universität Freiburg) Al Planning } & \text { April 13, 2005 } & \text { 12/60 }\end{array}$

Sequential composition as matrix multiplication

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \times\left(\begin{array}{llll|l|l}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

E is reachable from B by two actions because
F is reachable from B by one action and

Reachability: example, M_{R}

(Albert-Ludwigs-Universität Freiburg)	Al Planning	April 13, 2005
12/60		

$$
\mathrm{E} \text { is reachable from } \mathrm{F} \text { by one action. }
$$

R_{i} represents reachability by i actions or less. If s^{\prime} is reachable from s, then it is reachable with $\leq n-1$ actions: $R_{n-1}=R_{n}$.

$$
\begin{aligned}
& R_{0}=I_{n \times n} \\
& R_{1}=I_{n \times n}+M \\
& R_{2}=I_{n \times n}+M+M^{2} \\
& R_{3}=I_{n \times n}+M+M^{2}+M^{3}
\end{aligned}
$$

Let M be the $n \times n$ matrix that is the (Boolean) sum of the matrices of the individual actions. Define

Reachability

别

(Albert-Ludwigs-Universität Freiburg)

$$
\begin{array}{cc|cccccc}
& & A & B & C & D & E & F \\
\hline & A & 0 & 1 & 0 & 0 & 0 & 1 \\
B & B & 0 & 0 & 0 & 1 & 1 \\
C & 0 & 0 & 1 & 0 & 0 & 0 \\
D & 0 & 0 & 1 & 0 & 0 & 0 \\
E & 0 & 1 & 0 & 0 & 0 & 1 \\
F & 0 & 1 & 0 & 0 & 1 & 0
\end{array}
$$

April 13, $2005 \quad$ 17/60

Reachability: example, $M_{R}+M_{R}^{2}+M_{R}^{3}+I_{6 \times 6}$

(Albert-Ludwigs-Universität Freiburg)
Al Planning
Transition systems Algorithm

A simple planning algorithm

- We next present a simple planning algorithm based on computing distances in the transition graph.
- The algorithm finds shortest paths less efficiently than Dijkstra's algorithm; we present the algorithm because we later will use it as a basis of an algorithm that is applicable to much bigger state spaces than Dijkstra's algorithm directly.

A simple planning algorithm

1. Compute the matrices $R_{0}, R_{1}, R_{2}, \ldots, R_{n}$ representing reachability with $0,1,2, \ldots, n$ steps with all actions.
2. Find the smallest i such that a goal state s_{g} is reachable from the initial state according to R_{i}.
3. Find an action (the last action of the plan) by which s_{g} is reached with one step from a state $s_{g^{\prime}}$ that is reachable from the initial state according to R_{i-1}.
4. Repeat the last step, now viewing $s_{g^{\prime}}$ as the goal state with distance $i-1$.

(Albert-Ludwigs-Universiät Freiburg) \quad Al Planning \quad April 13, 2005 \quad 18/60

Relations and sets as matrices
Row vectors as sets of states

Row vectors S represent sets. $S M$ is the set of states reachable from S by M.

$$
\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)^{T} \times\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1 \\
1
\end{array}\right)^{T}
$$

A simple planning algorithm Idea
distance from the initial state
$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$

Example

$$
\left.\begin{array}{l|ccccc|cccc}
& A & B & C & D \\
\hline A & 0 & 1 & 0 & 0 & & A & A & C & D \\
B & 0 & 0 & 0 & 0
\end{array}+\begin{array}{lllllllll}
& B & 0 & 1 & 0 & 0 & A & B & C
\end{array}\right)
$$

Example

State variables

- The state of the world is described in terms of a finite set of finite-valued state variables.

Example
HOUR : $\{0, \ldots, 23\}=13$
MINUTE : $\{0, \ldots, 59\}=55$
LOCATION : $\{51,52,82,101,102\}=101$
WEATHER : $\{$ sunny, cloudy, rainy $\}=$ cloudy
HOLIDAY : $\{\mathrm{T}, \mathrm{F}\}=\mathrm{F}$

- Any n-valued state variable can be replaced by $\left\lceil\log _{2} n\right\rceil$ Boolean (2-valued) state variables.
- Actions change the values of the state variables.
(Albert-Ludwigs-Universität Freiburg) Al Planning April 13, 2005

Blocks world with Boolean state variables

Example

$s($ Aon $B)=0$	$s($ AonC $)=0$	$s($ AonTABLE $)=1$
$s($ BonA $)=1$	$s($ BonC $)=0$	$s($ BonTABLE $)=0$

- More compact representation of actions than as relations is often 1. possible because of symmetries and other regularities,

2. unavoidable because the relations are too big.

- Represent different aspects of the world in terms of different state variables. $\Longrightarrow A$ state is a valuation of state variables.
- Represent actions in terms of changes to the state variables.
(Albert-Ludwigs-Universität Freiburg) Al Planning April 13, 2005 26/60

Blocks world with state variables

State variables:
LOCATIONofA : $\{B, C$, TABLE $\}$
LOCATIONofB : $\{A, C$, TABLE $\}$
LOCATIONofC : $\{A, B$, TABLE $\}$
Example

$$
\begin{aligned}
s(\text { LOCATIONofA }) & =\text { TABLE } \\
s(\text { LOCATIONofB }) & =A \\
s(\text { LOCATIONofC }) & =\text { TABLE }
\end{aligned}
$$

Not all valuations correspond to an intended blocks world state, e.g. s such that $s($ LOCATIONof $A)=B$ and $s(L O C A T I O N o f B)=A$.
(Albert-Ludwigs-Universität Freiburg) Al Planning April 13, 2005 28180

Logical representations of state sets

- n state variables with m values induce a state space consisting of m^{n} states (2^{n} states for n Boolean state variables).
- A language for talking about sets of states (valuations of state variables) is the propositional logic.
- Logical connectives correspond to set-theoretical operations.
- Logical relations correspond to set-theoretical relations.

Propositional logic
Valuations and truth

A valuation of A is a function $v: A \rightarrow\{0,1\}$. Define the notation $v \models \phi$ for valuations v and formulae ϕ by

1. $v \models a$ if and only if $v(a)=1$, for $a \in A$.
2. $v \models \neg \phi$ if and only if $v \not \models \phi$
3. $v \models \phi \vee \phi^{\prime}$ if and only if $v \models \phi$ or $v \models \phi^{\prime}$
4. $v \models \phi \wedge \phi^{\prime}$ if and only if $v \models \phi$ and $v \models \phi^{\prime}$
5. $v \models \top$
6. $v \not \vDash \perp$

Propositional logic

Some terminology

- A propositional formula ϕ is satisfiable if there is at least one valuation v so that $v \models \phi$. Otherwise it is unsatisfiable.
- A propositional formula ϕ is valid or a tautology if $v \models \phi$ for all valuations v. We write this as $\models \phi$.
- A propositional formula ϕ is a logical consequence of a propositional formula ϕ^{\prime}, written $\phi^{\prime} \models \phi$, if $v \models \phi$ for all valuations v such that $v \models \phi^{\prime}$.
- A propositional formula that is a proposition a or a negated proposition $\neg a$ for some $a \in A$ is a literal.
- A formula that is a disjunction of literals is a clause.

Operators

Actions are represented as operators $\langle c, e\rangle$ where

- c (the precondition) is a propositional formula over A describing the set of states in which the action can be taken. (States in which an arrow starts.)
- e (the effect) describes the successor states of states in which the action can be taken. (Where do the arrows go.)
The description is procedural: how do the values of the state variable change?

Effects

Meaning of conditional effects \triangleright
$c \triangleright e$ means that change e takes place if c is true in the current state.

Example
Increment 4-bit numbers $b_{3} b_{2} b_{1} b_{0}$.

$$
\begin{gathered}
\left(\neg b_{0} \triangleright b_{0}\right) \wedge \\
\left(\left(\neg b_{1} \wedge b_{0}\right) \triangleright\left(b_{1} \wedge \neg b_{0}\right)\right) \wedge \\
\left(\left(\neg b_{2} \wedge b_{1} \wedge b_{0}\right) \triangleright\left(b_{2} \wedge \neg b_{1} \wedge \neg b_{0}\right)\right) \wedge \\
\left(\left(\neg b_{3} \wedge b_{2} \wedge b_{1} \wedge b_{0}\right) \triangleright\left(b_{3} \wedge \neg b_{2} \wedge \neg b_{1} \wedge \neg b_{0}\right)\right)
\end{gathered}
$$

Operators: meaning

Changes caused by an operator
Assign each effect e and state s a set $[e]_{s}$ of literals as follows.

1. $[a]_{s}=\{a\}$ and $[\neg a]_{s}=\{\neg a\}$ for $a \in A$.
2. $\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}=\left[e_{1}\right]_{s} \cup \ldots \cup\left[e_{n}\right]_{s}$.
3. $[c \triangleright e]_{s}=[e]_{s}$ if $s \models c$ and $[c \triangleright e]_{s}=\emptyset$ otherwise.

Applicability of an operator
Operator $\langle c, e\rangle$ is applicable in a state s iff $s \models c$ and $[e]_{s}$ is consistent.

Formulae vs. sets

sets	formulae
those $\frac{2^{n}}{2}$ states in which a is true	$a \in A$
$E \cup F$	$E \vee F$
$E \cap F$	$E \wedge F$
$E \backslash F \quad$ (set difference)	$E \wedge \neg F$
$\bar{E} \quad$ (complement)	$\neg E$
the empty set \emptyset	\perp
the universal set	\top
question about sets	question about formulae
$E \subseteq F ?$	$E \models F ?$
$E \subset F ?$	$E \models F$ and $F \not \models E ?$
$E=F ?$	$E \models F$ and $F \models E ?$

(Albert-Ludwigs-Universität Freiburg) Al Planning \quad April 13, 2005 $34 / 60$

Effects

For deterministic operators

Definition
Effects are then recursively defined as follows.

1. a and $\neg a$ for state variables $a \in A$ are effects.
2. $e_{1} \wedge \cdots \wedge e_{n}$ is an effect if e_{1}, \ldots, e_{n} are effects (the special case with $n=0$ is the empty conjunction \top.)
3. $c \triangleright e$ is an effect if c is a formula and e is an effect.

Atomic effects a and $\neg a$ are best understood respectively as assignments $a:=1$ and $a:=0$.
(Albert-Ludwigs-Universität Freiburg) Al Planna

Succinct transition systems Operators

Example: operators for blocks world

For convenience we use also state variables Aclear, Bclear, and Cclear to denote that there is nothing on the block in question.

```
Aclear }\wedge AonT \^Bclear, AonB \\negAonT \\wedge\negBclear
Aclear }\wedge AonT \^Cclear, AonC \^\negAonT T^\negCclear
\(\langle\) Aclear \(\wedge\) AonB, Aon \(T \wedge \neg\) Aon \(B \wedge \neg\) AonC〉
\(\langle\) Aclear \(\wedge\) AonC, AonT \(\wedge \neg\) Aon \(B \wedge \neg\) AonC \(\rangle\)
(Bclear \(\wedge\) BonA, Bon \(T \wedge \neg\) BonA \(\wedge\) Aclear〉
\(\langle\) Bclear \(\wedge\) BonC, BonT \(\wedge \neg\) BonC \(\wedge\) Cclear \(\rangle\)
\(\vdots\)
```

(Albert-Ludwigs-Universität Freiburg) Al Planning \quad April 13, 2005 $38 / 60$

Operators: the successor state of a state

Definition (Successor state)
The successor state appo (s) of s with respect to operator $o=\langle c, e\rangle$ is obtained from s by making literals in $[e]_{s}$ true.
This is defined only if o is applicable in s.

Example

Consider the operator $\langle a, \neg a \wedge(\neg c \triangleright \neg b)\rangle$ and a state s such that $s \models a \wedge b \wedge c$.
The operator is applicable because $s \models a$ and
$[\neg a \wedge(\neg c \triangleright \neg b)]_{s}=\{\neg a\}$ is consistent.
Hence $a p p_{\langle a, \neg a \wedge(\neg \subset \triangleright-b)\rangle}(s) \models \neg a \wedge b \wedge c$.

Operators
Example
State variables are
$A=\{a, b, c\}$.

An operator is

$\langle(b \wedge c) \vee(\neg a \wedge b \wedge \neg c) \vee(\neg a \wedge c)$,
$((b \wedge c) \triangleright \neg c)$
$\wedge(\neg b \triangleright(a \wedge b))$
$\wedge(\neg c \triangleright a)\rangle$ The
corresponding matrix is

000	001	010	011	100	101	110	111	
000	0	0	0	0	0	0	0	0

$010 \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

$011 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$

100	0	0	0	0	0	0	0	0
101	0	0	0	0	0	0	0	0
110	0	0	0	0	0	0	0	0

$111 \left\lvert\, \begin{array}{llllllll}10 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right.$
Albert-Ludwigs-Universität Freiburg) Al Planning

Mapping from succinct TS to TS

From every succinct transition system $\langle A, I, O, G\rangle$ we can produce a corresponding transition system $\left\langle S, I, O^{\prime}, G^{\prime}\right\rangle$.

1. S is the set of all valuations of A,
2. $O^{\prime}=\{R(o) \mid o \in O\}$ where $R(o)=\left\{\left(s, s^{\prime}\right) \in S \times S \mid s^{\prime}=\operatorname{app}_{o}(s)\right\}$, and
3. $G^{\prime}=\{s \in S \mid s \models G\}$.

(Albert-Ludwigs-Universität Freiburg)

Schematic operators: example

Schematic operator

$$
\begin{aligned}
& x \in\{\text { car1, car2 }\} \\
& y_{1} \in\{\text { Freiburg, Strassburg }\}, \\
& y_{2} \in\{\text { Freiburg, Strassburg }\}, y_{1} \neq y_{2} \\
& \left\langle\operatorname{in}\left(x, y_{1}\right), \operatorname{in}\left(x, y_{2}\right) \wedge-\operatorname{in}\left(x, y_{1}\right)\right\rangle
\end{aligned}
$$

corresponds to the operators
(in(car1, Freiburg), in(car1, Strassburg) $\wedge ~ ᄀ i n($ car1, Freiburg) \rangle, \langle in(car1, Strassburg), in(car1, Freiburg) $\wedge \neg$ in(car1, Strassburg) \rangle, (in(car2, Freiburg), in(car2, Strassburg) $\wedge \neg i n(c a r 2$, Freiburg) \rangle,〈in(car2, Strassburg), in(car2, Freiburg) $\wedge \neg$ in(car2, Strassburg) \rangle

PDDL: the Planning Domain Description Language

- Used by almost all implemented systems for deterministic planning.
- Supports a language comparable to what we have defined above (including schematic operators and quantification)
- Syntax inspired by the Lisp programming language: e.g. prefix notation for formulae

$$
\begin{aligned}
& \text { (and (or (on A B) (on A C)) } \\
& \text { (or (on B A) (on B C)) } \\
& \text { (or (on C A) (on A B))) }
\end{aligned}
$$

Succinct transition systems

Deterministic case

Definition
A succinct deterministic transition system is $\left\langle A, I,\left\{o_{1}, \ldots, o_{n}\right\}, G\right\rangle$ where

- A is a finite set of state variables,
- I is an initial state,
- every o_{i} is an operator,
- G is a formula describing the goal states.
$\begin{array}{lll}\text { (Albert-Ludwigs-Universität Freiburg) } & \text { Al Planning } & \text { April } 13,2005 \\ \text { 42/60 }\end{array}$

Schematic operators

- Description of state variables and operators in terms of a given finite set of objects.
- Analogy: propositional logic vs. predicate logic
- Planners take input as schematic operators, and translate them into (ground) operators. This is called grounding.

(Albert-Ludwigs-Universität Freiburg)	Al Planning	April 13, 2005	$44 / 60$
Succinct transition systems	Schematic operators		

Schematic operators: quantification

Existential quantification (for formulae only)
Finite disjunctions $\phi\left(a_{1}\right) \vee \cdots \vee \phi\left(a_{n}\right)$ represented as $\exists x \in\left\{a_{1}, \ldots, a_{n}\right\} \phi(x)$.

Universal quantification (for formulae and effects)
Finite conjunctions $\phi\left(a_{1}\right) \wedge \cdots \wedge \phi\left(a_{n}\right)$ represented as $\forall x \in\left\{a_{1}, \ldots, a_{n}\right\} \phi(x)$.

Example
$\exists x \in\{A, B, C\} \operatorname{in}(x$, Freiburg) is a short-hand for $\mathrm{in}(A$, Freiburg $) \vee \mathrm{in}(B$, Freiburg $) \vee \mathrm{in}(C$, Freiburg $)$.
Succinct transition systems Schematic operators

PDDL: domain files

- (define (domain DOMAINNAME)
- a :requirements definition (use :adl :typing by default)
- definitions of types (each parameter has a type)
- definitions of predicates
- definitions of operators

Example: blocks world in PDDL

```
(define (domain BLOCKS)
    (:requirements :adl :typing)
    (:types block - object
                blueblock smallblock - block)
    (:predicates (on ?x - smallblock ?y - block)
                    (ontable ?x - block)
                    (clear ?x - block)
                    )
```

- effect:
<schematic-state-var>
(not <schematic-state-var>)
(and <effect> ... <effect>)
(when <formula> <effect>)
(forall (?x1 - type1 ... ?xn - typen) <effect>)

PDDL: problem files

A problem file consists of

- (define (problem PROBLEMNAME)
- declaration of which domain is needed for this problem
- definitions of objects belonging to each type
- definition of the initial state (list of state variables initially true)
- definition of goal states (a formula like operator precondition)

Example run on the FF planner

```
edu/PS04> ./ff -o hamiltonian.pddl -f ham1.pddl
ff: parsing domain file, domain 'HAMILTONIAN-CYCLE' de
ff: parsing problem file, problem 'HAM-1' defined
ff: found legal plan as follows
step 0: GO A B
    1: GO B D
    2: GO D F
    3: GO F C
    4: GO C E
    5: GO E A
0.01 seconds total time

\section*{PDDL: operator definition}
- (:action OPERATORNAME
list of parameters: (?x - type1 ?y - type2 ?z - type3)
precondition: a formula
```

<schematic-state-var>

```
(and <formula> ... <formula>)
or <formula> ... <formula>
(not <formula>)
forall (?x1 - type1 ... ?xn - typen) <formula>)
(exists (?x1 - type1 ... ?xn - typen) <formula>)
(Albert-Ludwigs-Universität Freiburg) Al Planning April 13, 2005 50/60
```

(:action fromtable
:parameters (?x - smallblock ?y - block)
:precondition (and (not (= ?x ?y))
(clear ?x)
(ontable ?x)
clear ?y))
:effect
(and (not (ontable ?x))
(not (clear ?y))
(on ?x ?y))

```
```

define (problem blocks-10-0)
(:domain BLOCKS)
(:objects a b c - smallblock)
d e - block
f - blueblock)
(:init (clear a) (clear b) (clear c) (clear d) (clea
(ontable a) (ontable b) (ontable c)
(ontable d) (ontable e) (ontable f))
(:goal (and (on a d) (on b e) (on c f)))
)

```
\begin{tabular}{lll} 
(Albert-Ludwigs-Universität Freiburg) & Al Planning & April 13, 2005 \\
54/60
\end{tabular}

Example: blocks world in PDDL
```

(define (domain BLOCKS)

```
(define (domain BLOCKS)
    (:requirements :adl :typing)
    (:requirements :adl :typing)
    (:types block)
    (:types block)
    (:predicates (on ?x - block ?y - block)
    (:predicates (on ?x - block ?y - block)
                                    (ontable ?x - block)
                                    (ontable ?x - block)
                                    (clear ?x - block)
                                    (clear ?x - block)
            )
```

)
    ```
```

(:action fromtable
:parameters (?x - block ?y - block)
:precondition (and (not (= ?x ?y))
(clear ?x)
(ontable ?x)
(clear ?y))
:effect
(and (not (ontable ?x))
(not (clear ?y))
(on ?x ?y)))

```
(define (problem blocks-10-0)
    (:domain BLOCKS)
    (:objects d a h g b j e i f c - block)
    (:init (clear c) (clear f)
            (ontable i) (ontable f)
            (on ce) (on e j) (on j b) (on b g)
            (on \(g h\) ) (on \(h a)\) (on \(a d)\) (on \(d\) i) )
    (:goal (and (on d c) (on c f) (on f j)
                                    (on je) (on eh) (on \(h \mathrm{~b}\) )
                                    (on ba) (on a g) (on gi)))

\section*{:action totable}
:parameters (?x - block ?y - block)
:precondition (and (clear ?x) (on ?x ?y))
:effect
(and (not (on ?x ?y))
(clear ?y)
(ontable ?x)))
)
```

```
```

(:action move

```
```

(:action move
:parameters (?x - block
:parameters (?x - block
?y - block
?y - block
?y - block
?y - block
:precondition (and (clear ?x) (clear ?z)
:precondition (and (clear ?x) (clear ?z)
(on ?x ?y) (not (= ?x ?z)))
(on ?x ?y) (not (= ?x ?z)))
:effect
:effect
(and (not (clear ?z))
(and (not (clear ?z))
(clear ?y)
(clear ?y)
(not (on ?x ?y))
(not (on ?x ?y))
(on ?x ?z)))
(on ?x ?z)))

$$
\begin{aligned}
\text { :parameters } & (? x-b l o c k \\
& ? y-b l o c k \\
& ? z-b l o c k)
\end{aligned}
$$

:precondition (and (clear ?x) (clear ?z)

```
```

