
Transition systems (April 13, 2005)

Transition systems
Definition
Example
Matrices
Reachability
Algorithm

Succinct transition systems
State variables
Propositional logic
Operators
Schematic operators

(Albert-Ludwigs-Universität Freiburg) 1 / 60

Transition systems

Transition systems

A

BC

D

E F

initial state

goal states

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 2 / 60

Transition systems Definition

Transition systems
Formalization of the dynamics of the world/application

Definition
A transition system is 〈S, I, {a1, . . . , an}, G〉 where

I S is a finite set of states (the state space),
I I ⊆ S is a finite set of initial states,
I every action ai ⊆ S × S is a binary relation on S,
I G ⊆ S is a finite set of goal states.

Definition
An action a is applicable in a state s if sas′ for at least one state s′.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 3 / 60

Transition systems Definition

Transition systems
Deterministic transition systems

A transition system is deterministic if there is only one initial state and
all actions are deterministic. Hence all future states of the world are
completely predictable.

Definition
A deterministic transition system is 〈S, I, O, G〉 where

I S is a finite set of states (the state space),
I I ∈ S is a state,
I actions a ∈ O (with a ⊆ S × S) are partial functions,
I G ⊆ S is a finite set of goal states.

Successor state wrt. an action
Given a state s and an action A so that a is applicable in s, the
successor state of s with respect to a is s′ such that sas′, denoted by
s′ = appa(s).

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 4 / 60

Transition systems Example

Blocks world
The rules of the game

Location on the table does not matter

≡

Location on a block does not matter

≡

At most one block on/under a block is allowed

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 5 / 60

Transition systems Example

Blocks world
The transition graph for three blocks

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 6 / 60

Transition systems Example

Blocks world
Properties

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353
9 4596553

10 58941091

1. Finding a solution is polynomial time in the number of blocks
(move everything onto the table and then construct the goal
configuration)

2. Finding a shortest solution is NP-complete (for a compact
description of the problem).

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 7 / 60

Transition systems Example

Deterministic planning: plans

Definition
A plan for 〈S, I, O, G〉 is a sequence π = o1, . . . , on of operators such
that o1, . . . , on ∈ O and s0, . . . , sn is a sequence of states (the
execution of π) so that

1. s0 = I,

2. si = appoi
(si−1) for every i ∈ {1, . . . , n}, and

3. sn ∈ G.

This can be equivalently expressed as

appon
(appon−1(· · · appo1(I) · · ·)) ∈ G

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 8 / 60

Transition systems Matrices

Transition relations as matrices

1. If there are n states, each action (a binary relation) corresponds to
an n × n matrix: Element at row i and column j is 1 if the action
maps state i to state j, and 0 otherwise.
For deterministic actions there is at most one non-zero element in
each row.

2. Matrix multiplication corresponds to sequential composition:
taking action M1 followed by action M2 is the product M1M2. (This
also corresponds to the join of the relations.)

3. The unit matrix In×n is the NO-OP action: every state is mapped
to itself.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 9 / 60

Transition systems Matrices

Example

A

B

EF

D

C

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 10 / 60

Transition systems Matrices

Example

A

B

EF

D

C

A B C D E F

A 0 0 0 0 0 0
B 0 0 0 0 0 0
C 0 0 0 0 0 1
D 1 0 0 0 0 0
E 0 0 0 1 0 0
F 1 0 0 0 0 0

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 11 / 60

Transition systems Matrices

Example

A

B

EF

D

C

A B C D E F

A 0 0 0 0 0 0
B 0 0 0 0 0 0
C 0 1 0 0 0 0
D 0 0 0 0 1 0
E 0 0 0 0 0 0
F 1 0 0 0 0 0

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 12 / 60

Transition systems Matrices

Sum matrix MR + MG + MB
Representing one-step reachability by any of the component actions

A

B

EF

D

C

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 1 1 0 0 1
D 1 0 1 0 1 0
E 0 1 0 1 0 0
F 1 0 0 0 1 0

We use addition 0 + 0 = 0 and b + b′ = 1 if b = 1 or b′ = 1.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 13 / 60

Transition systems Matrices

Sequential composition as matrix multiplication

















0 1 0 0 0 0

0 0 0 0 0 1

0 1 1 0 0 1
1 0 1 0 1 0
0 1 0 1 0 0
1 0 0 0 1 0

















×

















0 1 0 0 0 0
0 0 0 0 0 1
0 1 1 0 0 1
1 0 1 0 1 0
0 1 0 1 0 0
1 0 0 0 1 0

















=

















0 0 0 0 0 1
1 0 0 0 1 0
1 1 1 0 1 1
0 1 1 1 0 0
0 0 1 0 1 1
0 1 0 1 0 0

















E is reachable from B by two actions
because
F is reachable from B by one action and
E is reachable from F by one action.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 14 / 60

Transition systems Reachability

Reachability

Let M be the n × n matrix that is the (Boolean) sum of the matrices of
the individual actions. Define

R0 = In×n

R1 = In×n + M

R2 = In×n + M + M2

R3 = In×n + M + M2 + M3

...

Ri represents reachability by i actions or less. If s′ is reachable from s,
then it is reachable with ≤ n − 1 actions: Rn−1 = Rn.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 15 / 60

Transition systems Reachability

Reachability: example, MR

A

B

EF

D

C

A B C D E F

A 0 1 0 0 0 0
B 0 0 0 0 0 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 0
F 0 0 0 0 1 0

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 16 / 60

Transition systems Reachability

Reachability: example, MR + M
2
R

A

B

EF

D

C

A B C D E F

A 0 1 0 0 0 1
B 0 0 0 0 1 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 0 1
F 0 1 0 0 1 0

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 17 / 60

Transition systems Reachability

Reachability: example, MR + M
2
R + M

3
R

A

B

EF

D

C

A B C D E F

A 0 1 0 0 1 1
B 0 1 0 0 1 1
C 0 0 1 0 0 0
D 0 0 1 0 0 0
E 0 1 0 0 1 1
F 0 1 0 0 1 1

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 18 / 60

Transition systems Reachability

Reachability: example, MR + M
2
R + M

3
R + I6×6

A

B

EF

C

D

A B C D E F

A 1 1 0 0 1 1
B 0 1 0 0 1 1
C 0 0 1 0 0 0
D 0 0 1 1 0 0
E 0 1 0 0 1 1
F 0 1 0 0 1 1

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 19 / 60

Transition systems Reachability

Relations and sets as matrices
Row vectors as sets of states

Row vectors S represent sets.
SM is the set of states reachable from S by M .

















1
0
1
0
0
0

















T

×

















1 1 0 0 1 1
0 1 0 0 1 1
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 1 1
0 1 0 0 1 1

















=

















1
1
1
0
1
1

















T

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 20 / 60

Transition systems Algorithm

A simple planning algorithm

I We next present a simple planning algorithm based on computing
distances in the transition graph.

I The algorithm finds shortest paths less efficiently than Dijkstra’s
algorithm; we present the algorithm because we later will use it as
a basis of an algorithm that is applicable to much bigger state
spaces than Dijkstra’s algorithm directly.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 21 / 60

Transition systems Algorithm

A simple planning algorithm
Idea

distance from the initial state
0 1 2 3

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 22 / 60

Transition systems Algorithm

A simple planning algorithm

1. Compute the matrices R0, R1, R2, . . . , Rn representing reachability
with 0, 1, 2, . . . , n steps with all actions.

2. Find the smallest i such that a goal state sg is reachable from the
initial state according to Ri.

3. Find an action (the last action of the plan) by which sg is reached
with one step from a state sg′ that is reachable from the initial
state according to Ri−1.

4. Repeat the last step, now viewing sg′ as the goal state with
distance i − 1.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 23 / 60

Transition systems Algorithm

Example

A B C D

A B C D

A 0 1 0 0
B 0 0 0 0
C 0 0 0 1
D 0 0 0 0

+

A B C D

A 0 1 0 0
B 0 0 1 0
C 1 0 0 0
D 0 0 0 0

=

A B C D

A 0 1 0 0
B 0 0 1 0
C 1 0 0 1
D 0 0 0 0

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 24 / 60

Transition systems Algorithm

Example

A B C D

R0 =

A B C D

A 1 0 0 0
B 0 1 0 0
C 0 0 1 0
D 0 0 0 1

R1 =

A B C D

A 1 1 0 0
B 0 1 1 0
C 1 0 1 1
D 0 0 0 1

R2 =

A B C D

A 1 1 1 0
B 1 1 1 1
C 1 1 1 1
D 0 0 0 1

R3 =

A B C D

A 1 1 1 1
B 1 1 1 1
C 1 1 1 1
D 0 0 0 1

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 25 / 60

Succinct transition systems

Succinct representation of transition systems

I More compact representation of actions than as relations is often
1. possible because of symmetries and other regularities,
2. unavoidable because the relations are too big.

I Represent different aspects of the world in terms of different state
variables. =⇒ A state is a valuation of state variables.

I Represent actions in terms of changes to the state variables.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 26 / 60

Succinct transition systems State variables

State variables

I The state of the world is described in terms of a finite set of
finite-valued state variables.

Example
HOUR : {0, . . . , 23} = 13
MINUTE : {0, . . . , 59}= 55
LOCATION : { 51, 52, 82, 101, 102 } = 101
WEATHER : { sunny, cloudy, rainy } = cloudy
HOLIDAY : { T, F } = F

I Any n-valued state variable can be replaced by dlog2 ne Boolean
(2-valued) state variables.

I Actions change the values of the state variables.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 27 / 60

Succinct transition systems State variables

Blocks world with state variables

State variables:
LOCATIONofA : {B, C, TABLE}
LOCATIONofB : {A, C, TABLE}
LOCATIONofC : {A, B, TABLE}

Example

s(LOCATIONofA) = TABLE
s(LOCATIONofB) = A

s(LOCATIONofC) = TABLE A
B

C
Not all valuations correspond to an intended blocks world state, e.g. s

such that s(LOCATIONofA) = B and s(LOCATIONofB) = A.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 28 / 60

Succinct transition systems State variables

Blocks world with Boolean state variables

Example

s(AonB)=0 s(AonC)=0 s(AonTABLE)=1
s(BonA)=1 s(BonC)=0 s(BonTABLE)=0
s(ConA)=0 s(ConB)=0 s(ConTABLE)=1

A
B

C

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 29 / 60

Succinct transition systems Propositional logic

Logical representations of state sets

I n state variables with m values induce a state space consisting of
mn states (2n states for n Boolean state variables).

I A language for talking about sets of states (valuations of state
variables) is the propositional logic.

I Logical connectives correspond to set-theoretical operations.
I Logical relations correspond to set-theoretical relations.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 30 / 60

Succinct transition systems Propositional logic

Propositional logic

Let A be a set of atomic propositions (∼ state variables.)

1. For all a ∈ A, a is a propositional formula.

2. If φ is a propositional formula, then so is ¬φ.

3. If φ and φ′ are propositional formulae, then so is φ ∨ φ′.

4. If φ and φ′ are propositional formulae, then so is φ ∧ φ′.

5. The symbols ⊥ and > are propositional formulae.

The implication φ→φ′ is an abbreviation for ¬φ ∨ φ′.
The equivalence φ ↔ φ′ is an abbreviation for (φ→φ′) ∧ (φ′→φ).

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 31 / 60

Succinct transition systems Propositional logic

Propositional logic
Valuations and truth

A valuation of A is a function v : A → {0, 1}. Define the notation v |= φ

for valuations v and formulae φ by

1. v |= a if and only if v(a) = 1, for a ∈ A.

2. v |= ¬φ if and only if v 6|= φ

3. v |= φ ∨ φ′ if and only if v |= φ or v |= φ′

4. v |= φ ∧ φ′ if and only if v |= φ and v |= φ′

5. v |= >

6. v 6|= ⊥

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 32 / 60

Succinct transition systems Propositional logic

Propositional logic
Some terminology

I A propositional formula φ is satisfiable if there is at least one
valuation v so that v |= φ. Otherwise it is unsatisfiable.

I A propositional formula φ is valid or a tautology if v |= φ for all
valuations v. We write this as |= φ.

I A propositional formula φ is a logical consequence of a
propositional formula φ′, written φ′ |= φ, if v |= φ for all valuations v

such that v |= φ′.
I A propositional formula that is a proposition a or a negated

proposition ¬a for some a ∈ A is a literal.
I A formula that is a disjunction of literals is a clause.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 33 / 60

Succinct transition systems Propositional logic

Formulae vs. sets

sets formulae
those 2n

2 states in which a is true a ∈ A

E ∪ F E ∨ F

E ∩ F E ∧ F

E\F (set difference) E ∧ ¬F

E (complement) ¬E

the empty set ∅ ⊥
the universal set >

question about sets question about formulae
E ⊆ F? E |= F?
E ⊂ F? E |= F and F 6|= E?
E = F? E |= F and F |= E?

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 34 / 60

Succinct transition systems Operators

Operators

Actions are represented as operators 〈c, e〉 where

I c (the precondition) is a propositional formula over A describing
the set of states in which the action can be taken. (States in which
an arrow starts.)

I e (the effect) describes the successor states of states in which the
action can be taken. (Where do the arrows go.)
The description is procedural: how do the values of the state
variable change?

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 35 / 60

Succinct transition systems Operators

Effects
For deterministic operators

Definition
Effects are then recursively defined as follows.

1. a and ¬a for state variables a ∈ A are effects.

2. e1 ∧ · · · ∧ en is an effect if e1, . . . , en are effects (the special case
with n = 0 is the empty conjunction >.)

3. c B e is an effect if c is a formula and e is an effect.

Atomic effects a and ¬a are best understood respectively as
assignments a := 1 and a := 0.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 36 / 60

Succinct transition systems Operators

Effects
Meaning of conditional effects B

c B e means that change e takes place if c is true in the current state.

Example
Increment 4-bit numbers b3b2b1b0.

(¬b0 B b0)∧
((¬b1 ∧ b0) B (b1 ∧ ¬b0))∧

((¬b2 ∧ b1 ∧ b0) B (b2 ∧ ¬b1 ∧ ¬b0))∧
((¬b3 ∧ b2 ∧ b1 ∧ b0) B (b3 ∧ ¬b2 ∧ ¬b1 ∧ ¬b0))

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 37 / 60

Succinct transition systems Operators

Example: operators for blocks world

For convenience we use also state variables Aclear, Bclear, and
Cclear to denote that there is nothing on the block in question.

〈Aclear ∧ AonT ∧ Bclear, AonB ∧ ¬AonT ∧ ¬Bclear〉
〈Aclear ∧ AonT ∧ Cclear, AonC ∧ ¬AonT ∧ ¬Cclear〉
...
〈Aclear ∧ AonB, AonT ∧ ¬AonB ∧ ¬AonC〉
〈Aclear ∧ AonC, AonT ∧ ¬AonB ∧ ¬AonC〉
〈Bclear ∧ BonA, BonT ∧ ¬BonA ∧ Aclear〉
〈Bclear ∧ BonC, BonT ∧ ¬BonC ∧ Cclear〉
...

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 38 / 60

Succinct transition systems Operators

Operators: meaning

Changes caused by an operator
Assign each effect e and state s a set [e]s of literals as follows.

1. [a]s = {a} and [¬a]s = {¬a} for a ∈ A.

2. [e1 ∧ · · · ∧ en]s = [e1]s ∪ . . . ∪ [en]s.

3. [c B e]s = [e]s if s |= c and [c B e]s = ∅ otherwise.

Applicability of an operator
Operator 〈c, e〉 is applicable in a state s iff s |= c and [e]s is consistent.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 39 / 60

Succinct transition systems Operators

Operators: the successor state of a state

Definition (Successor state)
The successor state appo(s) of s with respect to operator o = 〈c, e〉 is
obtained from s by making literals in [e]s true.
This is defined only if o is applicable in s.

Example
Consider the operator 〈a,¬a ∧ (¬c B ¬b)〉 and a state s such that
s |= a ∧ b ∧ c.
The operator is applicable because s |= a and
[¬a ∧ (¬c B ¬b)]s = {¬a} is consistent.
Hence app〈a,¬a∧(¬cB¬b)〉(s) |= ¬a ∧ b ∧ c.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 40 / 60

Succinct transition systems Operators

Operators
Example

State variables are
A = {a, b, c}.

An operator is
〈(b∧c)∨(¬a∧b∧¬c)∨(¬a∧c),
((b ∧ c) B ¬c)
∧(¬b B (a ∧ b))
∧(¬c B a)〉 The

corresponding matrix is
000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 0

001 0 0 0 0 0 0 0 1

010 0 0 0 0 0 0 1 0

011 0 0 1 0 0 0 0 0

100 0 0 0 0 0 0 0 0

101 0 0 0 0 0 0 0 0

110 0 0 0 0 0 0 0 0

111 0 0 0 0 0 0 1 0

000

001
010

011

100

101
110

111

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 41 / 60

Succinct transition systems Operators

Succinct transition systems
Deterministic case

Definition
A succinct deterministic transition system is 〈A, I, {o1, . . . , on}, G〉
where

I A is a finite set of state variables,
I I is an initial state,
I every oi is an operator,
I G is a formula describing the goal states.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 42 / 60

Succinct transition systems Operators

Mapping from succinct TS to TS

From every succinct transition system 〈A, I, O, G〉 we can produce a
corresponding transition system 〈S, I, O′, G′〉.

1. S is the set of all valuations of A,

2. O′ = {R(o)|o ∈ O} where R(o) = {(s, s′) ∈ S × S|s′ = appo(s)},
and

3. G′ = {s ∈ S|s |= G}.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 43 / 60

Succinct transition systems Schematic operators

Schematic operators

I Description of state variables and operators in terms of a given
finite set of objects.

I Analogy: propositional logic vs. predicate logic
I Planners take input as schematic operators, and translate them

into (ground) operators. This is called grounding.

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 44 / 60

Succinct transition systems Schematic operators

Schematic operators: example

Schematic operator

x ∈ {car1, car2}
y1 ∈ {Freiburg, Strassburg},
y2 ∈ {Freiburg, Strassburg}, y1 6= y2

〈in(x, y1), in(x, y2) ∧ ¬in(x, y1)〉

corresponds to the operators

〈in(car1, Freiburg), in(car1, Strassburg) ∧ ¬in(car1, Freiburg)〉,
〈in(car1, Strassburg), in(car1, Freiburg) ∧ ¬in(car1, Strassburg)〉,
〈in(car2, Freiburg), in(car2, Strassburg) ∧ ¬in(car2, Freiburg)〉,
〈in(car2, Strassburg), in(car2, Freiburg) ∧ ¬in(car2, Strassburg)〉

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 45 / 60

Succinct transition systems Schematic operators

Schematic operators: quantification

Existential quantification (for formulae only)
Finite disjunctions φ(a1) ∨ · · · ∨ φ(an) represented as
∃x ∈ {a1, . . . , an}φ(x).

Universal quantification (for formulae and effects)
Finite conjunctions φ(a1) ∧ · · · ∧ φ(an) represented as
∀x ∈ {a1, . . . , an}φ(x).

Example
∃x ∈ {A, B, C}in(x, Freiburg) is a short-hand for
in(A, Freiburg) ∨ in(B, Freiburg) ∨ in(C, Freiburg).

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 46 / 60

Succinct transition systems Schematic operators

PDDL: the Planning Domain Description Language

I Used by almost all implemented systems for deterministic
planning.

I Supports a language comparable to what we have defined above
(including schematic operators and quantification)

I Syntax inspired by the Lisp programming language: e.g. prefix
notation for formulae

(and (or (on A B) (on A C))
(or (on B A) (on B C))
(or (on C A) (on A B)))

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 47 / 60

Succinct transition systems Schematic operators

PDDL: domain files

A domain file consists of
I (define (domain DOMAINNAME)
I a :requirements definition (use :adl :typing by default)
I definitions of types (each parameter has a type)
I definitions of predicates
I definitions of operators

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 48 / 60

Succinct transition systems Schematic operators

Example: blocks world in PDDL

(define (domain BLOCKS)
(:requirements :adl :typing)
(:types block - object

blueblock smallblock - block)
(:predicates (on ?x - smallblock ?y - block)

(ontable ?x - block)
(clear ?x - block)
)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 49 / 60

Succinct transition systems Schematic operators

PDDL: operator definition

I (:action OPERATORNAME
I list of parameters: (?x - type1 ?y - type2 ?z - type3)
I precondition: a formula

<schematic-state-var>
(and <formula> ... <formula>)
(or <formula> ... <formula>)
(not <formula>)
(forall (?x1 - type1 ... ?xn - typen) <formula>)
(exists (?x1 - type1 ... ?xn - typen) <formula>)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 50 / 60

Succinct transition systems Schematic operators

I effect:

<schematic-state-var>
(not <schematic-state-var>)
(and <effect> ... <effect>)
(when <formula> <effect>)
(forall (?x1 - type1 ... ?xn - typen) <effect>)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 51 / 60

Succinct transition systems Schematic operators

(:action fromtable
:parameters (?x - smallblock ?y - block)
:precondition (and (not (= ?x ?y))

(clear ?x)
(ontable ?x)
(clear ?y))

:effect
(and (not (ontable ?x))

(not (clear ?y))
(on ?x ?y)))

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 52 / 60

Succinct transition systems Schematic operators

PDDL: problem files

A problem file consists of
I (define (problem PROBLEMNAME)
I declaration of which domain is needed for this problem
I definitions of objects belonging to each type
I definition of the initial state (list of state variables initially true)
I definition of goal states (a formula like operator precondition)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 53 / 60

Succinct transition systems Schematic operators

(define (problem blocks-10-0)
(:domain BLOCKS)
(:objects a b c - smallblock)

d e - block
f - blueblock)

(:init (clear a) (clear b) (clear c) (clear d) (clear e) (clear f)
(ontable a) (ontable b) (ontable c)
(ontable d) (ontable e) (ontable f))

(:goal (and (on a d) (on b e) (on c f)))
)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 54 / 60

Succinct transition systems Schematic operators

Example run on the FF planner

edu/PS04> ./ff -o hamiltonian.pddl -f ham1.pddl
ff: parsing domain file, domain ’HAMILTONIAN-CYCLE’ defined
ff: parsing problem file, problem ’HAM-1’ defined
ff: found legal plan as follows
step 0: GO A B

1: GO B D
2: GO D F
3: GO F C
4: GO C E
5: GO E A

0.01 seconds total time

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 55 / 60

Succinct transition systems Schematic operators

Example: blocks world in PDDL

(define (domain BLOCKS)
(:requirements :adl :typing)
(:types block)
(:predicates (on ?x - block ?y - block)

(ontable ?x - block)
(clear ?x - block)
)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 56 / 60

Succinct transition systems Schematic operators

(:action fromtable
:parameters (?x - block ?y - block)
:precondition (and (not (= ?x ?y))

(clear ?x)
(ontable ?x)
(clear ?y))

:effect
(and (not (ontable ?x))

(not (clear ?y))
(on ?x ?y)))

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 57 / 60

Succinct transition systems Schematic operators

(:action totable
:parameters (?x - block ?y - block)
:precondition (and (clear ?x) (on ?x ?y))
:effect
(and (not (on ?x ?y))

(clear ?y)
(ontable ?x)))

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 58 / 60

Succinct transition systems Schematic operators

(:action move
:parameters (?x - block

?y - block
?z - block)

:precondition (and (clear ?x) (clear ?z)
(on ?x ?y) (not (= ?x ?z)))

:effect
(and (not (clear ?z))

(clear ?y)
(not (on ?x ?y))
(on ?x ?z)))

)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 59 / 60

Succinct transition systems Schematic operators

(define (problem blocks-10-0)
(:domain BLOCKS)
(:objects d a h g b j e i f c - block)
(:init (clear c) (clear f)

(ontable i) (ontable f)
(on c e) (on e j) (on j b) (on b g)
(on g h) (on h a) (on a d) (on d i))

(:goal (and (on d c) (on c f) (on f j)
(on j e) (on e h) (on h b)
(on b a) (on a g) (on g i)))

)

(Albert-Ludwigs-Universität Freiburg) AI Planning April 13, 2005 60 / 60

