Transition systems

goal states

initial state

A

B

C

D

E

F

Reachability

Algorithm

Matrices

Example

Definition

AI Planning

Succinct TS
Definition

A **transition system** is $\langle S, I, \{a_1, \ldots, a_n\}, G \rangle$ where
- S is a finite set of **states** (the **state space**),
- $I \subseteq S$ is a finite set of **initial states**,
- every action $a_i \subseteq S \times S$ is a binary relation on S,
- $G \subseteq S$ is a finite set of **goal states**.

Definition

An action a is **applicable** in a state s if sas' for at least one state s'.
A transition system is deterministic if there is only one initial state and all actions are deterministic. Hence all future states of the world are completely predictable.

Definition

A deterministic transition system is \(\langle S, I, O, G \rangle \) where

- \(S \) is a finite set of states (the state space),
- \(I \in S \) is a state,
- actions \(a \in O \) (with \(a \subseteq S \times S' \)) are partial functions,
- \(G \subseteq S \) is a finite set of goal states.

Successor state wrt. an action

Given a state \(s \) and an action \(A \) so that \(a \) is applicable in \(s \), the successor state of \(s \) with respect to \(a \) is \(s' \) such that \(sas' \), denoted by \(s' = app_a(s) \).
Blocks world
The rules of the game

Location on the table does not matter

Location on a block does not matter

At most one block on/under a block is allowed
Blocks world
The transition graph for three blocks
Blocks world

Properties

<table>
<thead>
<tr>
<th>blocks</th>
<th>states</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>501</td>
</tr>
<tr>
<td>6</td>
<td>4051</td>
</tr>
<tr>
<td>7</td>
<td>37633</td>
</tr>
<tr>
<td>8</td>
<td>394353</td>
</tr>
<tr>
<td>9</td>
<td>4596553</td>
</tr>
<tr>
<td>10</td>
<td>58941091</td>
</tr>
</tbody>
</table>

1. Finding a solution is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration).

2. Finding a shortest solution is NP-complete (for a compact description of the problem).
Deterministic planning: plans

Definition

A plan for $\langle S, I, O, G \rangle$ is a sequence $\pi = o_1, \ldots, o_n$ of operators such that $o_1, \ldots, o_n \in O$ and s_0, \ldots, s_n is a sequence of states (the execution of π) so that

1. $s_0 = I$,
2. $s_i = \text{app}_{o_i}(s_{i-1})$ for every $i \in \{1, \ldots, n\}$, and
3. $s_n \in G$.

This can be equivalently expressed as

$$\text{app}_{o_n}(\text{app}_{o_{n-1}}(\cdots \text{app}_{o_1}(I) \cdots)) \in G$$
Transition relations as matrices

1. If there are \(n \) states, each action (a binary relation) corresponds to an \(n \times n \) matrix: Element at row \(i \) and column \(j \) is 1 if the action maps state \(i \) to state \(j \), and 0 otherwise. For deterministic actions there is at most one non-zero element in each row.

2. Matrix multiplication corresponds to **sequential composition**: taking action \(M_1 \) followed by action \(M_2 \) is the product \(M_1 M_2 \). (This also corresponds to the join of the relations.)

3. The unit matrix \(I_{n \times n} \) is the NO-OP action: every state is mapped to itself.
Example

Transition systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

\[
\begin{array}{ccccccc}
A & B & C & D & E & F \\
A & 0 & 1 & 0 & 0 & 0 & 0 \\
B & 0 & 0 & 0 & 0 & 0 & 1 \\
C & 0 & 0 & 1 & 0 & 0 & 0 \\
D & 0 & 0 & 1 & 0 & 0 & 0 \\
E & 0 & 1 & 0 & 0 & 0 & 0 \\
F & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]
Example

Transition systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Example

Transition systems

Definition

Example

Matrices

Reachability

Algorithm

Succinct TS

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Diagram showing transitions between states A, B, C, D, E, F]
Sum matrix $M_R + M_G + M_B$

Representing one-step reachability by any of the component actions

We use addition $0 + 0 = 0$ and $b + b' = 1$ if $b = 1$ or $b' = 1$.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Sequential composition as matrix multiplication

E is reachable from B by two actions because F is reachable from B by one action and E is reachable from F by one action.
Reachability

Let M be the $n \times n$ matrix that is the (Boolean) sum of the matrices of the individual actions. Define

\[
\begin{align*}
R_0 &= I_{n \times n} \\
R_1 &= I_{n \times n} + M \\
R_2 &= I_{n \times n} + M + M^2 \\
R_3 &= I_{n \times n} + M + M^2 + M^3 \\
\vdots
\end{align*}
\]

R_i represents reachability by i actions or less. If s' is reachable from s, then it is reachable with $\leq n - 1$ actions: $R_{n-1} = R_n$.
Reachability: example, M_R

\[
\begin{array}{cccccc}
 & A & B & C & D & E & F \\
A & 0 & 1 & 0 & 0 & 0 & 0 \\
B & 0 & 0 & 0 & 0 & 0 & 1 \\
C & 0 & 0 & 1 & 0 & 0 & 0 \\
D & 0 & 0 & 1 & 0 & 0 & 0 \\
E & 0 & 1 & 0 & 0 & 0 & 0 \\
F & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]
Reachability: example, $M_R + M_R^2$
Reachability: example, $M_R + M_R^2 + M_R^3$
Reachability: example, $M_R + M_R^2 + M_R^3 + I_{6\times6}$
Row vectors S represent sets. SM is the set of states reachable from S by M.

$$
\begin{pmatrix}
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{pmatrix}^T \times
\begin{pmatrix}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1
\end{pmatrix} =
\begin{pmatrix}
1 \\
1 \\
1 \\
0 \\
1 \\
1
\end{pmatrix}^T
$$
We next present a simple planning algorithm based on computing *distances* in the transition graph.

The algorithm finds shortest paths less efficiently than Dijkstra’s algorithm; we present the algorithm because we later will use it as a basis of an algorithm that is applicable to much bigger state spaces than Dijkstra’s algorithm directly.
A simple planning algorithm

Idea

distance from the initial state

0 1 2 3
A simple planning algorithm

Idea

distance from the initial state

0 1 2 3
A simple planning algorithm

Idea

distance from the initial state

0 1 2 3
A simple planning algorithm

Idea

distance from the initial state

0 1 2 3
A simple planning algorithm

Idea

distance from **the initial state**

0 1 2 3
A simple planning algorithm

Idea

distance from the initial state

0 1 2 3
A simple planning algorithm

Idea

distance from the initial state

0 1 2 3
A simple planning algorithm

1. Compute the matrices $R_0, R_1, R_2, \ldots, R_n$ representing reachability with $0, 1, 2, \ldots, n$ steps with all actions.
2. Find the smallest i such that a goal state s_g is reachable from the initial state according to R_i.
3. Find an action (the last action of the plan) by which s_g is reached with one step from a state s_g' that is reachable from the initial state according to R_{i-1}.
4. Repeat the last step, now viewing s_g' as the goal state with distance $i - 1$.
Example

\[
\begin{array}{cccc}
A & B & C & D \\
A & 0 & 1 & 0 & 0 \\
B & 0 & 0 & 0 & 0 \\
C & 0 & 0 & 0 & 1 \\
D & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
A & B & C & D \\
A & 0 & 1 & 0 & 0 \\
B & 0 & 0 & 1 & 0 \\
C & 1 & 0 & 0 & 0 \\
D & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
A & B & C & D \\
A & 0 & 1 & 0 & 0 \\
B & 0 & 0 & 1 & 0 \\
C & 1 & 0 & 0 & 1 \\
D & 0 & 0 & 0 & 0 \\
\end{array}
\]
Example

Transition systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

\[
R_0 = \begin{array}{c|cccc}
A & B & C & D \\
\hline
A & 1 & 0 & 0 & 0 \\
B & 0 & 1 & 0 & 0 \\
C & 0 & 0 & 1 & 0 \\
D & 0 & 0 & 0 & 1 \\
\end{array}
\]

\[
R_1 = \begin{array}{c|cccc}
A & B & C & D \\
\hline
A & 1 & 1 & 0 & 0 \\
B & 0 & 1 & 1 & 0 \\
C & 1 & 0 & 1 & 1 \\
D & 0 & 0 & 0 & 1 \\
\end{array}
\]

\[
R_2 = \begin{array}{c|cccc}
A & B & C & D \\
\hline
A & 1 & 1 & 1 & 0 \\
B & 1 & 1 & 1 & 1 \\
C & 1 & 1 & 1 & 1 \\
D & 0 & 0 & 0 & 1 \\
\end{array}
\]

\[
R_3 = \begin{array}{c|cccc}
A & B & C & D \\
\hline
A & 1 & 1 & 1 & 1 \\
B & 1 & 1 & 1 & 1 \\
C & 1 & 1 & 1 & 1 \\
D & 0 & 0 & 0 & 1 \\
\end{array}
\]
Succinct representation of transition systems

- More **compact** representation of actions than as relations is often

 1. **possible** because of symmetries and other regularities,
 2. **unavoidable** because the relations are too big.

- Represent different aspects of the world in terms of different **state variables**. \(\Rightarrow\) A state is a **valuation of state variables**.

- Represent actions in terms of changes to the state variables.
The state of the world is described in terms of a finite set of finite-valued state variables.

Example

- **HOUR**: \(\{0, \ldots, 23\} = 13 \)
- **MINUTE**: \(\{0, \ldots, 59\} = 55 \)
- **LOCATION**: \(\{51, 52, 82, 101, 102\} = 101 \)
- **WEATHER**: \(\{\text{sunny, cloudy, rainy}\} = \text{cloudy} \)
- **HOLIDAY**: \(\{\text{T, F}\} = \text{F} \)

Any \(n \)-valued state variable can be replaced by \(\lceil \log_2 n \rceil \) Boolean (2-valued) state variables.

- Actions change the values of the state variables.
Blocks world with state variables

State variables:
LOCATIONofA : \{B, C, TABLE\}
LOCATIONofB : \{A, C, TABLE\}
LOCATIONofC : \{A, B, TABLE\}

Example

\[s(LOCATIONofA) = \text{TABLE} \]
\[s(LOCATIONofB) = A \]
\[s(LOCATIONofC) = \text{TABLE} \]

Not all valuations correspond to an intended blocks world state, e.g. \(s \) such that \(s(LOCATIONofA) = B \) and \(s(LOCATIONofB) = A \).
Blocks world with Boolean state variables

Example

\[
\begin{align*}
\text{s(A on B)} &= 0 & \text{s(A on C)} &= 0 & \text{s(A on TABLE)} &= 1 \\
\text{s(B on A)} &= 1 & \text{s(B on C)} &= 0 & \text{s(B on TABLE)} &= 0 \\
\text{s(Con A)} &= 0 & \text{s(Con B)} &= 0 & \text{s(Con TABLE)} &= 1
\end{align*}
\]
Logical representations of state sets

- n state variables with m values induce a state space consisting of m^n states (2^n states for n Boolean state variables).
- A language for talking about sets of states (valuations of state variables) is the propositional logic.
- Logical connectives correspond to set-theoretical operations.
- Logical relations correspond to set-theoretical relations.
Propositional logic

Let A be a set of atomic propositions (∼ state variables.)

1. For all $a \in A$, a is a propositional formula.
2. If ϕ is a propositional formula, then so is $\neg \phi$.
3. If ϕ and ϕ' are propositional formulae, then so is $\phi \lor \phi'$.
4. If ϕ and ϕ' are propositional formulae, then so is $\phi \land \phi'$.
5. The symbols \bot and \top are propositional formulae.

The implication $\phi \rightarrow \phi'$ is an abbreviation for $\neg \phi \lor \phi'$.

The equivalence $\phi \leftrightarrow \phi'$ is an abbreviation for $(\phi \rightarrow \phi') \land (\phi' \rightarrow \phi)$.
A valuation of A is a function $v : A \rightarrow \{0, 1\}$. Define the notation $v \models \phi$ for valuations v and formulae ϕ by

1. $v \models a$ if and only if $v(a) = 1$, for $a \in A$.
2. $v \models \neg \phi$ if and only if $v \not\models \phi$
3. $v \models \phi \lor \phi'$ if and only if $v \models \phi$ or $v \models \phi'$
4. $v \models \phi \land \phi'$ if and only if $v \models \phi$ and $v \models \phi'$
5. $v \models T$
6. $v \not\models \bot$
A propositional formula ϕ is **satisfiable** if there is at least one valuation v so that $v \models \phi$. Otherwise it is **unsatisfiable**.

A propositional formula ϕ is **valid** or a **tautology** if $v \models \phi$ for all valuations v. We write this as $\models \phi$.

A propositional formula ϕ is a **logical consequence** of a propositional formula ϕ', written $\phi' \models \phi$, if $v \models \phi$ for all valuations v such that $v \models \phi'$.

A propositional formula that is a proposition a or a negated proposition $\neg a$ for some $a \in A$ is a **literal**.

A formula that is a disjunction of literals is a **clause**.
Formulae vs. sets

<table>
<thead>
<tr>
<th>sets</th>
<th>formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>those $\frac{2^n}{2}$ states in which a is true</td>
<td>$a \in A$</td>
</tr>
<tr>
<td>$E \cup F$</td>
<td>$E \lor F$</td>
</tr>
<tr>
<td>$E \cap F$</td>
<td>$E \land F$</td>
</tr>
<tr>
<td>$E \setminus F$ (set difference)</td>
<td>$E \land \neg F$</td>
</tr>
<tr>
<td>\overline{E} (complement)</td>
<td>$\neg E$</td>
</tr>
<tr>
<td>the empty set \emptyset</td>
<td>\bot</td>
</tr>
<tr>
<td>the universal set</td>
<td>\top</td>
</tr>
</tbody>
</table>

question about sets

- $E \subseteq F$?
- $E \subset F$?
- $E = F$?

question about formulae

- $E \models F$?
- $E \models F$ and $F \not\models E$?
- $E \models F$ and $F \models E$?
Operators

Actions are represented as operators $\langle c, e \rangle$ where

- c (the precondition) is a propositional formula over A describing the set of states in which the action can be taken. (*States in which an arrow starts.*)

- e (the effect) describes the successor states of states in which the action can be taken. (*Where do the arrows go.*)

The description is procedural: how do the values of the state variable change?
Effects
For deterministic operators

Definition
Effects are then recursively defined as follows.

1. a and $\neg a$ for state variables $a \in A$ are effects.
2. $e_1 \land \cdots \land e_n$ is an effect if e_1, \ldots, e_n are effects (the special case with $n = 0$ is the empty conjunction \top.)
3. $c \triangleright e$ is an effect if c is a formula and e is an effect.

Atomic effects a and $\neg a$ are best understood respectively as assignments $a := 1$ and $a := 0$.
\(c \triangleright e \) means that change \(e \) takes place if \(c \) is true in the current state.

Example

Increment 4-bit numbers \(b_3b_2b_1b_0 \).

\[
\begin{align*}
(\neg b_0 \triangleright b_0) \land \\
((\neg b_1 \land b_0) \triangleright (b_1 \land \neg b_0)) \land \\
((\neg b_2 \land b_1 \land b_0) \triangleright (b_2 \land \neg b_1 \land \neg b_0)) \land \\
((\neg b_3 \land b_2 \land b_1 \land b_0) \triangleright (b_3 \land \neg b_2 \land \neg b_1 \land \neg b_0))
\end{align*}
\]
For convenience we use also state variables A_{clear}, B_{clear}, and C_{clear} to denote that there is nothing on the block in question.

\[
\langle A_{\text{clear}} \land A_{\text{onT}} \land B_{\text{clear}}, \ A_{\text{onB}} \land \neg A_{\text{onT}} \land \neg B_{\text{clear}} \rangle \\
\langle A_{\text{clear}} \land A_{\text{onT}} \land C_{\text{clear}}, \ A_{\text{onC}} \land \neg A_{\text{onT}} \land \neg C_{\text{clear}} \rangle \\
\vdots \\
\langle A_{\text{clear}} \land A_{\text{onB}}, \ A_{\text{onT}} \land \neg A_{\text{onB}} \land \neg A_{\text{onC}} \rangle \\
\langle A_{\text{clear}} \land A_{\text{onC}}, \ A_{\text{onT}} \land \neg A_{\text{onB}} \land \neg A_{\text{onC}} \rangle \\
\langle B_{\text{clear}} \land B_{\text{onA}}, \ B_{\text{onT}} \land \neg B_{\text{onA}} \land A_{\text{clear}} \rangle \\
\langle B_{\text{clear}} \land B_{\text{onC}}, \ B_{\text{onT}} \land \neg B_{\text{onC}} \land C_{\text{clear}} \rangle \\
\vdots
\]
Operators: meaning

Changes caused by an operator

Assign each effect \(e \) and state \(s \) a set \([e]_s \) of literals as follows.

1. \([a]_s = \{a\} \) and \([\neg a]_s = \{\neg a\} \) for \(a \in A \).
2. \([e_1 \land \ldots \land e_n]_s = [e_1]_s \cup \ldots \cup [e_n]_s \).
3. \([c \triangleright e]_s = [e]_s \) if \(s \models c \) and \([c \triangleright e]_s = \emptyset \) otherwise.

Applicability of an operator

Operator \(\langle c, e \rangle \) is **applicable in a state** \(s \) iff \(s \models c \) and \([e]_s \) is consistent.
Operators: the successor state of a state

Definition (Successor state)

The successor state $app_o(s)$ of s with respect to operator $o = \langle c, e \rangle$ is obtained from s by making literals in $[e]_s$ true. This is defined only if o is applicable in s.

Example

Consider the operator $\langle a, \neg a \land (\neg c \triangleright \neg b) \rangle$ and a state s such that $s \models a \land b \land c$.

The operator is applicable because $s \models a$ and $[\neg a \land (\neg c \triangleright \neg b)]_s = \{\neg a\}$ is consistent.

Hence $app_{\langle a, \neg a \land (\neg c \triangleright \neg b) \rangle}(s) \models \neg a \land b \land c$.
State variables are

\[A = \{a, b, c\} \]

An operator is

\[
\langle (b \land c) \lor (\neg a \land b \land \neg c) \lor (\neg a \land c),
\((b \land c) \triangleright \neg c)
\land (\neg b \triangleright (a \land b))
\land (\neg c \triangleright a) \rangle
\]
The corresponding matrix is

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
A succinct deterministic transition system is
\(\langle A, I, \{ o_1, \ldots, o_n \}, G \rangle \) where
- \(A \) is a finite set of state variables,
- \(I \) is an initial state,
- every \(o_i \) is an operator,
- \(G \) is a formula describing the goal states.
From every succinct transition system $\langle A, I, O, G \rangle$ we can produce a corresponding transition system $\langle S, I, O', G' \rangle$.

1. S is the set of all valuations of A,
2. $O' = \{ R(o) | o \in O \}$ where $R(o) = \{ (s, s') \in S \times S | s' = \text{app}_o(s) \}$, and
3. $G' = \{ s \in S | s \models G \}$.
Schematic operators

- Description of state variables and operators in terms of a given finite *set of objects*.
- Analogy: propositional logic vs. predicate logic
- Planners take input as schematic operators, and translate them into *(ground)* operators. This is called *grounding*.
Schematic operators: example

Schematic operator

\[x \in \{\text{car1, car2}\}, \quad y_1 \in \{\text{Freiburg, Strassburg}\}, \quad y_2 \in \{\text{Freiburg, Strassburg}\}, \quad y_1 \neq y_2 \]

\[\langle \text{in}(x, y_1), \text{in}(x, y_2) \land \neg \text{in}(x, y_1) \rangle \]

corresponds to the operators

\[\langle \text{in(car1, Freiburg), in(car1, Strassburg)} \land \neg \text{in(car1, Freiburg)} \rangle, \]
\[\langle \text{in(car1, Strassburg), in(car1, Freiburg)} \land \neg \text{in(car1, Strassburg)} \rangle, \]
\[\langle \text{in(car2, Freiburg), in(car2, Strassburg)} \land \neg \text{in(car2, Freiburg)} \rangle, \]
\[\langle \text{in(car2, Strassburg), in(car2, Freiburg)} \land \neg \text{in(car2, Strassburg)} \rangle \]
Schematic operators: quantification

Existential quantification (for formulae only)

Finite disjunctions $\phi(a_1) \lor \cdots \lor \phi(a_n)$ represented as
$\exists x \in \{a_1, \ldots, a_n\} \phi(x)$.

Universal quantification (for formulae and effects)

Finite conjunctions $\phi(a_1) \land \cdots \land \phi(a_n)$ represented as
$\forall x \in \{a_1, \ldots, a_n\} \phi(x)$.

Example

$\exists x \in \{A, B, C\} \text{in}(x, \text{Freiburg})$ is a short-hand for
$\text{in}(A, \text{Freiburg}) \lor \text{in}(B, \text{Freiburg}) \lor \text{in}(C, \text{Freiburg})$.
PDDL: the Planning Domain Description Language

- Used by almost all implemented systems for deterministic planning.
- Supports a language comparable to what we have defined above (including schematic operators and quantification)
- Syntax inspired by the Lisp programming language: e.g. prefix notation for formulae

(\text{and} \ (\text{or} \ (\text{on} \ A \ B) \ (\text{on} \ A \ C)) \ (\text{or} \ (\text{on} \ B \ A) \ (\text{on} \ B \ C)) \ (\text{or} \ (\text{on} \ C \ A) \ (\text{on} \ A \ B)))
A domain file consists of

- (define (domain DOMAINNAME)
- a :requirements definition (use :adl :typing by default)
- definitions of types (each parameter has a type)
- definitions of predicates
- definitions of operators
(define (domain BLOCKS)
 (:requirements :adl :typing)
 (:types block - object
 blueblock smallblock - block)
 (:predicates (on ?x - smallblock ?y - block)
 (ontable ?x - block)
 (clear ?x - block)
)
PDDL: operator definition

- (:action OPERATORNAME)
- list of parameters: (\(?x\) - type1 \(?y\) - type2 \(?z\) - type3)
- precondition: a formula

<schematic-state-var>
(and <formula> ... <formula>)
(or <formula> ... <formula>)
(not <formula>)
(forall (?x1 - type1 ... ?xn - typen) <formula>)
(exists (?x1 - type1 ... ?xn - typen) <formula>)
effect:

<schematic-state-var>
(not <schematic-state-var>)
(and <effect> ... <effect>)
(when <formula> <effect>)
(forall (?x1 - type1 ... ?xn - typen) <effect>)
(:action fromtable
 :parameters (?x - smallblock ?y - block)
 :precondition (and (not (= ?x ?y))
 (clear ?x)
 (ontable ?x)
 (clear ?y))
 :effect
 (and (not (ontable ?x))
 (not (clear ?y))
 (on ?x ?y)))
A problem file consists of

- `(define (problem PROBLEMNAME))`
- declaration of which domain is needed for this problem
- definitions of objects belonging to each type
- definition of the initial state (list of state variables initially true)
- definition of goal states (a formula like operator precondition)
(define (problem blocks-10-0)
 (:domain BLOCKS)
 (:objects a b c - smallblock)
 d e - block
 f - blueblock)
 (:init (clear a) (clear b) (clear c) (clear d) (clear e) (clear f)
 (ontable a) (ontable b) (ontable c)
 (ontable d) (ontable e) (ontable f))
 (:goal (and (on a d) (on b e) (on c f))))
Example run on the FF planner

```
edu/PS04> ./ff -o hamiltonian.pddl -f haml.pddl
ff: parsing domain file, domain 'HAMILTONIAN-CYCLE' defined
ff: parsing problem file, problem 'HAM-1' defined
ff: found legal plan as follows
step 0: GO A B
    1: GO B D
    2: GO D F
    3: GO F C
    4: GO C E
    5: GO E A
0.01 seconds total time
```
Example: blocks world in PDDL

(define (domain BLOCKS)
 (:requirements :adl :typing)
 (:types block)
 (:predicates (on ?x - block ?y - block)
 (ontable ?x - block)
 (clear ?x - block)
)
)
(:action fromtable
 :parameters (?x - block ?y - block)
 :precondition (and (not (= ?x ?y))
 (clear ?x)
 (ontable ?x)
 (clear ?y))
 :effect (and (not (ontable ?x))
 (not (clear ?y))
 (on ?x ?y)))
(:action totable
 :parameters (?x - block ?y - block)
 :precondition (and (clear ?x) (on ?x ?y))
 :effect
 (and (not (on ?x ?y))
 (clear ?y)
 (ontable ?x)))
(:action move
 :parameters (?x - block
 ?y - block
 ?z - block)
 :precondition (and (clear ?x) (clear ?z)
 (on ?x ?y) (not (= ?x ?z)))
 :effect
 (and (not (clear ?z))
 (clear ?y)
 (not (on ?x ?y))
 (on ?x ?z)))
)
(define (problem blocks-10-0)
 (:domain BLOCKS)
 (:objects d a h g b j e i f c - block)
 (:init (clear c) (clear f)
 (ontable i) (ontable f)
 (on c e) (on e j) (on j b) (on b g)
 (on g h) (on h a) (on a d) (on d i))
 (:goal (and (on d c) (on c f) (on f j)
 (on j e) (on e h) (on h b)
 (on b a) (on a g) (on g i)))
)