Transition systems

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

Transition systems

Formalization of the dynamics of the world/application

Definition

A transition system is $\left\langle S, I,\left\{a_{1}, \ldots, a_{n}\right\}, G\right\rangle$ where

- S is a finite set of states (the state space),
- $I \subseteq S$ is a finite set of initial states,
- every action $a_{i} \subseteq S \times S$ is a binary relation on S,
- $G \subseteq S$ is a finite set of goal states.

Definition

An action a is applicable in a state s if $s a s^{\prime}$ for at least one state s^{\prime}.

Transition systems

Deterministic transition systems

A transition system is deterministic if there is only one initial state and all actions are deterministic. Hence all future states of the world are completely predictable.

Definition

A deterministic transition system is $\langle S, I, O, G\rangle$ where

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

- $I \in S$ is a state,
- actions $a \in O$ (with $a \subseteq S \times S$) are partial functions,
- $G \subseteq S$ is a finite set of goal states.

Successor state wrt. an action

Given a state s and an action A so that a is applicable in s, the successor state of s with respect to a is s^{\prime} such that $s a s^{\prime}$, denoted by $s^{\prime}=\operatorname{app}_{a}(s)$.

Blocks world

The rules of the game

Location on the table does not matter

Location on a block does not matter

At most one block on/under a block is allowed

Blocks world

The transition graph for three blocks

Al Planning

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

Blocks world

Properties

blocks	states
1	1
2	3
3	13
4	73
5	501
6	4051
7	37633
8	394353
9	4596553
10	58941091

Al Planning
(1) Finding a solution is polynomial time in the number of blocks (move everything onto the table and then construct the goal configuration)
(2) Finding a shortest solution is NP-complete (for a compact description of the problem).

Deterministic planning: plans

Definition

A plan for $\langle S, I, O, G\rangle$ is a sequence $\pi=o_{1}, \ldots, o_{n}$ of operators such that $o_{1}, \ldots, o_{n} \in O$ and s_{0}, \ldots, s_{n} is a sequence of states (the execution of π) so that

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS
(1) $s_{0}=I$,
(2) $s_{i}=\operatorname{app}_{o_{i}}\left(s_{i-1}\right)$ for every $i \in\{1, \ldots, n\}$, and
(3) $s_{n} \in G$.

This can be equivalently expressed as

$$
\operatorname{app}_{o_{n}}\left(\operatorname{app}_{o_{n-1}}\left(\cdots \operatorname{app}_{o_{1}}(I) \cdots\right)\right) \in G
$$

Transition relations as matrices

(1) If there are n states, each action (a binary relation) corresponds to an $n \times n$ matrix: Element at row i and column j is 1 if the action maps state i to state j, and 0 otherwise.
For deterministic actions there is at most one non-zero element in each row.
(2) Matrix multiplication corresponds to sequential composition: taking action M_{1} followed by action M_{2} is the product $M_{1} M_{2}$. (This also corresponds to the join of the relations.)
(3) The unit matrix $I_{n \times n}$ is the NO-OP action: every state is mapped to itself.

Example

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

Example

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

Example

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

$$
\begin{array}{l|llllll}
& A & B & C & D & E & F \\
\hline A & 0 & 0 & 0 & 0 & 0 & 0 \\
B & 0 & 0 & 0 & 0 & 0 & 0 \\
C & 0 & 1 & 0 & 0 & 0 & 0 \\
D & 0 & 0 & 0 & 0 & 1 & 0 \\
E & 0 & 0 & 0 & 0 & 0 & 0 \\
F & 1 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Sum matrix $M_{R}+M_{G}+M_{B}$

Representing one-step reachability by any of the component actions

Al Planning

	A	B	C	D	E	F
A	0	1	0	0	0	0
B	0	0	0	0	0	1
C	0	1	1	0	0	1
D	1	0	1	0	1	0
E	0	1	0	1	0	0
F	1	0	0	0	1	0

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

We use addition $0+0=0$ and $b+b^{\prime}=1$ if $b=1$ or $b^{\prime}=1$.

Sequential composition as matrix multiplication

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \times\left(\begin{array}{llll|l|l}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS
E is reachable from B by two actions because
F is reachable from B by one action and
E is reachable from F by one action.

Reachability

Let M be the $n \times n$ matrix that is the (Boolean) sum of the matrices of the individual actions. Define

$$
\begin{aligned}
& R_{0}=I_{n \times n} \\
& R_{1}=I_{n \times n}+M \\
& R_{2}=I_{n \times n}+M+M^{2} \\
& R_{3}=I_{n \times n}+M+M^{2}+M^{3}
\end{aligned}
$$

R_{i} represents reachability by i actions or less. If s^{\prime} is reachable from s, then it is reachable with $\leq n-1$ actions: $R_{n-1}=R_{n}$.

Reachability: example, M_{R}

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

Reachability: example, $M_{R}+M_{R}^{2}$

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

Reachability: example, $M_{R}+M_{R}^{2}+M_{R}^{3}$

Al Planning

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

Reachability: example, $M_{R}+M_{R}^{2}+M_{R}^{3}+I_{6 \times 6}$

Al Planning

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

Relations and sets as matrices

Row vectors as sets of states

Row vectors S represent sets.
$S M$ is the set of states reachable from S by M.

$$
\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)^{T} \times\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
1 \\
1
\end{array}\right)^{T}
$$

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

A simple planning algorithm

- We next present a simple planning algorithm based on computing distances in the transition graph.
- The algorithm finds shortest paths less efficiently than

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS Dijkstra's algorithm; we present the algorithm because we later will use it as a basis of an algorithm that is applicable to much bigger state spaces than Dijkstra's algorithm directly.

A simple planning algorithm

Idea

A simple planning algorithm

Idea
distance from the initial state
0
12 3

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

A simple planning algorithm

Idea
distance from the initial state
0
1
2
3

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

A simple planning algorithm

Idea
distance from the initial state
0
1
2
3

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

A simple planning algorithm

Idea
distance from the initial state
0 1

2
3

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

A simple planning algorithm

Idea
distance from the initial state
0
132

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

A simple planning algorithm

Idea
distance from the initial state
0
12 3

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

A simple planning algorithm

(1) Compute the matrices $R_{0}, R_{1}, R_{2}, \ldots, R_{n}$ representing reachability with $0,1,2, \ldots, n$ steps with all actions.
(2) Find the smallest i such that a goal state s_{g} is reachable from the initial state according to R_{i}.

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS
(3) Find an action (the last action of the plan) by which s_{g} is reached with one step from a state $s_{g^{\prime}}$ that is reachable from the initial state according to R_{i-1}.
(9) Repeat the last step, now viewing $s_{g^{\prime}}$ as the goal state with distance $i-1$.

Example

Transition
systems
Definition
Example
Matrices
Reachability
Algorithm
Succinct TS

Example

$$
\begin{aligned}
& R_{2}=\begin{array}{l|lllll}
& A & B & C & D \\
\hline A & 1 & 1 & 1 & 0 \\
B & 1 & 1 & 1 & 1
\end{array} \quad R_{3}=\begin{array}{l|lllll}
\\
C & 1 & 1 & 1 & 1 \\
D & 0 & 0 & 0 & 1
\end{array} \quad \begin{array}{llllll}
B & 1 & 1 & 1 & 1 & 1 \\
C & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array} \\
& \left.R_{2}=\begin{array}{l|lllll}
& A & B & C & D \\
\hline A & 1 & 1 & 1 & 0 \\
B & 1 & 1 & 1 & 1 \\
C & 1 & 1 & 1 & 1 \\
D & 0 & 0 & 0 & 1
\end{array} \quad \begin{array}{l}
A \\
A
\end{array}\right) \quad \begin{array}{llllll}
& A & 1 & 1 & 1 \\
B & 1 & 1 & 1 & 1 \\
C & 1 & 1 & 1 & 1 \\
& 0 & 0 & 0 & 1
\end{array}
\end{aligned}
$$

Transition
systems
Definition
Example
Matices
Reachability
Algorithm
Succinct TS

Succinct representation of transition systems

- More compact representation of actions than as relations is often
(1) possible because of symmetries and other regularities,
(2) unavoidable because the relations are too big.
- Represent different aspects of the world in terms of different state variables. $\Longrightarrow A$ state is a valuation of state variables.
- Represent actions in terms of changes to the state variables.

State variables

- The state of the world is described in terms of a finite set of finite-valued state variables.

```
Example
HOUR : {0, .., 23} = 13
MINUTE : {0, ...,59}= 55
LOCATION : { 51, 52, 82, 101, 102 } = 101
WEATHER : { sunny, cloudy, rainy } = cloudy
HOLIDAY : {T, F } = F
```

- Any n-valued state variable can be replaced by $\left\lceil\log _{2} n\right\rceil$ Boolean (2-valued) state variables.
- Actions change the values of the state variables.

Blocks world with state variables

State variables:
LOCATIONofA : $\{B, C$, TABLE $\}$
LOCATIONofB : $\{A, C$, TABLE $\}$
LOCATIONofC : $\{A, B$, TABLE $\}$

Transition
systems
Succinct TS
State variables
Logic
Operators
Schemata
$s($ LOCATIONofA $)=$ TABLE
$s($ LOCATIONofB $)=A$
$s($ LOCATIONofC $)=$ TABLE

Not all valuations correspond to an intended blocks world state, e.g. s such that $s(L O C A T I O N o f A)=B$ and $s(L O C A T I O N$ of $B)=A$.

Blocks world with Boolean state variables

Example

$s($ AonB $)=0$ $s($ AonC $)=0$ $s($ AonTABLE $)=1$
$s($ BonA $)=1$
$s($ ConA $)=0$
$s($ ConB $)=0$

Logical representations of state sets

- n state variables with m values induce a state space consisting of m^{n} states (2^{n} states for n Boolean state variables).
- A language for talking about sets of states (valuations of state variables) is the propositional logic.
- Logical connectives correspond to set-theoretical operations.
- Logical relations correspond to set-theoretical relations.

Propositional logic

Let A be a set of atomic propositions (\sim state variables.)
(1) For all $a \in A, a$ is a propositional formula.
(2) If ϕ is a propositional formula, then so is $\neg \phi$.
(3) If ϕ and ϕ^{\prime} are propositional formulae, then so is $\phi \vee \phi^{\prime}$.
(4) If ϕ and ϕ^{\prime} are propositional formulae, then so is $\phi \wedge \phi^{\prime}$.
(5) The symbols \perp and T are propositional formulae.

The implication $\phi \rightarrow \phi^{\prime}$ is an abbreviation for $\neg \phi \vee \phi^{\prime}$.
The equivalence $\phi \leftrightarrow \phi^{\prime}$ is an abbreviation for
$\left(\phi \rightarrow \phi^{\prime}\right) \wedge\left(\phi^{\prime} \rightarrow \phi\right)$.

Propositional logic

Valuations and truth

A valuation of A is a function $v: A \rightarrow\{0,1\}$. Define the
(1) $v \models a$ if and only if $v(a)=1$, for $a \in A$.
(2) $v \models \neg \phi$ if and only if $v \not \vDash \phi$
(3) $v \models \phi \vee \phi^{\prime}$ if and only if $v \models \phi$ or $v \models \phi^{\prime}$
(4) $v \models \phi \wedge \phi^{\prime}$ if and only if $v \models \phi$ and $v \models \phi^{\prime}$
(5) $v \models T$
(6) $v \not \vDash \perp$

Propositional logic

Some terminology

- A propositional formula ϕ is satisfiable if there is at least one valuation v so that $v \models \phi$. Otherwise it is unsatisfiable.
- A propositional formula ϕ is valid or a tautology if $v \models \phi$

Transition
systems
Succinct TS
State variables
Logic
Operators
Schemata

- A propositional formula ϕ is a logical consequence of a propositional formula ϕ^{\prime}, written $\phi^{\prime} \models \phi$, if $v \models \phi$ for all valuations v such that $v=\phi^{\prime}$.
- A propositional formula that is a proposition a or a negated proposition $\neg a$ for some $a \in A$ is a literal.
- A formula that is a disjunction of literals is a clause.

Formulae vs. sets

sets	formulae
those $\frac{2^{n}}{2}$ states in which a is true	$a \in A$
$E \cup F$	$E \vee F$
$E \cap F$	$E \wedge F$
$E \backslash F \quad$ (set difference)	$E \wedge \neg F$
$\bar{E} \quad$ (complement)	$\neg E$
the empty set \emptyset	\perp
the universal set	\top
question about sets	question about formulae
$E \subseteq F ?$	$E \models F ?$
$E \subset F ?$	$E \models F$ and $F \not \models E ?$
$E=F ?$	$E \models F$ and $F \models E ?$

Operators

Actions are represented as operators $\langle c, e\rangle$ where

- c (the precondition) is a propositional formula over A describing the set of states in which the action can be taken. (States in which an arrow starts.)

State variables

- e (the effect) describes the successor states of states in which the action can be taken. (Where do the arrows go.)
The description is procedural: how do the values of the state variable change?

Effects

For deterministic operators

Definition

Effects are then recursively defined as follows.
(2) $e_{1} \wedge \cdots \wedge e_{n}$ is an effect if e_{1}, \ldots, e_{n} are effects (the special case with $n=0$ is the empty conjunction T.)
(3) $c \triangleright e$ is an effect if c is a formula and e is an effect.

Atomic effects a and $\neg a$ are best understood respectively as assignments $a:=1$ and $a:=0$.

Effects

Meaning of conditional effects \triangleright
$c \triangleright e$ means that change e takes place if c is true in the current state.

Example

Increment 4-bit numbers $b_{3} b_{2} b_{1} b_{0}$.

$$
\begin{gathered}
\left(\neg b_{0} \triangleright b_{0}\right) \wedge \\
\left(\left(\neg b_{1} \wedge b_{0}\right) \triangleright\left(b_{1} \wedge \neg b_{0}\right)\right) \wedge \\
\left(\left(\neg b_{2} \wedge b_{1} \wedge b_{0}\right) \triangleright\left(b_{2} \wedge \neg b_{1} \wedge \neg b_{0}\right)\right) \wedge \\
\left(\left(\neg b_{3} \wedge b_{2} \wedge b_{1} \wedge b_{0}\right) \triangleright\left(b_{3} \wedge \neg b_{2} \wedge \neg b_{1} \wedge \neg b_{0}\right)\right)
\end{gathered}
$$

Example: operators for blocks world

For convenience we use also state variables Aclear, Bclear, and Cclear to denote that there is nothing on the block in question.

Transition
systems
Succinct TS
State variables
Logic
\langle Aclear \wedge Aon $T \wedge$ Bclear, Aon $B \wedge \neg$ Aon $T \wedge \neg$ Bclear \rangle \langle Aclear \wedge Aon $T \wedge$ Cclear, AonC $\wedge \neg$ Aon $T \wedge \neg$ Cclear \rangle
\langle Aclear \wedge AonB, Aon $T \wedge \neg$ Aon $B \wedge \neg$ AonC \rangle
\langle Aclear \wedge AonC, Aon $T \wedge \neg$ Aon $B \wedge \neg$ AonC \rangle
\langle Bclear \wedge BonA, BonT $\wedge \neg$ BonA \wedge Aclear〉
\langle Bclear \wedge BonC, Bon $T \wedge \neg$ BonC \wedge Cclear \rangle

Operators: meaning

Changes caused by an operator

Assign each effect e and state s a set $[e]_{s}$ of literals as follows.
(1) $[a]_{s}=\{a\}$ and $[\neg a]_{s}=\{\neg a\}$ for $a \in A$.
(2) $\left[e_{1} \wedge \cdots \wedge e_{n}\right]_{s}=\left[e_{1}\right]_{s} \cup \ldots \cup\left[e_{n}\right]_{s}$.
(3) $[c \triangleright e]_{s}=[e]_{s}$ if $s \models c$ and $[c \triangleright e]_{s}=\emptyset$ otherwise.

Applicability of an operator
Operator $\langle c, e\rangle$ is applicable in a state s iff $s \models c$ and $[e]_{s}$ is consistent.

Operators: the successor state of a state

Definition (Successor state)

The successor state $\operatorname{app}_{o}(s)$ of s with respect to operator $o=\langle c, e\rangle$ is obtained from s by making literals in $[e]_{s}$ true. This is defined only if o is applicable in s.

Transition
systems
Succinct TS
State variables
Logic
Operators
Schemata

Example

Consider the operator $\langle a, \neg a \wedge(\neg c \triangleright \neg b)\rangle$ and a state s such that $s \models a \wedge b \wedge c$.
The operator is applicable because $s \models a$ and $[\neg a \wedge(\neg c \triangleright \neg b)]_{s}=\{\neg a\}$ is consistent. Hence $\operatorname{app}_{\langle a, \neg a \wedge(\neg c \triangleright \neg b)\rangle}(s) \vDash \neg a \wedge b \wedge c$.

Operators

Example

State variables are
$A=\{a, b, c\}$.
An operator is

$$
\begin{aligned}
& \langle(b \wedge c) \vee(\neg a \wedge b \wedge \neg c) \vee(\neg a \wedge c), \\
& ((b \wedge c) \triangleright \neg c) \\
& \wedge(\neg b \triangleright(a \wedge b)) \\
& \wedge(\neg c \triangleright a)\rangle
\end{aligned}
$$

Transition
systems
Succinct TS
State variables
Logic
Operators
Schemata

Operators

Example

The corresponding matrix is

	000	001	010	011	100	101	110	111	01
000	0	0	0	0	0	0	0	0	
001	0	0	0	0	0	0	0	1	
010	0	0	0	0	0	0	1	0	
011	0	0	1	0	0	0	0	0	100
100	0	0	0	0	0	0	0	0	
101	0	0	0	0	0	0	0	0	
110	0	0	0	0	0	0	0	0	
111	0	0	0	0	0	0	1	0	

Transition
systems
Succinct TS
State variables

Operators
Schemata

Succinct transition systems

Deterministic case

Definition

A succinct deterministic transition system is
$\left\langle A, I,\left\{o_{1}, \ldots, o_{n}\right\}, G\right\rangle$ where

- A is a finite set of state variables,
- I is an initial state,
- every o_{i} is an operator,
- G is a formula describing the goal states.

Mapping from succinct TS to TS

From every succinct transition system $\langle A, I, O, G\rangle$ we can produce a corresponding transition system $\left\langle S, I, O^{\prime}, G^{\prime}\right\rangle$.
(1) S is the set of all valuations of A,
(2) $O^{\prime}=\{R(o) \mid o \in O\}$ where
$R(o)=\left\{\left(s, s^{\prime}\right) \in S \times S \mid s^{\prime}=\operatorname{app}_{o}(s)\right\}$, and
(3) $G^{\prime}=\{s \in S \mid s \models G\}$.

Schematic operators

- Description of state variables and operators in terms of a given finite set of objects.
- Analogy: propositional logic vs. predicate logic
- Planners take input as schematic operators, and translate them into (ground) operators. This is called grounding.

Schematic operators: example

Schematic operator

$$
\begin{aligned}
& x \in\{\text { car1, car2 }\} \\
& y_{1} \in\{\text { Freiburg, Strassburg }\}, \\
& y_{2} \in\{\text { Freiburg, Strassburg }\}, y_{1} \neq y_{2} \\
& \left\langle\operatorname{in}\left(x, y_{1}\right), \operatorname{in}\left(x, y_{2}\right) \wedge \neg \operatorname{in}\left(x, y_{1}\right)\right\rangle
\end{aligned}
$$

corresponds to the operators
\langle in(car1, Freiburg), in(car1, Strassburg) $\wedge \neg$ in(car1, Freiburg) \rangle,〈in(car1, Strassburg), in(car1, Freiburg) $\wedge \neg i n(c a r 1$, Strassburg)〈in(car2, Freiburg), in(car2, Strassburg) $\wedge \neg$ in(car2, Freiburg) $)$, (in(car2, Strassburg), in(car2, Freiburg) $\wedge \neg$ in(car2, Strassburg)

Schematic operators: quantification

Existential quantification (for formulae only)

Finite disjunctions $\phi\left(a_{1}\right) \vee \cdots \vee \phi\left(a_{n}\right)$ represented as $\exists x \in\left\{a_{1}, \ldots, a_{n}\right\} \phi(x)$.

Universal quantification (for formulae and effects)

Finite conjunctions $\phi\left(a_{1}\right) \wedge \cdots \wedge \phi\left(a_{n}\right)$ represented as $\forall x \in\left\{a_{1}, \ldots, a_{n}\right\} \phi(x)$.

Example

$\exists x \in\{A, B, C\} \operatorname{in}(x$, Freiburg $)$ is a short-hand for in $(A$, Freiburg $) \vee \operatorname{in}(B$, Freiburg $) \vee \operatorname{in}(C$, Freiburg $)$.

PDDL: the Planning Domain Description Language

- Used by almost all implemented systems for deterministic planning.
- Supports a language comparable to what we have defined above (including schematic operators and quantification)
- Syntax inspired by the Lisp programming language: e.g. prefix notation for formulae

$$
\begin{aligned}
& \text { (and (or (on A B) (on A C)) } \\
& \text { (or (on B A) (on B C)) } \\
& \text { (or (on C A) (on A B))) }
\end{aligned}
$$

PDDL: domain files

A domain file consists of

- (define (domain DOMAINNAME)
- a :requirements definition (use :adl :typing by default)
- definitions of types (each parameter has a type)
- definitions of predicates
- definitions of operators

Example: blocks world in PDDL

(define (domain BLOCKS)
(:requirements :adl :typing)
(:types block - object
blueblock smallblock - block)
(:predicates (on ?x - smallblock ?y - block)
(ontable ?x - block)
(clear ?x - block)
)

PDDL: operator definition

- (:action OPERATORNAME
- list of parameters: (?x - type1 ?y - type2 ?z - type3)
- precondition: a formula

```
<schematic-state-var>
(and <formula> ... <formula>)
(or <formula> ... <formula>)
(not <formula>)
(forall (?x1 - type1 ... ?xn - typen) <fo
(exists (?x1 - type1 ... ?xn - typen) <fo
```

- effect:
<schematic-state-var>
(not <schematic-state-var>)
(and <effect> ... <effect>)
(when <formula> <effect>)
(forall (?x1 - type1 ... ?xn - typen) <ef
(:action fromtable
:parameters (?x - smallblock ?y - block)
:precondition (and (not (= ?x ?y)) (clear ?x) (ontable ?x) (clear ?y))
:effect
(and (not (ontable ?x))
(not (clear ?y)) (on ?x ?y)))

PDDL: problem files

A problem file consists of

- (define (problem PROBLEMNAME)
- declaration of which domain is needed for this problem
- definitions of objects belonging to each type
- definition of the initial state (list of state variables initially true)
- definition of goal states (a formula like operator precondition)
(define (problem blocks-10-0)
(:domain BLOCKS)
(:objects a b c - smallblock)
de - block
f - blueblock)
(:init (clear a) (clear b) (clear c) (clear (ontable a) (ontable b) (ontable c) (ontable d) (ontable e) (ontable f))
(:goal (and (on a d) (on be) (on cf)))

Example run on the FF planner

step 0: GO A B
1: GO B D
2: GO D F
3: GO F C
4: GO C E
5: GO E A
0.01 seconds total time

Example: blocks world in PDDL

(define (domain BLOCKS)
(:requirements :ad :typing)
(:types block)
(:predicates (on ?x - block ?y - block)
(ontable ?x - block)
(clear ?x - block)
)
(:action fromtable
:parameters (?x - block ?y - block)
:precondition (and (not (= ?x ?y)) (clear ?x)
(ontable ?x) (clear ?y))
:effect
(and (not (ontable ?x)) (not (clear ?y)) (on ?x ?y)))

(:action totable

:parameters (?x - block ?y - block)
:precondition (and (clear ?x) (on ?x ?y))
:effect
(and (not (on ?x ?y))
(clear ?y)
(ontable ?x)))
(:action move :parameters (?x - block

$$
\begin{aligned}
& ? y-b l o c k \\
& ? z-b l o c k)
\end{aligned}
$$

: precondition (and (clear ?x) (clear ?z) (on ?x ?y) (not (= ?x ?z)))
:effect (and (not (clear ?z)) (clear ?y)
(not (on ?x ?y)) (on ?x ? z)))
(define (problem blocks-10-0)
(:domain BLOCKS)
(:objects da h g b j e i f c - block)
(:init (clear c) (clear f)
(ontable i) (ontable f)
(on ce) (on e j) (on j b) (on b g)
(on $g h$) (on h a) (on ad) (on di))
(:goal (and (on dc) (on cf) (on f j)
(on ja) (on eh) (on hb)
(on ba) (on ag) (on gi)))

