Al Planning

Introduction

# Principles of Al Planning

Dr. Jussi Rintanen

Albert-Ludwigs-Universität Freiburg

Summer term 2005

# Course: Principles of Al Planning

## Lecturer

Dr Jussi Rintanen (rintanen@informatik.uni-freiburg.de)

## Lecture

Monday 2-4pm, Wednesday 2-3pm in SR 101-01-009/13 No lecture on May 16 & 18 (Pentecost)

www.informatik.uni-freiburg.de/~ki/teaching/ss05/aip/

## **Text**

Complete lecture notes are available on the web page as the course proceeds.

Al Planning

Lectures

Introduction

## **Exercises and Examination**

#### Al Planning

Lectures Exercises

Introduction

## **Exercises**

assistant: Marco Ragni (ragni@informatik.uni-freiburg.de) Wednesday 3pm after lecture (not on May 18: Pentecost) Assignments are given out on Wednesday, returned on Monday.

## Examination

Takes place either in July or in September (exact date to be determined).

grade:  $0.85 \times$  exam  $+0.15 \times$  exercises

# What is planning?

- Intelligent decision making: What actions to take?
- general-purpose problem representation
- algorithms for solving any problem expressible in the representation
- application areas:
  - high-level planning for intelligent robots
  - autonomous systems: NASA Deep Space One, ...
  - problem-solving (single-agent games like Rubik's cube)

Al Planning

Coordinates

Introduction

Nondeterminism Observability Objectives vs. Game Theory

 Solutions to simplest planning problems are paths from an initial state to a goal state in the transition graph.
 Efficiently solvable e.g. by Dijkstra's algorithm in O(n log n) time.

Why don't we solve all planning problems this way?

- State spaces may be huge: 10<sup>9</sup>, 10<sup>12</sup>, 10<sup>15</sup>,... states.
   Constructing the transition graph and using e.g.
   Dijkstra's algorithm is not feasible!!
- Planning algorithms try to avoid constructing the whole graph.
- Planning algorithms often are but are not guaranteed to be – more efficient than the obvious solution method of constructing the transition graph + running e.g. Dijkstra's algorithm.

Al Planning

Coordinates

Introduction
Problem classes
Nondeterminism
Observability
Objectives

- Solutions to simplest planning problems are paths from an initial state to a goal state in the transition graph.
   Efficiently solvable e.g. by Dijkstra's algorithm in O(n log n) time.
   Why don't we solve all planning problems this way?
- State spaces may be huge: 10<sup>9</sup>, 10<sup>12</sup>, 10<sup>15</sup>,... states.
   Constructing the transition graph and using e.g.
   Dijkstra's algorithm is not feasible!!
- Planning algorithms try to avoid constructing the whole graph.
- Planning algorithms often are but are not guaranteed to be – more efficient than the obvious solution method of constructing the transition graph + running e.g. Dijkstra's algorithm.

#### Al Planning

0-----

## Introduction Problem classes

Nondeterminism
Observability
Objectives
vs. Game Theory
Summary

- Solutions to simplest planning problems are paths from an initial state to a goal state in the transition graph. Efficiently solvable e.g. by Dijkstra's algorithm in  $O(n \log n)$  time. Why don't we solve all planning problems this way?
- State spaces may be huge:  $10^9, 10^{12}, 10^{15}, \dots$  states. Constructing the transition graph and using e.g. Dijkstra's algorithm is not feasible!!
- Planning algorithms try to avoid constructing the whole
- Planning algorithms often are but are not guaranteed of constructing the transition graph + running e.g.

#### Al Planning

# Introduction

- Solutions to simplest planning problems are paths from an initial state to a goal state in the transition graph.
   Efficiently solvable e.g. by Dijkstra's algorithm in O(n log n) time.
   Why don't we solve all planning problems this way?
- State spaces may be huge: 10<sup>9</sup>, 10<sup>12</sup>, 10<sup>15</sup>,... states.
   Constructing the transition graph and using e.g.
   Dijkstra's algorithm is not feasible!!
- Planning algorithms try to avoid constructing the whole graph.
- Planning algorithms often are but are not guaranteed to be – more efficient than the obvious solution method of constructing the transition graph + running e.g. Dijkstra's algorithm.

#### Al Planning

Coordinates

# Introduction Problem classes Nondeterminism Observability Objectives vs. Game Theory

| actions                     | deterministic | nondeterministic |
|-----------------------------|---------------|------------------|
| probabilities observability | no            | yes              |
| observability               | full          | partial          |
| horizon                     | finite        | infinite         |
| :                           |               |                  |

- classical planning
- conditional planning with full/partial observability
- Markov decision processes (MDP)
- partially observable MDPs (POMDP)

#### Al Planning

Coordinates

ntroductior

Problem classes Nondeterminism Observability

vs. Game Theory

actions
probabilities
observability
horizon

deterministic no yes
full partial infinite

infinite

Al Planning

Coordinates

Problem classes
Nondeterminism
Observability

- classical planning
- conditional planning with full/partial observability
- Markov decision processes (MDP)
- partially observable MDPs (POMDP)

actions
probabilities
observability
horizon

deterministic | nondeterministic | yes |
full | partial |
finite | infinite

- classical planning
- conditional planning with full/partial observability
- Markov decision processes (MDP)
- partially observable MDPs (POMDP)

#### Al Planning

Coordinates

ntroduction

Problem classes Nondeterminism Observability

vs. Game Theory

| actions                     | deterministic | nondeterministic |
|-----------------------------|---------------|------------------|
| probabilities observability | no            | yes              |
| observability               | full          | partial infinite |
| horizon                     | finite        | infinite         |
| :                           |               | l                |

- classical planning
- conditional planning with full/partial observability
- Markov decision processes (MDP)
- partially observable MDPs (POMDP)

Al Planning

Coordinates

ntroductio

Problem classes Nondeterminism Observability

vs. Game Theory

actions
probabilities
observability
horizon

deterministic
no
yes
full
finite
infinite

- classical planning
- 2 conditional planning with full/partial observability
- Markov decision processes (MDP)
- partially observable MDPs (POMDP)

Al Planning

Coordinates

ntroduction

Problem classes
Nondeterminism
Observability

Objectives vs. Game Theory

actions
probabilities
observability
horizon

deterministic no yes
full partial infinite

infinite

- classical planning
- conditional planning with full/partial observability
- Markov decision processes (MDP)
- partially observable MDPs (POMDP)

Al Planning

Coordinates

Problem classes
Nondeterminism

vs. Game Theory

## Properties of the world: nondeterminism

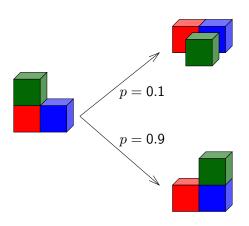
## Deterministic world/actions

Action and current state uniquely determine the successor state.

## Nondeterministic world/actions

For an action and a current state there may be several successor states.

Analogy: deterministic versus nondeterministic automata


#### Al Planning

Coordinates

Introduction
Problem classes
Nondeterminism
Observability
Objectives

## Nondeterminism Example

Moving objects with an unreliable robotic hand: move the green block onto the blue block.



#### Al Planning

#### Coordinates

#### ntroductio

Problem classes
Nondeterminism
Observability
Objectives

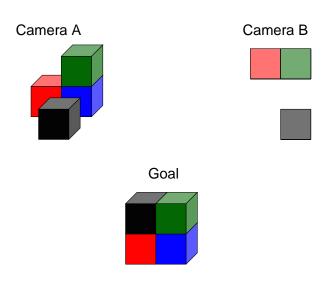
# Properties of the world: observability

## Full observability

Observations/sensing allow to determine the current state of the world uniquely.

## Partial observability

Observations/sensing allow to determine the current state of the world only partially: we only know that the current state is one of several of possible ones.


Consequence: It is necessary to represent the knowledge an agent has.

### Al Planning

Coordinate

ntroduction
Problem classes
Nondeterminism
Observability
Objectives

# What difference does observability make?



#### Al Planning

#### Coordinates

#### ntroductior

Problem classes Nondeterminism Observability

Objectives

- Reach a goal state. Example: Earn 500 euro.

Al Planning

Objectives

- Reach a goal state. Example: Earn 500 euro.
- Stay in goal states indefinitely (infinite horizon). Example: Never allow the bank account balance to be negative.

Al Planning

Objectives

- Reach a goal state. Example: Earn 500 euro.
- Stay in goal states indefinitely (infinite horizon). Example: Never allow the bank account balance to be negative.
- Maximize the probability of reaching a goal state. Example: To be able to finance buying a house by 2015 study hard and save money.
- Collect the maximal expected rewards / minimal expected costs (infinite horizon).
   Example: Maximize your future income.
- 5 ...

Al Planning

Coordinates

Introduction
Problem classes
Nondeterminism
Observability
Objectives
vs. Game Theory

- Reach a goal state.
  Example: Earn 500 euro.
- Stay in goal states indefinitely (infinite horizon).
  Example: Never allow the bank account balance to be negative.
- Maximize the probability of reaching a goal state. Example: To be able to finance buying a house by 2015 study hard and save money.
- Collect the maximal expected rewards / minimal expected costs (infinite horizon).
  Example: Maximize your future income.

5

Al Planning

Coordinates

Introduction
Problem classes
Nondeterminism
Observability
Objectives
vs. Game Theory

- Reach a goal state.
  Example: Earn 500 euro.
- Stay in goal states indefinitely (infinite horizon).
  Example: Never allow the bank account balance to be negative.
- Maximize the probability of reaching a goal state. Example: To be able to finance buying a house by 2015 study hard and save money.
- Collect the maximal expected rewards / minimal expected costs (infinite horizon).
  Example: Maximize your future income.
- **⑤** ...

Al Planning

Coordinates

Introduction
Problem classes
Nondeterminism
Observability
Objectives
vs. Game Theory
Summary

## Relation to games and game theory

- Game theory addresses decision making in multi-agent setting: "Assuming that the other agents are intelligent, what do I have to do to achieve my goals?"
- Game theory is related to multi-agent planning.
- In this course we concentrate on single-agent planning.
- In certain special cases our techniques are applicable to multi-agent planning:
  - Finding a winning strategy of a game (example: chess).
     In this case it is not necessary to distinguish between an intelligent opponent and a randomly behaving opponent.

Game theory in general is about optimal strategies which do not necessarily guarantee winning. For example card games like poker do not have a winning strategy.

Al Planning

Coordinates

ntroduction
Problem classes
Nondeterminism
Observability
Objectives

## Relation to games and game theory

- Game theory addresses decision making in multi-agent setting: "Assuming that the other agents are intelligent, what do I have to do to achieve my goals?"
- Game theory is related to multi-agent planning.
- In this course we concentrate on single-agent planning.
- In certain special cases our techniques are applicable to multi-agent planning:
  - Finding a winning strategy of a game (example: chess).
     In this case it is not necessary to distinguish between an intelligent opponent and a randomly behaving opponent.

Game theory in general is about optimal strategies which do not necessarily guarantee winning. For example card games like poker do not have a winning strategy.

Al Planning

Coordinates

Introduction
Problem classes
Nondeterminism
Observability
Objectives

## Relation to games and game theory

- Game theory addresses decision making in multi-agent setting: "Assuming that the other agents are intelligent, what do I have to do to achieve my goals?"
- Game theory is related to multi-agent planning.
- In this course we concentrate on single-agent planning.
- In certain special cases our techniques are applicable to multi-agent planning:
  - Finding a winning strategy of a game (example: chess).
     In this case it is not necessary to distinguish between an intelligent opponent and a randomly behaving opponent.

Game theory in general is about optimal strategies which do not necessarily guarantee winning. For example card games like poker do not have a winning strategy.

Al Planning

Coordinate

ntroduction
Problem classes
Nondeterminism
Observability
Objectives

## Prerequisites of the course

- basics of AI (you have attended an introductory course on AI)
- basics of propositional logic

### Al Planning

#### Coordinates

#### ntroduction

Nondeterminism Observability Objectives

## What do you learn in this course?

- Classification of different problems to different classes
  - Classification according to observability, nondeterminism, goal objectives, ...
  - complexity
- Techniques for solving different problem classes
  - algorithms based on heuristic search
  - algorithms based on satisfiability testing (SAT)
  - algorithms based on exhaustive search with logic-based data structures

Many of these techniques are applicable to problems outside AI as well.

Al Planning

Coordinates

Problem classes
Nondeterminism
Observability
Objectives