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ABSTRACT

Humans improve their sport skills by eliminating one recog-

nizable weakness at a time. Inspired by this observation, we

define a learning paradigm in which different learners can

be plugged together. An extra attention model is in charge

of iterating over them and chosing which one to improve

next. The paradigm is named Switching Attention Learning

(SAL). The essential idea is that improving one model in the

system generates more “improvement space” for the others.

Using SAL, an application for tracking the game ball in a

table soccer game-recorder is implemented. We developed

several models and learners which work together in the SAL

framework, producing satisfying results in the experiments.

The related problems, advantages, and perspective of the

switching attention learning are discussed in this paper.

1. INTRODUCTION

Attention plays a very important role during the learning

processes of human beings. For example, students in a uni-

versity take several courses in a morning. The subjects could

be dependent or independent. The understanding of physics

requires some background in mathematics. Studying En-

glish is not directly related to learning biology. In any situa-

tion, the students can develop their knowledge by switching

their attention from one subject to another. Switching at-

tention can be observed not only in complex tasks as in the

example above but also in some much simpler ones such

as learning a one-second sport action. For instance, a hu-

man player tries to improve his dart for six months. M.

Suwa found that together with a measurable improvement

of his overall performance, the player switched his atten-

tion to different parts of his body, e.g. the waist, the elbow,

or the fingers. Based on the “switched attention”, the key

mechanism of the improvement is explained as the so-called

“Meta-Cognitive Verbalization” [1].

Humans have the ability of learning to improve their

skills. When facing a learning task, such as playing darts,

people can acquire the necessary skills by repeating the fol-

lowing three steps: finding a weakness, overcoming it, and

switching attention to another weakness. Iterating over the

steps can be regarded as an incremental-learning process

with introspection. In artificial intelligence (AI), a learning

process can normally be described as acquiring a model and

its parameters. There exist many learning approaches which

have been proved to be very useful and powerful. How-

ever, to our knowledge, there exists no approach which has

a switching attention mechanism similar to what humans

have. And no agent has learning abilities comparable to

the introspection and incremental learning of human beings.

This work is motivated by these observations.

In the Switching Attention Learning (SAL) paradigm,

there are a series of learners, each of which can be imple-

mented by any existing learning approach. They are coop-

erative for a task by using a switching attention mechanism.

SAL mimics the attention-related structures in human intel-

ligence.

In this paper, first, we define the SAL paradigm in Chap-

ter 2. The essential idea is to make different learners interact

with each other. One learner can produce more “improve-

ment space” for the others, and this improvement can be

iterated for the incremental learning. Then, we describe the

first application by using the idea, which is explained in de-

tail in Chapter 3. The task is to track the game ball in a

table soccer game recorder. Finally, we draw the conclusion

in Chapter 4.

2. SWITCHING ATTENTION LEARNING

A switching attention learning (SAL) system is defined by

the following four elements:

• a set of system goals, G;

• a set of models, M, cooperating for G;

• a set of data and structures D, being input and output

of the models in M;

• a set of learners L, which can improve the models in

M towards G.

A model m is an active model if there is a learner lm
improving m, where m ∈ M, lm ∈ L. The input of the

model “m” is denoted as Im and its output as Om, where

Im, Om ⊂ D. So far, an active model can be defined by a



4-tuple, (m, lm, Im, Om). If the set of the active models is

Ma, we have Ma ⊆ M.

We use “d” to denote an element in D. d is an active

element if d ∈ Im1
and d ∈ Om2

where m1,m2 ∈ Ma

and m1 6= m2. With “Da” denoting the set of all active

elements, di and dj are “connected” by m if di ∈ Im and

dj ∈ Om, where di, dj ∈ Da, m ∈ Ma. There is a path

from d1 to dn if ∀dk, dk+1 ∈ {d1, d2, ..., dn}, dk and dk+1

are connected. A system complies with the switching at-

tention learning paradigm, if there exists a path from an

active element to itself.

The definition of SAL limits our domain to closed-loop

multiple learner systems. Closed-loop is a concept which is

widely used in control theory and artifical neural networks.

The idea is to notify a system with feedback of its own per-

formance. Closed-loop is important for the SAL paradigm

because the learning process of human beings, which in-

spires the initial idea of SAL, appears to be closed-loop. We

believe it will gain advantages for the topics in incremental

learning.

We can distinguish a SAL system from others by its def-

inition. For instance, in the Boosting approach [2], there are

two learners. One learner boosts a series of weak classi-

fiers from the training set in which examples are weighted

by their importance. The other finds a combination of the

learned classifiers for the final classification. Boosting is

not SAL because the first learner does not take any input

from the second one, although the two learners interact in

the way that the combination model uses the output of the

weak classifiers as its input. There are similar learning sys-

tems in which different learners are involved. For example

M. Fox and her colleagues developed an approach [3] where

the structure of Hidden Markov Models (HMMs) can be

learned by a learner using Kohonen networks. The param-

eters of the HMMs are computed by another learner using

Expectation Maximization framework. These approaches

are different from ours because the “active elements” in the

system do not form a loop.

Figure 1: An Example with Two Learners

SAL requires at least two learners. Figure 1 shows an

example. The rectangles are learners, the circles are their

inputs and outputs. The white nodes are the active elements.

They can be regarded as the medium of the improvement.

If we ignore the two grey nodes and their peripheral arrow

lines, the remaining nodes and lines, which form a loop,

show an example of the smallest possible SAL.

Figure 2: Active Elements

SAL provides a flexible context in which a specific real-

world problem can be divided into sub-problems, each of

which can be solved in an individual model. The develop-

ment process can pass three stages. First, the sub-problems

are solved independently, with the models being defined

with their input and output. In this stage, we can expect

an open-loop system, in which the models are independent,

or they can do only a few interactions but not incrementally.

Then, we focus on the elements which can bridge different

models, reforming them so that they can represent both in-

put and output. Figure 2 shows the development map of this

stage. The big circle at the center can be regarded as the

closed-loop learning. We need to find out the active ele-

ments in the system and develop learners for them. Finally,

the dependency among the models and learners are ana-

lyzed. We use a dependency map to show these relations.

Figure 3 shows the dependency map of the two-learner ex-

ample. We can design an attention model according to the

topology of the dependency map. In the example, the learn-

ers should be simply performed one after another. We be-

lieve designing a good attention model can accelerate the

learning process in a more complex context.

Figure 3: Dependency Map

SAL provides a framework for exploring the relations

among different models and learners. The essential charac-

teristic of SAL is that the structure based on the models and

learners produces the power of introspection and incremen-

tal learning. SAL is supposed to be used in scenarios where

achieving final goals requires a few intelligent components,

each using distinct representation and algorithms, solving

problems from different points of view. It also provides

a platform where different solutions for the same problem



can be compared and combined. One of the possible appli-

cations is the table soccer robot [4]. The agent should not

only play against humans, being adaptive to different hu-

man players, but also classify them and learn from them.

SAL can also be used in much smaller applications. Such

an application is included in Chapter 3.

So far, we defined the basic concepts of SAL, showed

some possible tools during the developing process, and il-

lustrated some application domains. However, there are

many problems remaining. One problem is that improving a

single learner in the system does not guarantee a better per-

formance of the whole system. Another problem is that the

errors generated by each learner are possibly accumulated in

the system, causing mistakes later. Although we expect that

the difficulties should be overcome by designing an evalua-

tion model towards avoiding them, there are no experiments

or solution yet. In addition, developing many models and

structures normally requires a long period of time, which

makes it difficult to try or prove the concepts in SAL. Nev-

ertheless, we believe the problems will be met and can be

solved on-the-fly.

3. TRACKING A SINGLE TARGET USING SAL

Tracking problems exist in many domains thus there are

many well-developed approaches. The Kalman Filter (KF)

framework is one of the most successful and effective meth-

ods [6]. It can be extended to different forms and integrated

with other methods. Interacting multiple model (IMM) con-

tains a set of KFs as well as Markov Decision Processes

(MDPs) for tracking one or more targets which have several

moving modes [7]. In switching Kalman filters, a switch

node is introduced into the topology network of the KFs to

model the dynamic changes of the movement [8]. These

methods can also be applied for our ball tracking problems.

But they are not as flexible as SAL when domain knowl-

edge is taken into consideration. There is another category

of approaches based on particle filters. These approaches

are proved to be very powerful in mobile robots [9], but

they require remarkable computational power, which is not

suitable for our application. In this section, we describe the

method for tracking the ball of table soccer to illustrate how

SAL is applied in a real application.

3.1. The Tracking Problem

KiRe is a table soccer game recorder. It provides a way

to record human-played games[5]. In KiRe, the position

of the ball is measured by a laser measurement systems

(SICK LMS-400), as illustrated in Figure 4(a). There is a

gap of about 12mm between a playing figure and the game

field. We installed the LMS behind the goal of the game

table. The laser beam goes through the gap, and targets

the lower part of the ball. The receiver at the upper part of

the opening on the LMS receives the reflected signals. The

opening angle of the laser beam is 70 ◦, and the valid mea-

surement range of the LMS is from 700mm to 3000mm.

Each data slice contains 280 measurements of distance and

angle evenly distributed over the open angle. Figure 4(b)

shows the bird-view of the game field. With one LMS, the

field is divided into three different regions. Two corners in

the left side are outside the laser’s view. The measurements

are invalid in the grey fan region. The remaining dark grey

region is within the valid range of the LMS, covering the

right half of the field. By removing the background from

the laser view, we can compute the ball’s position.

(a) Laser Measurement System

(b) By One LMS (c) By Two LMSs

Figure 4: Measuring the Position of the Game Ball

In order to measure the whole field, we mounted two

LMSs symmetrically in KiRe. These two LMSs commu-

nicate via Ethernet, which synchronizes their laser scans.

Figure 4(c) shows the different regions in this situation. In

Table 1, we list the types of the regions and the information

for locating the ball. When the ball is in the grey regions,

one of the LMSs gets the invalid distances at the laser spots

on the ball. However, the angle of these invalid data still

provide information about the ball’s position. Therefore, we

can still fuse the measurements from two LMSs to compute

the intended position.

Color Description

Dark Grey Both LMSs have valid measurements

Grey One LMS is valid, the other is invalid

White One LMS is valid, the region is out of

the other’s view.

Table 1: Regions and Their Information

The LMSs scan the field with a frequency of 350 Hz.

With two LMSs synchronized, the computer needs to pro-

cess 700 data frames per second. We recorded a segment of

data of about 5 seconds during which a human player drib-

bles and kicks the ball. Figure 5 shows the recorded data.

The horizontal axis is the time in millionseconds, the verti-

cal axis is the position in millionmeters. The x and y posi-

tions are shown in separate plots. There are several possible

positions in a single data slice because of the noise. Thus

we got more than 7000 points all together.



(a) X Positions (b) Y Positions

Figure 5: Raw Data from the Sensor

The raw data is very noisy, which makes the tracking

task very challenging. Below, we list the main difficulties.

• When two LMSs are face to face, they interfere with

each other even if they are synchronized, because the

laser beam of one LMS is reflected by the mirror of

another.

• The game figures, which are moved and turned con-

stantly, disturb the reception of the laser signals.

• The ball jumps frequently, and cannot be observed by

the LMSs when doing so.

• We do not use a real-time operating system, thus there

are some processing gaps of about 80ms in the data.

3.2. The Implementation

We developed a ball module using SAL for the tracking

task, as shown in Figure 6. There are three models in the

module. A sensor model is constructed for filtering the

noise. A point in a data slice is classified as valid or noise.

The noise will be discarded. Each data slice contains one

valid point at most. A segment model is developed for seg-

menting the data sequence into much smaller parts. In each

segment, the ball is assumed to have constant acceleration

and movement direction. A set of Kalman filters are imple-

mented to smooth the data within a segment. The raw data

is processed first by the sensor model. The sequence of the

valid points are forward to the segment model. When a new

segment is detected, the Kalman filters are reset so that they

can adjust to the sudden changes in the ball’s movement.

Figure 6: The Ball Model

3.2.1. Sensor model

An approach based on a decision tree is implemented in the

sensor model for the classification. Clusters are constructed

according to the dynamic updates of the data sequence. In

each cluster, the data points are close to each other. With

the help of the clusters, the decision tree can be constructed

based on boolean attributes which can be obtained by an-

swering the listed questions.

• Is the data point supported by both LMSs? The point

is called a full-belief point in the true case.

• Does the data point belong to a cluster which has the

maximum point number among all the clusters?

• Does the data point belong to a cluster which contains

full-belief points?

• Is the point in a region where the noise points are de-

tected with high probability? The four corners are this

kind of region because each corner can be observed

by only one LMS.

• Does the point belong to a cluster which is updated

very often?

• Does the point belong to a newly-created cluster?

• Will the point generate high innovation if it is used to

update the Kalman filters?

3.2.2. Kalman filters and segmentation

The data from LMSs is a distance-angle pair. We need to

transform them to (x, y) position. Because of the transfor-

mation, extended KFs should be employed for the tracking.

However, we choose discrete KFs. The reasons are discrete

KFs save computational power significantly, when they are

used separately for x and y. And they do not perform worse

than an extended KFs in the experiments. The discrete KFs

are updated according to the time and measurement update

functions which are already standard [6]. We skip them

here.

By considering the position, velocity and acceleration,

we implemented an approach using triple-integrator KFs

which is widely used and has excellent performance in many

applications [10]. Here we only explain it briefly. Equation

1 defines the vector of x, where vx is the velocity along x

direction, ax is the acceleration. The update of ~X is gov-

erned by Equation 2, with Ax is defined in Equation 3. ∆t

is the time span since last data slice. The process noise wk

is defined in Equation 4, where the Q matrix can be com-

puted dynamically by Equation 5. The belief factor b can be

adjusted to trade-off the prediction and the measurement.
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3.2.3. The evaluation model

The ball module has the functionality of classifying, seg-

menting, and smoothing the data sequence. These func-

tionalities are based on the data from the past. From an-

other point of view, we can evaluate the performance of the

ball module without any temporal limitation. For example,

both the data from the past and the data from the future can

be used for classifying the current point. According to this

principle, we implement an evaluation model which follows

three rules listed below.

• A valid data segment should contain at least three

full-belief points.

• A point belongs to a data segment if its distance to the

closest point in the segment is within 3mm.

• The more points are included, the better the perfor-

mance the system gets.

3.2.4. The active elements and the learners

With the help of the evaluation model, we can develop sev-

eral learners to improve the performance of the system. As

the medium for the improvement, four active elements are

found. They are shown in Figure 7. decision tree is used

for the classification in the sensor model. segment thresh-

olds are the time and innovation thresholds in the segment

model. Belief factor trades off the prediction and measure-

ments in triple-integrator KFs. This factor affects the inno-

vation threshold used in the segment model, which will reset

KFs when a data point generates a high-grade innovation.

Training set can be regarded as the results of the evalua-

tion. Each example in the set contains seven attributes and a

class label. The attributes are provided by the sensor model.

The class label comes from the evaluation. Four learners

are implemented to learn the active elements from the data.

The learning tasks are listed as below.

1. Learning the training set from the output of the ball

module

2. Learning the decision tree from the training set

3. Learning the segmentation thresholds by maximizing

the point number in the output of the ball module.

Figure 7: Active Elements

4. Learning the belief factor by minimizing the average

innovation of the KFs

As there are not so many learners, we developed a sim-

ple attention model in which each iteration has seven steps:

E, 1, 2, E, 3, E, 4. In an E step, the performance of the

system is evaluated.

3.3. Experiments

X Position Y Position

Figure 8: Offline Learning

We use the recorded data shown in Figure 5 for offline

learning. The implemented SAL system is run on the data

for six iterations. The results are shown in Figure 8. The

first row is the valid trajectory of the ball which is obtained

manually. The second row shows the output of the learned

system. Although there are a few noise-points left in the



trajectory, the results are satisfying. This noise remains be-

cause the decision tree does not have enough attributes to

classify them apart from the valid points. The third row

shows the improvements over the iterations. In this fig-

ure, the horizontal is the number of the E steps that are

performed. The solid curve shows the changes of the out-

put number of the ball module. The doted line shows the

changes of the valid point number in the evaluation. After

about six E steps, which are two iterations, the learning con-

verges to the satisfying results. The learning curves indicate

that a better ball module enlarges the ability of the evalua-

tion, while a better evaluation improves the ball module.

X Position y Position

Figure 9: The Selected Data Segment in Online Testing

The trained system is tested in an online manner. We

found that the ball can be tracked in real-time, and its trajec-

tory is smooth enough. We select a segment of data, which

is illustrated in the first row of Figure 9. The output of the

system is shown in the second row. In the figure, the ball

is lost when it is in a corner. The reason is that the corners

are regarded as the noisy regions which are not important

for the game. Therefore we can conclude that the trained

system stays stable on the unknown data.

4. CONCLUSION AND PERSPECTIVE

In this paper, the Switching Attention Learning (SAL) frame-

work is introduced, in which different learners can be plugged

together. The learners are cooperative supporting introspec-

tion and incremental learning. The basic principle is that

improving one model in the system generates more improve-

ment space for the others. We discussed the related prob-

lems, advantages, and the application domains of the SAL.

The first application of SAL is implemented for track-

ing the game ball in table soccer. There are four active el-

ements in the application, a decision tree for classification,

the training set for building the decision tree, the belief fac-

tors for KFs, and the thresholds for segmentation. We devel-

oped four learners for these elements and implemented an

attention model for the iterations over these learners. The

experiments show that the application is successful for the

tracking task. The intended improvement space is generated

by the learners in the system.

In the future, we plan to implement more complex SAL

systems. The SAL will be applied in applications such as

table soccer robots and playing Tetris against human play-

ers.
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