
Automated Data Management Workflow
Generation with Ontologies and Planning

PuK 2016 submission

University of Freiburg, Germany
{bwright,mattmuel}@informatik.uni-freiburg.de

Abstract. When working with data management systems, it is often
required to specify and model the data within the system. Ontologies
are a widely used method of defining data and its relations within a
system by defining concepts, properties, and roles. In addition to the
definition of the data structures, workflows are required for adding new
knowledge to the ontologies. We will show how AI planning can be used
to derive such workflows from the ontology, enforcing the closed world
assumption required for data management systems.

Keywords: planning, data management, workflow management, on-
tologies

1 Introduction

Data management deals with all issues arising during the life cycle of data as a
resource. One major issue is the definition of the actual data: Which data types
are there and what kind of information is to be stored about them. During the
development of a data management system for archiving research data, we were
confronted with two of these aspects: How should the data be modelled, and
how should the workflows for archiving this data be managed. As a solution
to the first issue, ontologies where chosen. Ontologies can be used to model the
structure of data, the relationships between pieces of data, and its context within
an organization (e. g., who created the data). An ontology consists of two parts,
the TBox which holds the concept, role, and property definitions, and the ABox
which holds the actual instances of the concepts, roles, and properties. In the
TBox, concepts and properties are used to model data types. For instance, the
concept Book can be defined and the property title can be added to this concept.
Then roles can be added to put the concepts into relations with each other, e. g.,
a role isAuthorOf which puts a person and a book into an authorship relation.
In addition to the definition of the data types, workflows are needed to add
the data to a data management system, and to perform administrative tasks
on them. A workflow in the context of ontology-driven data management can
be defined as sequence of assertRole, create, select statements which transform
the initial ABox A into a target ABox A′ such that A′ ≡ A ∪ B with B a
set of target assertions. Although ontologies operate in an open world context,



we require each object that is used for an assertion to be created prior to its
first use. This enforces a closed world paradigm required for data management.
This requirement introduces acyclic dependencies between the assertions in the
workflow, generating a natural ordering of actions to be taken. Additionally, some
actions will be taken by humans, introducing some nondeterministic effects to
the workflow, which necessitates branching depending on the user input. This
has the effect that the sequence in which assertions have to occur is non-trivial.
Hoffmann et al. [12] showed that deriving workflows can be achieved by means
of AI planning. However, they used SAP’s proprietary SAM (Status and Action
Management) model for generating the planning domain. We will show how
knowledge from an ontology can be translated into a planning task with the
goal of finding a sequence of actions which creates the aforementioned assertions.
Additionally to the non-trivial sequence of actions, data management systems
can consist of hundreds of data types, making the task of modelling each workflow
manually very labour intensive. Therefore, an automated approach was chosen
for our archival system mentioned above.

Technically speaking, we define a state of a workflow as a tuple s = 〈T,A,C〉,
where T is a TBox, A is an ABox, and C is a set of individuals that were already
created. We use C to allow working in a closed-world setting where objects need
to be created before any assertion about them can be made. Then, a problem
instance P is an initial state s0 = 〈T,A0, C0〉 of a workflow plus a target assertion
a0, which is a triple (i, j) : r consisting of two individual names i and j and a role
name r. For simplicity, we assume that the initial TBox T is fixed and cannot
be modified, and that the initial ABox A0 is empty. C0 may or may not contain
any elements. We allow the following modifications of a state s = 〈T,A,C〉 as
part of the workflow we want to construct: A create statement creates a new
individual not yet in C and adds it to C, and an assertRole statement adds a
new role assertion to A putting two individuals previously created into a role
relationship (for a specific role name r). Create statements are only allowed if
the individual to be created is not yet in C, and assertRole statements are only
allowed if the relevant individuals have been created before. A solution to P
is then a sequence a0, . . . , an−1 of assertRole and create statements producing
states s1, . . . , sn such that (i) statement ai is allowed in state si, that (ii) state
si+1 results from applying statement ai to state si, i = 0, . . . , n − 1, and that
(iii) in state sn = 〈T,An, Cn〉, the target assertion holds, i. e., that An |= a0.

Notice that this only allows linear workflows where all relevant individuals
are either already created (and known to be created) prior to the workflow exe-
cution, or explicitly created during the workflow. A more expressive framework
would additionally allow select statements as part of a workflow, modelling that
a user attempts to select a desired individual from a list of known individuals.
However, this user interaction would introduce nondeterminism and hence pos-
sibly branching workflows that we do not yet support, but rather consider to be
future work.

In order to obtain a solution to P , we translate P to a planning task Π(P )
that is solvable if and only if P has a solution and such that every plan π(Π(P ))



for Π(P ) translates back to a solution τ(π(Π(P ))) to P using an appropriate
plan-to-statement-sequence translation function τ .

Motivating Scenario. Ontologies can be used to model a wide range of knowledge.
This leads to the issue that for each new ontology, applications working with this
knowledge need to be adapted. These applications usually provide some means of
adding or manipulating the knowledge in the ontology, implementing workflows
defined by individuals or organisations. Manually creating these workflows for
large knowledge bases can be very tedious. Therefore, means of generating these
workflows automatically provides a major improvement to such systems. Our
main motivation arose during the development of a software system for long-
term preservation of research data. During this, the requirement for modelling
document types together with workflows for their creation arose. Consider for
instance an ontology modelling the document type Article, with roles putting
the article into context, such as a role isAuthorOf relating persons to articles,
or a role isFundingAgencyOf relating funding agencies to articles. One workflow
could now describe the action required for adding a new article to the knowledge
base. This could consist of uploading a file and selecting a set of authors from
a list of people already in the system. Similarly, a list of funding agencies can
be selected. Additionally, new people or agencies might need to be added to
the knowledge base. What we want to achieve is an automated way of deriving
such workflows from the knowledge stored in a given ontology. We would like to
emphasize at this point, that this paper presents our preliminary results, and
should serve as starting point for discussions and feedback.

2 Related Work

As mentioned in the introduction, Hoffmann et al. [12] showed that AI planning
can be used to create workflows for business process management. However, they
used SAP’s internal SAM model for modelling the business objects, where each
business object is associated with status variables and possible actions. In con-
trast, we do not a-priori associate elements from our ontology to possible actions
in our planning domain, but rather generate the actions during the translation
process from ontology to PDDL. Bouillet et al. [4] presented a framework which
allows the problem to be modelled using OWL ontologies. However, each action
is modelled explicitly as an ontology pattern. Even though this provides a very
flexible way of defining problem domains, we focus on generating sequences of
assertions without their explicit modelling. To our knowledge, no previous work
exists focusing on deriving plans for adding new knowledge to an existing ontol-
ogy, based solely on the existing ontology. A different approach to adding new
knowledge to an existing ontology is show in Calvanese et al. [5], who show how
actions defined in Knowledge and Action Bases, more precisely state bounded
KABs, are used in ADL planning for manipulating the original ontology. However
they use a defined set of actions which are on the one hand more flexible, but also
introduce additional complexity during the knowledge base modelling. Related



work also contains work on automated web service composition via planning [3],
discussing which in detail would go beyond the scope of this paper.

3 Background

In this section, we introduce the required background to our work, starting with
the definitions used in ontologies followed by an introduction to planning.

3.1 Ontologies

Ontologies can be used to structure knowledge by defining concepts and rela-
tionships between concepts, adding structure to otherwise unstructured data.
An ontology thereby consists of two parts: The TBox holding the definitions
outlining the terminology of the knowledge base, and the ABox consisting of
the elements representing the actual state of knowledge. The terms in the TBox
are concepts which identify individuals as instances of given concepts, and roles
denoting binary relationships between concepts. In the ABox, the concepts and
roles are instantiated in the form of individuals (concept assertions) and roles
(role assertions) [1]. During ontology development, the terms object property and
data property will occur. Object properties refer to roles regarding two individu-
als of the type concept assertions, whereas data properties refer to relationships
between concept assertions and value assertion (String, Integer, Date, . . . ). In
the remainder of this paper, the term property is only used in the context of the
latter. And individuals can be of the form concept assertion or a value assertion.

Description Language. The description language used in this paper will be
FL−f , which supports the following concepts: A (atomic concepts), >,⊥ (top and
bottom concept), C uD (intersection), ∀R.C (value restriction), ∃R.> (limited
existential restriction). Additionally, functional roles are supported. Expanding
to a more expressive description logic will be part of future work.

3.2 Planning

We translate the search for a successful sequence of assertions to the search for
a plan in a corresponding planning task. To model planning tasks, we use the
following framework: A planning task consists of a finite set of finite-domain
state variables, a finite set of operators with preconditions and effects, an initial
state description and a goal condition. To simplify the translation, we translate
to a rather expressive fragment of ADL [18] and refer the reader to the literature
on how to compile this fragment further down to STRIPS [8] or SAS+ [2]. We
allow the following ADL features: negation, disjunction, universal and existential
quantification in preconditions, universal and conditional effects, equality, and
typing. Our notation in the examples below should be largely self-explanatory.
Conditional effects are written as c B e where c is the effect condition and e is
the effect.



The semantics of planning tasks is as usual, i. e., a plan is a sequence of
applicable operators transforming the initial state to a state satisfying the goal
condition. Details can be found in the literature [9, 16]. Notice that we explicitly
do not make an open-world assumption on the planning side, but rather assume
a closed world as usual in classical planning. This guarantess that planners such
as Fast Downward [10] support the language we use. In the following, we will
freely switch between schematic and grounded representations, and, for nota-
tional convenience, use schematic representations to specify operators resulting
from our compilation.

3.3 Open World or Closed World

The closed-world assumption states that everything which is true is also known
to be true. In contrast, the open-world assumption states that if something is not
known to be true, it may or may not be true. No precise statement can be made.
When dealing with ontologies, the open-world assumption is made, which means
that knowledge that is not stated in the ABox may simply be missing. However,
when we deal with AI planning, only knowledge that is known to be true can
be treated as being true, i. e., planning makes a closed-world assumption. This
has to be taken in to account when translating from ontologies to planning. How
this is achieved will be discussed in Section 5.1.

4 Modelling Ontologies for Data Management

To define the data types, first a concept representing this data type needs to
be specified. Then all properties and relations need to be defined. This can be
achieved using FL−f which allows the definition of properties, roles, and concepts.
Some of the properties can be defined as being functional, restricting the amount
of these properties each individual of a concept can be associated with to one.
Roles are defined in the form of triples consisting of the domain, role, and range,
which can be interpreted as concept domain is in relation role with concept
range. Instances of concepts and properties shall be called individuals from here
after. Even though FL−f seems to be a very limited DL, it is expressive enough to
define the data types required in our data management system. Additionally to
the constructors mentioned in Section 3.1, we can use v and ≡(concept inclusion
and concept equivalence) to create our data type definitions. This allows concepts
to be created, properties assigned to these concepts, and concepts to be put into
relation with each other. Consider an example: Defining the concepts Person and
Book, properties name and title, and the role isAuthor, we can define a simple
ontology describing the data type Book as shown in Fig. 1. Yellow boxes represent
concepts, and green boxes represent property value types that are needed to
define data properties. Solid connections represent role relations (individuals
of type Person can be in authorship relations to individuals of type Book),
and similarly, dashed connections represent data properties of the connected
concepts (individuals of type Person have a name, which is a character string,



and similarly, individuals of type Book have a title). The numbers 1 and n
used as edge labels denote whether the pertinent roles/properties are required
to be functional (1) or not (n). Intuitively, there are many ways of defining the
same semantic concept or relation. Therefore it is advised to use a generally
accepted standard for modelling an ontology. One such standard applicable to
data management is the Dublin Core standard [7] which can serve as a starting
point, refining it where necessary. Lenzerini [13] gives a nice introduction to the
use of ontologies in data-management systems, together with some of the arising
issues.

5 From Ontology to Planning Task

We want to faithfully translate the knowledge encoded in a given ontology to a
planning task. In this section, the very simple ontology shown in Fig. 1 is used
to illustrate the translation from ontology to planning task.

Fig. 1. Sample Ontology

As we are only interested in generalized workflows, we consider the ABox
to be empty in the initial state. This will guarantee that we create workflows
independently of the current knowledge in the ABox. Using assertions from the
ABox would result in workflows specially targeting certain instances from the
ABox, making the resulting workflow instance specific. Additionally, editing or
deleting assertions from the ontology is currently not supported, and is subject
to further research.

5.1 Creating the Planning Domain

Starting from the target assertion, all relevant concepts, properties and roles are
identified. In this context, relevant means that the concept, role, or property is
in a role or property relation to the target assertion or an element previously
identified as relevant. Relevancy is calculated recursively until reaching the top
element by traversing all super-class relations encountered.



Concepts and Individuals. For each identified concept C, a type tC is added
to the planning task, and an action aC for the creation of individuals of this type
is added to the set of operators, which marks an individual c of type tC as created
by setting a corresponding predicate created(c) to true. This action is needed
to bridge the gap between open-world semantics (ontologies) and closed-world
semantics (planning). Additionally, the type tC is populated with a predefined
number of objects by mentioning them in the initial state. Those objects may or
may not already be created , depending on the current state of the ontology. As
long as they are not created , nothing can be asserted about them. Additionally,
for each role and property, a constant of type role is added to the set of domain
constant symbols. It is noteworthy at this point that we use planning types to
both encode different concepts as well as the “meta types” role, concept, property
and individual. We do this by creating a typing system defining assertion, role,
concept, and individual as elements of type object, and create derived types for
each element from the ontology.

When dealing with complex concepts such as C v A u B we create types
for C, A, and B. Creating an individual of type A and of type B will result in
the creation of two separate elements a and b. For the desired result here, it is
required to create an individual of type C

Roles. In the ontology, roles are used to describe the relation in which two
individuals stand. Similarly, data properties relate individuals to value types. For
a uniform treatment, in the planning task, we deal with roles and data properties
in the same way and hence focus on describing roles here. The only difference
is that data properties are asserted during their concept’s creation actions, and
roles can be asserted individually. So, in the planning task, we introduce a type
role, and for each role name r from the ontology, a constant object mr of type
role.

Assertions. Assertions define which information is explicitly present in the
ontology. TBox assertions state what concepts and roles are defined, and ABox
assertions define the concrete individuals and relations of the given concepts and
roles stored in the ontology. For the planner to be able to deal with the notion of
assertions, we introduce a new type assertion. For roles we then define a subtype
roleAssertion which represents the ontology triples (i, j) : r of individuals i and
j and the role r, which can be interpreted as the individual i is r-related to j.
For each possible role assertion from the subset of relevant roles we create an
object a of type roleAssertion and relate the individuals i and j as well as the
role r to it. This is achieved by adding the following statements to the initial
state of the planning problem: domain(a, i), range(a, j), and role(a, r), which
corresponds to the domain, range and role defined in the ontology. Notice that
we do not need a type conceptAssertion, since we do not allow new concept
assertions to be made during the planning process. Rather, each individual is
fixed to belong to a certain set of concepts in the initial state of the planning
task and this can never change. This process introduces many roleAssertions



which might never be used, however, since we limit the possible assertions to
the ones identified as relevant in the previous step, the amount of assertions to
be taken in to account during planning is bounded by the number of relevant
assertions, not to the size of the whole ontology. This greatly reduces the overall
complexity of the planning task.

Actions. Actions will differ for each ontology, as they are dependent on the
concepts, properties and roles. However one action will be consistent over all
ontologies and is required for the above mentioned role assertions. An action
assertRole is therefore defined. It takes as parameters two individuals i and j,
and one role name r. It then selects an existing roleAssertion which matches
these parameters, and marks it as asserted , indicating that, as a result of this
action, the role is asserted to the ontology’s ABox.

Operator = assertRole(i : individual , r : role, j : individual)

pre = created(i) ∧ created(j)

eff = ∀a : roleAssertion(
(domain(a, i) ∧ role(a, r) ∧ range(a, j))

B asserted(a)
)

For each subtype of individual, a create action is required. The create actions
for properties are fairly straightforward as the action takes an individual of the
creation type as a parameter and marks it as created in its effect. This ensures
that all properties used in later create or assert actions are created prior to their
use, enforcing the required closed-world paradigm.

Operator = createProperty(p : property)

pre = ¬created(p)

eff = created(p)

Each concept from the ontology requires its own create action, which also
takes all its functional properties as parameters. This ensures that the correct
properties are assigned to the new instance of the concept. The precondition
of the action checks if the passed properties are created prior to their use and
are not in use by a different roleAssertion, thus not assigned to another indi-
vidual. The effect of this action is that each property individual is asserted as
a roleAssertion associating the property to the concept individual, and the new
concept individual is marked as created . At this point it should be stated that
when dealing with concept intersection, it is required to create the exact type.
Let A v B u D, creating an individual of type B and D is interpreted as two
separate individuals, and thus not an instance of A. To create an instance of
type A, it has to be created explicitly. On the other hand, creating an element



of type A will have all properties associated with B and D.

Operator = createConcept(c : tC , [p1 : P1, . . . , pn : Pn])

pre = ¬created(c) ∧ created(p1) ∧ · · · ∧ created(pn)∧
¬∃i1 : individual , a1 : roleAssertion(

domain(a1, i1) ∧ role(a1, rolep1) ∧ range(a1, p1) ∧ asserted(a1)
)
∧

∃i1 : individual , a1 : roleAssertion(
domain(a1, i1) ∧ role(a1, rolep1) ∧ range(a1, p1)

)
∧

. . .

¬∃in : individual , an : roleAssertion(
domain(an, in) ∧ role(an, rolepn) ∧ range(an, pn) ∧ asserted(an)

)
∧

∃in : individual , an : roleAssertion(
domain(an, in) ∧ role(an, rolepn) ∧ range(an, pn)

)
eff = created(c)∧

∀a1 : roleAssertion(
(domain(a1, c) ∧ role(a1, rolep1) ∧ range(a1, p1)) B asserted(a1)

)
∧

. . .

∀an : roleAssertion(
(domain(an, c) ∧ role(an, rolepn) ∧ range(an, pn)) B asserted(an)

)
Here, rolepn

is the role associated with the property pn, tC the type of the concept
C, and P1, . . . Pn are the types of the properties. In the precondition section it
is first ensured that there are no assertions with the passed parameter and any
other individual or role, which is already marked as asserted. This ensures that
the concrete property has not yet been used. Secondly the existence of such a
roleAssertion is checked. This guarantees that the effect of the action can later
mark the roleAssertion as asserted.

5.2 Creating the Planning Task

This section will discuss how the planning problem can be generated from the
target assertion and the ontology. Starting from the target assertion, all related
concepts, roles, and properties are identified. For each of these identified ele-
ments, a corresponding object (representing an individual of that type) is added
to the set of task-dependent constants and initialized in the initial state s0.
We can see now that all concepts are treated as domain-dependent constants,
and individuals are treated as task-dependent constants. Planning objects for
all elements required for the target assertion together with all its related ele-
ments (properties, roles, concepts) are then initialized in s0 by associating the
properties to their respective concept instance. This is achieved by adding the
corresponding roleAssertions to s0.



Similarly the roles are constructed by adding objects for domain, range, and
role assertion to the planning task, and initialising them in s0, whereby existing
range or domain objects must be taken in to account. This is achieved by creat-
ing unique identifiers for each object. By doing this for all concepts, roles, and
properties encountered during the identification of related elements of the target
assertion, we ensure that in the goal state s? all objects will have been created
or asserted, ensuring that the newly asserted knowledge holds even under the
closed-world assumption.

If the target assertion was defined as being a concept assertion, then we add
this assertion to the goal description of the problem as created(a0), equally, if
the target assertion was a role assertion, then we add it to the goal state as
asserted(a0).

An Example Plan. Consider again the very simple ontology from Figure 1
and the goal of annotating a person as an author of a book. The target asser-
tion would then be (person1 , book1 ) : isAuthor for arbitrary but fixed individ-
uals person1 of type Person and book1 of type Book . Executing our tool as
described above would identify Person, name, Book , and title as relevant ele-
ments, and require (person1 , book1 ) : isAuthor to be asserted in the goal state.
Four individuals would be generated in the initial state of the problem, which
the planner would try to set as created . These individuals would be a Person, a
Book , a title, and a name. Additionally, three role assertions would be generated
mapping the name and title to the respective elements, and one for the target
assertion (person1 , book1 ) : isAuthor . A resulting plan would be as follows:

createname unknownname

create person1 unknownname

createtitle unknowntitle

createbook book1 unknowntitle

assertRole person1 isauthor book1

This plan can be interpreted as:

1. Create a Person person1 with the name unknownname.
2. Create a Book book1 with the title unknowntitle.
3. Define person1 as author of book1.

6 From Plan to Workflow

A plan for the planning task resulting from our translation is a sequence of create
and assert statements. These can be used to define the steps in a workflow. Each
create step either creates a concept instance or a property. The create actions
of properties can be interpreted as user input. Therefore the concept instance
creation steps can be grouped together with their respective property creations to
create a single workflow step. Due to the fact that all objects (concept instances



and properties) are created prior to their usage, assert actions can be executed
without further user input, and can be treated as separate workflow step. These
assert steps will usually then be executed automatically, but depending on the
application might be triggered manually.

Workflow Definition. Many ways exist for formal definition of workflows, among
them the XML Process Definition Language(XPDL) [19], and the Business Pro-
cess Model and Notation (BPMN) [17]. Since the requirements of the data man-
agement system in development were very limited, a very lightweight workflow
definition was developed. This simple system consists of steps to be executed in
a linear workflow. For the workflow to be executed on multiple applications, a
JSON encoding was chosen. Each step is hereby defined by a list of actions to
be taken and a list of resulting ontology assertions. The sequence in which these
steps need to be taken is encoded by a simple enumeration. For the addition of
branching in the workflow, a list of follow-up steps may be added to each step,
hereby replacing the simple numbering by unique identifiers.

7 Adding Nondeterministic Actions

In this section we will shortly discuss how the above ideas can be extended to
provide the required nondeterminism, which is introduced by user interaction.
In the simplest form this can be interpreted as the user being presented with two
options for creating the same object. Let us say the user is supposed to state the
author of a book. This can be achieved by selecting a person from a list of existing
persons, or, if the required person is not on the list, by adding a new person to
the ontology. In this case we have to model our create actions as nondeterministic
actions, which instead of a single effect, have a set of possible effects. For each
possible outcome of the action, a different plan has to be generated. This has
the consequence that instead of an ordered list of assertions, we are presented
with a tree of actions, with each action having multiple successors.

Such a tree or DAG structure that solves a planning task no matter which
action outcomes take place is called a strong plan [6]. Notice that we really re-
quire strong plans, which are only allowed to branch, as opposed to strong cyclic
plans, which are also allowed to have loops, in our scenario. Finding strong plans
essentially boils down to AND/OR graph search, for which there are various ap-
proaches, including symbolic backward search as used by the mbp planner [6],
informed forward search as used by Contingent-FF [11] and myND [14], and
offline replanning with generalization of subplans as successfully proposed as
part of the Prp planner [15]. Here, we will not go into the details of these algo-
rithms and planners, but rather point out that we can choose any such approach
and use it as a black box to obtain a solution. Integration into our framework is
considered future work.



8 Preliminary Results

In this paper, we showed that AI planning is suitable for generating workflows
for managing knowledge stored and modelled in an ontology. During the devel-
opment of this paper, multiple ontologies where designed for testing, including
the ontology used in our archival system. During our experiments we were able
to fully automatically generate the workflow for asserting a new individual com-
prising of 20 data properties, 12 roles and 13 related concept instances into our
test ontology. The resulting workflows generated showed great promise for real-
world application. Given an ontology O, we were able to generate an ordered list
of assertions achieving the target assertion, by translating the ontology and the
target assertion into a planning task Π, finding a plan π for Π, and converting
this plan back to a workflow achieving the target assertion.

9 Future Work

As mentioned earlier, we would like to extend this work to a more expressive
description logic supporting full ALF functionality. The main issue here will
be identifying the preconditions and effects of the create and assert actions.
Additionally to adding more functionality on the ontology side, migrating to a
more widely used and expressive workflow modelling language such as XPDL or
BPMN would increase the usability in more general scenarios.

In real-world applications, workflows are often executed by multiple agents,
with each agent having certain rights to execute parts of the workflow. Adding
this to our system could be achieved by implementing this in a multi-agent
planning scenario, with each agent having only the actions available, which the
corresponding real-world agent would have the rights to execute.

Large-scale applications will usually have workflows that can be split into
multiple smaller ones, which might be executed multiple times (by multiple
agents). For this, sub-workflow detection needs to be executed, identifying workflows-
sections common to multiple different workflows, and extracting these, so they
can be reused multiple times.

10 Acknowledgements

This work has partly been supported by the German Research Foundation under
grant EXC 1086.

References

1. Baader, F., Nutt, W.: Basic description logics. In: Baader, F., Calvanese, D.,
McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.) The Description Logic Hand-
book, chap. 2, pp. 43–96. Cambridge University Press (2003)

2. Bäckström, C., Nebel, B.: Complexity results for SAS+ planning. Computational
Intelligence 11, 625–656 (1995)



3. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via
planning in asynchronous domains. Artificial Intelligence 174(3–4), 316–361 (2010)

4. Bouillet, E., Feblowitz, M., Liu, Z., Ranganathan, A., Riabov, A.: A knowledge
engineering and planning framework based on owl ontologies. Proceedings of the
Second International Competition on Knowledge Engineering (2007)

5. Calvanese, D., Montali, M., Patrizi, F., Stawowy, M.: Plan synthesis for knowledge
and action bases. In: Proc. of the 25th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2016). AAAI Press (2016), to appear

6. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic
planning via symbolic model checking. Artificial Intelligence 147(1–2), 35–84 (2003)

7. Dublin Core Metadata Initiative: Dublin Core (April 2016), http://http://

dublincore.org/

8. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3), 189–208 (1971)

9. Geffner, H., Bonet, B.: A Concise Introduction to Models and Methods for Auto-
mated Planning (2013)

10. Helmert, M.: The fast downward planning system. Journal of Artificial Intelligence
Research (JAIR) 26, 191–246 (2006)

11. Hoffmann, J., Brafman, R.: Contingent planning via heuristic forward search with
implicit belief states. In: Proc. 15th International Conference on Automated Plan-
ning and Scheduling (ICAPS 2005). pp. 71–80 (2005)

12. Hoffmann, J., Weber, I., Kraft, F.M.: SAP Speaks PDDL: Exploiting a Software-
Engineering Model for Planning in Business Process Management. Journal of Ar-
tificial Intelligence Research 44, 587–632 (2012)

13. Lenzerini, M.: Ontology-based data management. In: Proceedings of the 20th ACM
International Conference on Information and Knowledge Management. pp. 5–6.
CIKM ’11, ACM, New York, NY, USA (2011), http://doi.acm.org/10.1145/

2063576.2063582

14. Mattmüller, R., Ortlieb, M., Helmert, M., Bercher, P.: Pattern database heuris-
tics for fully observable nondeterministic planning. In: Proc. 20th International
Conference on Automated Planning and Scheduling (ICAPS 2010). pp. 105–112
(2010)

15. Muise, C., McIlraith, S.A., Beck, J.C.: Improved non-deterministic planning by
exploiting state relevance. In: Proc. 22nd International Conference on Automated
Planning and Scheduling (ICAPS 2012) (2012)

16. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice (2004)
17. Object Management Group: Business Process Model And NotationTM(BPMNTM)

(April 2016), http://www.omg.org/spec/BPMN/
18. Pednault, E.: ADL: Exploring the middle ground between STRIPS and the situ-

ation calculus. In: Proc. 1st International Conference on Principles of Knowledge
Representation and Reasoning (KR 1989). pp. 324–332 (1989)

19. Workflow Management Coalition: XPLD (April 2016), http://www.xpdl.org/


