
Qualitative CSP, Finite CSP, and SAT: Comparing Methods
for Qualitative Constraint-based Reasoning

Matthias Westphal and Stefan Wölfl

Department of Computer Science, University of Freiburg

Georges-Köhler-Allee, 79110 Freiburg, Germany

{westpham, woelfl}@informatik.uni-freiburg.de

Abstract

Qualitative Spatial and Temporal Reasoning (QSR)
is concerned with constraint-based formalisms for
representing, and reasoning with, spatial and tem-
poral information over infinite domains. Within
the QSR community it has been a widely ac-
cepted assumption that genuine qualitative reason-
ing methods outperform other reasoning methods
that are applicable to encodings of qualitative CSP

instances. Recently this assumption has been tack-
led by several authors, who proposed to encode
qualitative CSP instances as finite CSP or SAT in-
stances. In this paper we report on the results of
a broad empirical study in which we compared
the performance of several reasoners on instances
from different qualitative formalisms. Our results
show that for small-sized qualitative calculi (e.g.,
Allen’s interval algebra and RCC-8) a state-of-the-
art implementation of QSR methods currently gives
the most efficient performance. However, on re-
cently suggested large-size calculi, e.g., OPRA4,
finite CSP encodings provide a considerable perfor-
mance gain. These results confirm a conjecture by
Bessière stating that support-based constraint prop-
agation algorithms provide better performance for
large-sized qualitative calculi.

1 Introduction

Qualitative reasoning is concerned with representation for-
malisms that are considered close to conceptual schemata
used by humans for reasoning about their physical
environment—in particular, about processes or events and
about the spatial environment in which they are situated.
The approach in qualitative reasoning is to develop relational
schemas that abstract from concrete metrical data of entities
(for example, time points, coordinate positions, distances)
by subsuming similar (geo-) metric or topological configu-
rations of entities into one qualitative representation. Given
a fixed granularity, one identifies a set of relations to be used
in disjunctive qualitative statements, which express indefinite
and imprecise knowledge about the application domain. At
the heart of qualitative reasoning is solving of constraint net-
work over infinite domains by reasoning with so-called com-

position tables. Composition tables encode semantic, i.e.,
domain-specific information about possible (spatial or tem-
poral) configurations between two entities if information is
available about how these entities are related to some third
entity. An adaption of the path consistency algorithm used
in the finite CSP domain allows for successively refining the
information between each pair of entities under considera-
tion. For many qualitative formalisms, the path consistency
method combined with backtracking search techniques pro-
vides an (NP-complete) decision procedure for determining
whether a given qualitative description is satisfiable.

The need for genuine qualitative methods has been ques-
tioned by Brand [2004], who pointed out several advantages
of a “(qualitative) relations as variables”-approach: the idea
here is to solve problem instances in qualitative reasoning
by encoding them as finite constraint satisfaction problems.
Moreover, in a more recent empirical study [Pham et al.,
2006], it has been shown that in the case of temporal reason-
ing, SAT solvers applied to a suitable encoding of qualitative
temporal reasoning instances can outperform qualitative rea-
soners such as the reasoner by Nebel [1997].

The aim of the paper is to analyze the benefits of genuine
qualitative reasoning methods. For this, we will compare the
reasoning performance of the Generic Qualitative Reasoner
(GQR) [Gantner et al., 2008], which implements the state-of-
the-art techniques in QSR, against the reasoning performance
of automated reasoning tools from the CSP and SAT domain,
namely the CSP solver Mistral [Hebrard, 2008] and the SAT

solver MiniSat [Eén and Sörensson, 2003]. This will enable
us to compare established QSR algorithms to those used in
the finite CSP and SAT domain.

The outline of this paper is as follows: in the next section
we will sketch the usual representation and reasoning meth-
ods used in QSR. Section 3 deals with encoding schemes used
for translating qualitative constraint networks into finite CSP

and SAT instances. In section 4 we outline some theoreti-
cal considerations regarding the different representation for-
malisms, which will help to understand and compare the test
results; these will then be reported on in section 5. The sum-
mary and outlook in section 6 completes the paper.

2 Formal Background

In what follows let D be a fixed non-empty set. A rela-
tion system B over D, is any non-empty set of relations de-



fined on D. Given a relation system B, a constraint net-
work over B is defined by a triple N = 〈V, D, C〉, where
V is a finite set of variables, D is a non-empty set of val-
ues for the variables in V , and C is a finite set of con-
straints, i.e., pairs (s, R), where s = (v1, . . . , vns

) is a non-
empty sequence of variables and R is an ns-ary relation in
B. W. l. o. g., we assume that constraint networks contain for
any set of variables {v1, . . . , vn} at most one constraint with
scope s = (v1, . . . , vn). A solution of a constraint network
〈V, D, C〉 is a function ∗I : V → D such that for each con-
straint (s, R) in C, sI := (vI

1 , . . . , vI
ns

) ∈ R. A constraint
network is said to be satisfiable if it has a solution.

While in the CSP field only problem instances with finite
variable domains are considered, constraint networks in QSR

are defined on infinite domains, which entails that typical rea-
soning techniques known from the CSP domain (such as arc
consistency or path consistency) are no longer directly appli-
cable. Hence, the idea in QSR is to restate constraint satisfac-
tion problems on a symbolic level such that reasoning about
specific variable assignments can be replaced by manipula-
tion of symbol sets. To explain this further, we define:

Def. 1 ([Ligozat and Renz, 2004]). A partition scheme on
a domain D is a finite set, B, of binary relations on D that
forms a partition of D×D, contains the diagonal (or identity)
relation {(x, x) : x ∈ D}, and is closed under converses (i.e.,
B−1 := {(y, x) : (x, y) ∈ B} ∈ B for B ∈ B). The elements
of B are referred to as base relations of the partition scheme.

Let B∗ denote the relation system consisting of all possi-
ble unions of base relations from some fixed partition scheme
B on D. A (binary) qualitative constraint network is a con-
straint network over B∗ for some partition scheme B.

Let (SB)B∈B be symbols to denote the relations in the par-
tition scheme B. We use a set notation to denote unions of
base relations (elements of B∗), that is, constraints in a quali-
tative constraint network can be written in the form

〈(x, y), {SB1
, . . . , SBk

}〉 (1)

for relations B1, . . . , Bk ∈ B. Moreover, we can represent a
constraint network N = 〈V, D, C〉 on the symbolic level by
its primary constraint graph G = 〈V, l〉, where V is just the

sets of variables of N and l : V × V → 2{SB : B∈B } is the
partial function that assigns to each constraint scope (x, y)
the symbol set {SB1

, . . . , SBk
}, where B1 ∪ · · · ∪ Bk is the

constraint relation between x and y. To turn l into a total func-
tion, we assign to each variable pair (x, y), which is not the
scope of a constraint, the set of all relation symbols (which
denotes the universal binary relation on D).

Note that we do not require that B is closed under compo-
sition, i.e., we do not enforce that B ◦ B′ ∈ B∗ for arbitrary
B, B′ ∈ B. Instead, composition of concrete binary relations
is replaced by a symbolic approximation (weak composition)

SB ; SB′ := {SB′′ : B′′ ∩ (B ◦B′) 6= ∅ }.

For R ∈ B∗ with R = B1 ∪ · · · ∪ Bm, we set SR :=
{SB1

, . . . SBm
}. Then we can define two operations on

the set 2{SB : B∈B }, namely symbolic converse S
`

R :=
{SB−1 : B ∈ R} and symbolic composition SR ; SR′ :=
⋃

B∈R,B′∈R′ SB ; SB′ . These two operations (restricted to

base relations of a partition scheme) provide the important
information that is fed into a qualitative reasoner in order to
specify a qualitative formalism (also often referred to as qual-
itative calculus).

A constraint graph (V, l) is said to be path-consistent (or:
algebraically closed) if (a) no label is empty and (b) l(x, y) ⊆
l(x, z) ; l(z, y) for each triple of variables x, y, z in V . Note
that this notion is weaker than the notion of path consistency
known from finite CSP that requires that each two-variable
assignment consistent with the constraint network can be ex-
tended to a consistent three-variable assignment.

A constraint graph (V, l) is said to be a refinement of a
constraint graph (V, l′) if l(x, y) ⊆ l′(x, y) for each pair
of variables from V . Each constraint graph can be refined
(in polynomial time) into a constraint graph, which is path-
consistent or inconsistent (that is, it has empty labels). This
can be achieved if we successively refine each of the labels
l(x, y) (for variables x and y) by applying the operation

l(x, y)← l(x, y) ∩ (l(x, z) ; l(z, y)), (2)

where z is any third variable occurring in the network. Im-
plementations of this method are usually based on some vari-
ant of Mackworth’s path consistency algorithm (see, e.g.,
[Bessière, 1996]), which uses queues to store those arcs or
triangles in the network that need to be reprocessed due to
previous refinements of the network.

Def. 2. Let B be a partition scheme. A subset B′ of B∗ is
said to be a tractable subclass if the path consistency method
applied to constraint networks over B′ decides satisfiability.

If the path consistency method decides satisfiability of con-
straint networks with only base relations from a partition
scheme B, a constraint network over B∗ is satisfiable if and
only if it has a path-consistent refinement over B. By us-
ing backtracking search methods, one can systematically try
out different atomic refinements of a given constraint graph
(a refinement is atomic if all labels are singleton sets) and
check them for satisfiability. Moreover, by using tractable
subclasses of a relation system, one can speed up the reason-
ing time: instead of splitting a constraint during backtracking
into base relations, one can split it into relations belonging
to a tractable subclass, which reduces the branching factor of
the search tree considerably [Nebel, 1997].

3 Encodings of Qualitative CSP

In this section we discuss encodings of qualitative reasoning
problems, first as an equivalent finite CSP problem and then
as a SAT instance (i.e., as propositional CNF formula). Both
encodings make essential use of the composition table of the
qualitative formalism, that is, the function ; : B × B → 2B

(here and in what follows we identify relations and their sym-
bols). Certainly there is a variety of different, equivalent en-
codings such that we need to restrict our considerations to one
encoding for both finite CSP and SAT. In particular, we do
not consider a specific encoding for each calculus, but rather
look at the general problem of reasoning with any (binary)
qualitative constraint calculus, i.e., we are interested in algo-
rithms for the general case and not in specific domain-tailored
encodings.



3.1 Finite CSP Encoding

Qualitative constraint networks can be encoded as finite CSP

instances [Renz and Nebel, 2001; Brand, 2004; Condotta et
al., 2006]. Given the constraint graph of a qualitative con-
straint problem 〈V, l〉 with V = {v1, . . . , vn}, we obtain a
finite constraint satisfaction problem by using a variant of the
so-called dual constraint problem: Let X be a set of variables
containing a variable xij for each pair of variables vi, vj ∈ V
with i < j. Then the dual problem has the form:

〈X,B, {Cij : 1 ≤ i < j ≤ n} ∪ {Cijk : 1 ≤ i < j < k ≤ n}〉

where Cij is a domain constraint restricting the values of xij

to the elements of l(vi, vj) and Cijk is a binary constraint
that enforces variables xij , xjk (“qualitative edges”) to as-
signments, where vj takes the same value. However, on infi-
nite domains this scheme does not work. Therefore, instead
of these binary constraints, we use a set of ternary constraints

TC = { ((xij , xik, xkj), R;) : 1 ≤ i < j < k ≤ n }

where R; := {(B′′, B, B′) ∈ B3 : B′′ ∈ B ; B′}. The

resulting finite network has
n·(n−1)

2 variables and
(

n
3

)

=
(n−1)3−(n−1)

6 TC constraints.
A solution of this finite CSP instance corresponds to an

atomic, path-consistent refinement of the qualitative con-
straint network, and vice versa [Condotta et al., 2006]. This
means that on the symbolic level consistent (not necessarily
satisfiable) qualitative CSP instances correspond to consistent
(satisfiable) finite CSP instances (note that in general a quali-
tative constraint network needs not be satisfiable even if it has
an atomic and path-consistent refinement).

3.2 SAT Encoding

Various different encodings of CSP into SAT instances have
been proposed in the literature (see e.g., [Walsh, 2000]). Here
we will restrict consideration to the 1D support scheme in-
troduced by Pham et al. [2006] for qualitative temporal net-
works. They show that the 1D support scheme gives better
results than direct and log encodings for Allen’s interval cal-
culus. It can be sketched as follows: Given the finite CSP

encoding of a qualitative constraint network
〈

X, (l(vi, vj))xij∈X , TC
〉

(3)

(where now the unary constraints are written as variable de-
pendent domains), we introduce propositional variables xB

ij

for each xij ∈ X and B ∈ l(vi, vj). To represent the disjunc-
tive nature of the constraints, we add the clauses

xB1

ij ∨ · · · ∨ xBk

ij

for each xij (where l(vi, vj) = {B1, . . . , Bk}) in order to
assert that at least one value is assigned to xij , and

¬(xBk

ij ∧ xBl

ij )
(

≡ ¬xBk

ij ∨ ¬xBl

ij

)

for each xij and distinct Bk, Bl ∈ l(vi, vj) to have at most
one value assigned. For the TC constraints we add clauses

(xBl

ij ∧ xBm

jk )→ (xB1

ik ∨ · · · ∨ xBn

ik )
(

≡ ¬xBl

ij ∨ ¬xBm

jk ∨ xB1

ik ∨ · · · ∨ xBn

ik

)

for all variables xij , xjk, xik (i < j < k) and relations Bl ∈
l(vi, vj), Bm ∈ l(vj , vk), where {B1, . . . , Bn} = (Bl;Bm)∩
l(vi, vk).

This scheme gives a propositional formula that is equiva-
lent to the finite CSP instance. It should be mentioned that the
generated formulas are quite large. For a qualitative CSP with
n variables we obtain a propositional formula with O(n2 · b)
variables and O(n3 · b2) clauses. For the empirical tests pre-
sented later we preprocessed constraint networks using the
path consistency algorithm (as suggested by Pham et al.) to
reduce the domain sizes of variables in the finite CSP, before
encoding it into the SAT formula. Still, some of our instances
were as large as 600 MiB.

4 A Theoretical View

Before we present our empirical results, we discuss some the-
oretical background on the considered reasoning approaches.

4.1 CSP Solvers vs. Qualitative Constraint Solvers

As has been pointed out by Condotta et al. [2006], general-
ized arc consistency (GAC) is equivalent to path consistency
in QSR, when applied to the finite CSP encoding of a quali-
tative CSP instance. Hence, any CSP solver that uses gener-
alized arc consistency as constraint propagation achieves the
same pruning as a typical qualitative solver. Since the effi-
ciency of the constraint propagation is crucial for any con-
straint solver, we consider it useful to compare the path con-
sistency algorithm from QSR to established GAC-variants.
Note that, if we assume the same pruning behavior and ne-
glect tractable subclasses, the explored search space is, in
principle, the same.

The path consistency algorithm from QSR can be consid-
ered a coarse-grained arc consistency algorithm on the en-
coded qualitative CSP. Such coarse-grained arc consistency
algorithms consist of a main loop that stores and iterates over
a queue of unprocessed variable-constraint pairs and a revise
function, which prunes those values from the domain of the
variable that have no support, i.e., that cannot be part of a sat-
isfying assignment of this constraint, given the possible val-
ues of the other involved variables.

Typically, a revise function performs a loop over the val-
ues of the domain and checks for a support. Contrary to this,
the path consistency algorithm from QSR requires to com-
pute the refinement function (2) which in the end results in a
removal of unsupported values, but might perform unneces-
sary computations while calculating the ;-composition in (2).
Bessière [1996] has shown that a support-based revise func-
tion is more efficient than a naı̈ve implementation of the ;-
function for Allen’s interval calculus. Furthermore, Bessière
conjectures that the difference in performance grows even
more for partition schemes with considerably more base re-
lations. But there are other means by which one can speed
up the computation of compositions, without switching to
a support-based concept (e.g., via precomputation of non-
atomic composition results [Ladkin and Reinefeld, 1997]).
In the following, we give their complexities in comparison to
GAC variants: let e be the number of edges in the finite CSP, b
be the number of base relations in the partition scheme, and d



be the maximal domain size in the finite CSP (as given in the
form of equation (3)), i.e., d ≤ b. As previously discussed,
e corresponds to

(

n
3

)

∈ O(n3), where n is the number of
variables in the considered qualitative CSP instance. For the
constraint propagation, we can give the following worst case
complexities for the encoded finite CSP networks [Bessière,
2006] (note that the arity of the finite constraints is 3):

Constraint propagation Complexity

GAC3 O(e · d4)
GAC2001 O(e · d3)
Path consistency (naı̈ve) O(e · b4)
Path consistency (precomputed) O(e · b2)

The naı̈ve computation of the ;-function requires O(b3) time,
whereas the one based on precomputations only needs a ta-
ble lookup at the expense of an additional exponential space
requirement in the number of base relations. That is, if it
is feasible to precompute the ;-function, the revision (2) is
quite efficient and, in particular, less complex than GAC3 and
GAC2001 in the worst case. Without precomputation, the
worst case complexity is equal to that of GAC3, but worse
than GAC2001 and in the average case (most likely) worse
than GAC3 and its residual variant GAC3r.

4.2 SAT Solvers vs. Qualitative Constraint Solvers

For a reasonable comparison of SAT and QSR we would
be interested in comparing qualitative constraint networks to
clauses. Since presumably there is no general useful way to
convert clauses to a constraint network with relations from
a given qualitative formalism, a theoretical comparison be-
comes quite difficult, especially if one takes into account
that most SAT solvers perform additional learning and restart
techniques. For this reason, we only refer to the results con-
cerning constraint propagation in the CSP and SAT domain
(e.g., [Dimopoulos and Stergiou, 2006; Walsh, 2000]). How-
ever, it should not go unmentioned that the SAT encoding
approach only encodes the instance-specific parts of a quali-
tative calculus (used base relations, composition table entries)
and hence avoids storing irrelevant data, in contrast to quali-
tative reasoners which usually work on the whole formalism.

5 Empirical Analysis

5.1 Reasoning Systems

CSP. For a CSP solver, we used Mistral [Hebrard, 2008],
a library for modeling and solving constraint problems. Bun-
dled with a front-end for reading and modeling problems, it
ranked fifth in the 2008 CSP competition. It was the highest
ranking, available solver which is capable of handling ternary
constraints and not portfolio-based. Mistral utilizes heuris-
tic depth-first search (domain over weighted-by-level degree)
with generalized arc consistency via GAC3r or GAC2001.
The mistral-prime version of Mistral for the CSP solver
competition 2008 was used for our tests.

SAT. We used the well-known SAT solver MiniSat [Eén
and Sörensson, 2003] for our evaluation, since in our tests
it was the only SAT solver that was able to cope with the size
of very large problem instances. The most recent available
version (at the time of writing) MiniSat 2.0 beta was used.

QSR. For a typical qualitative reasoner, we used the generic
qualitative reasoner1 (GQR) [Gantner et al., 2008] version
1089, in which the heuristic for “qualitative edges” is based
on dynamic weights as a boost [Boussemart et al., 2004],
combined with static (problem-independent) weights of re-
lations [Renz and Nebel, 2001]. GQR chooses an edge with

minimal proportion staticweight
dynamicweight

. When a relation is re-

duced to the empty relation, dynamic weights are increased
based on the depth of the search tree (exactly as in Mis-
tral). The selection of values (or sub-relations) is based on
static weights with 2-way branching. Further, last conflict-
based reasoning is performed to reduce the amount of thrash-
ing [Lecoutre et al., 2006]. In the following GQR will refer
to a version not exploiting any tractable subclasses, which
allows us to directly compare the number of visited search
space nodes to that of Mistral. GQR∗ will refer to a version
taking advantage of tractable subclasses, if such are known.
It assigns tractable subsets of relations as values and uses el-
igible constraints [Condotta et al., 2007] to reduce the search
space.

5.2 Test Setup

Since there are only few data from concrete applications
publicly available that could be used as natural datasets for
benchmark purposes, our empirical analysis is based on ran-
domly generated problem instances in various qualitative for-
malisms. We used problem generators as described in [Nebel,
1997; Renz and Nebel, 2001]. Given a qualitative constraint
calculus, a qualitative constraint network is calculated in de-
pendency of parameters n, d, s as follows: A random graph
is generated with n nodes and an average degree of d. This
graph is then transformed into a qualitative CSP by assign-
ing a non-empty relation from the qualitative partition scheme
randomly to each edge. If an edge is not present in the graph,
it is introduced and assigned the universal relation. In the
so-called A-model the random relations are taken from a bi-
nomial distribution such that, on average, a relation consists
of s base relations. For the H-model, each generated rela-
tion is checked against a given list of allowed relations, and
consequently discarded if it is not included in the list until an
allowed relation is found.

To reduce the number of experiments, we fixed the num-
ber of nodes beforehand, set the label-size parameter s to a
reasonable value, and searched for the degree d where the
runtime of GQR peaked. Further, since the SAT encoding
scheme uses path-consistent qualitative constraint networks
as input, we removed trivial instances that are already found
to be unsatisfiable when path consistency is applied (these
models are referred to as A′- and H ′-model).

We considered the following calculi: (a) Region Connec-
tion Calculus RCC-8 (8 base relations) [Randell et al., 1992],
(b) Allen’s Interval Calculus, Allen (13 b.r.) [Allen, 1983],
(c) RCC-23 (23 b.r.) [Bennett, 1997], (d) OPRA2 calculus
(72 b.r.), and (e) OPRA4 calculus (272 b.r.) [Moratz, 2004].

All experiments were conducted on an Intel Xeon CPU

1
http://sfbtr8.informatik.uni-freiburg.de/

R4LogoSpace/Resources/GQR



Calculus Model GQR∗ GQR Mistral MiniSat

RCC-8 A′(100, 10.5, 4.0) 500/500/500 500/500/500 500/500/500 491/500/500
0.11s/0.11s 1.67s/1.67s 7.19s/6.93s 126.36s/112.24s

RCC-8 H ′(100, 15.5, 4.0) 496/500/500 485/497/498 309/377/426 499/500/500
19.53s/2.2s 33.05s/3.27s 291.42s/96.56s 50.25s/23.86s

RCC-8 A′(125, 10.5, 4.0) 500/500/500 500/500/500 500/500/500 5/59/254
0.27s/0.26s 4.19s/4.18s 18.36s/18.83s 1195.75s/1240.32s

RCC-8 H ′(125, 15.5, 4.0) 406/452/480 345/399/428 92/146/186 199/458/499
168.48s/28.55s 203.74s/56.59s 518.73s/302.75s 572.10s/513.52s

Allen A′(100, 10.5, 6.5) 482/494/500 417/456/469 210/282/311 383/471/495
50.8s/3.66s 109.76s/9.59s 309.58s/157.12s 234.92s/132.55s

RCC-23 A′(100, 73.0, 9.0) - 411/441/449 297/360/379 194/197/225
- 77.70s/5.625s 215.06s/74.86s 217.92s/28.06s

OPRA2 A′(15, 14.0, 20.0) - 31/75/128 86/161/232 57/161/252
- 745.58s/708.77s 648.72s/471.95s 728.36s/605.90s

OPRA4 A′(10, 9.0, 26.0) - 500/500/500 500/500/500 427/500/500
- 50.75s/36.24s 11.03s/9.64s 146.96s/102.48s

Table 1: Reasoners, solved instances and required time. An entry “1/10/100” indicates the number of solved instances in
5/15/30 min. Entries “0.11s/0.11s” refer to the average / median CPU time required to solve an instance. 500 instances were
considered per model.

Calculus Model GQR∗ GQR Mistral MiniSat

RCC-8 A′(100, 10.5, 4.0) 114.66/114 2260.23/2259 2328.90/2317 -
0.11s/0.11s 1.67s/1.67s 7.19s/6.93s 126.36s/112.24s

RCC-8 H ′(100, 15.5, 4.0) 1537.26/409 3360.67/778 1645.59/704 -
6.25s/1.50s 11.86s/2.16s 291.42s/96.56s 40.70s/18.32s

Allen A′(100, 10.5, 6.5) 802.27/249 5570.97/700 1049.93/567 -
4.77s/1.27s 28.04s/3.09s 309.58s/157.12s 107.54s/53.89s

RCC-23 A′(100, 73.0, 9.0) - 1287.58/47 908.38/198 -
- 34.52s/1.98s 139.21s/46.18s 87.01s/24.55s

OPRA2 A′(15, 14.0, 20.0) - 285130.47/262236 357949.40/213099 -
- 726.55s/671.40s 334.99s/232.80s 522.93s/434.23s

OPRA4 A′(10, 9.0, 26.0) - 6107.09/4291 2961.12/2220 -
- 50.75s/36.24s 11.03s/9.64s 146.96s/102.48s

Table 2: Selected results for average/median values of visited nodes and CPU time over instances solved by all reasoners.

with a CPU time and memory limit of 30 min and 4GiB, re-
spectively, for each instance and each reasoner.

5.3 Empirical Results

Table 1 shows the number of solved instances for each calcu-
lus and further the required CPU time, while Table 2 provides
an overview of the number of expanded search nodes.

For RCC-8, the A′-model provided only satisfiable in-
stances, which is very probable if one aims for “hard” in-
stances [Renz and Nebel, 2001]. Consequently, we also used
the H ′-model with NP8 as set of allowed relations. For
NP8, the H ′-model generates significantly harder instances
for the path consistency algorithm [Renz and Nebel, 2001],
that is, the pruning power of the path consistency algorithm
is reduced simply by construction. This is reflected in the
performance of GQR and Mistral in our test results. Mini-
Sat, however, shows a significantly better performance on
these instances. To test whether this was due to the fact that
A′-instances were all satisfiable, we increased the node size
(from 100 to 125) without altering the average degree, thus
generating larger but more likely satisfiable instances in the
case of H ′. The tests show that MiniSat has a robust behavior

for H ′, solving more instances than GQR∗, but fails on most
instances in the A′-model.

With Allen’s interval calculus GQR performs significantly
better than Mistral and solves more instances than MiniSat
within the first five minutes. However, MiniSat solves more
instances than GQR and is only surpassed by GQR∗.

RCC-23 is the first calculus where no tractable subclasses
are known and GQR does not use precomputed functions,
i.e., GQR has to (re)compute the ;-function every time. Still,
GQR outperforms Mistral, which in turn solved more in-
stances than MiniSat. This, however, changes when we con-
sider OPRA2. Here, GQR is slower than both MiniSat and
Mistral. MiniSat shows the better performance when consid-
ering a 30 minute time window.

For OPRA4 we had to reduce the number of nodes, as
otherwise the problems become far too hard. Mistral outper-
forms GQR even more than in the case of OPRA2. Inter-
estingly, GQR outperforms MiniSat, contrary to what could
be expected from the results of OPRA2. For OPRA2 and
OPRA4 the support-based approach of Mistral seems to be
more efficient than GQR’s ;-function. It is furthermore evi-
dent that Mistral’s heuristics are better in the average case.



6 Conclusions and Future Work

In this paper we have addressed the recently renewed interest
in encoding qualitative reasoning problems as finite CSP or
SAT instances. Our results show that a state-of-the-art im-
plementation of QSR methods currently gives the most ef-
ficient performance for classical, small-sized qualitative cal-
culi, such as e.g., Allen’s interval algebra. From a theoretical
point of view, path consistency combined with precomputa-
tion is better than a support-based approach like GAC2001
in the worst case. An implemented qualitative solver like
GQR, without support-based revision, is still effective for up
to at least 23 base relations, if compared to a general CSP

solver. But our results also confirm Bessière’s claim concern-
ing the advantage of support-based revision for more recently
discussed large-sized calculi, such as OPRA4. Our results
indicate that it is useful for qualitative reasoners to borrow
from recent achievements in finite CSP techniques, such as
heuristics and constraint propagation algorithms. Since we
evaluated complete reasoning systems, it would further be
interesting to evaluate the components of the systems (e.g.,
constraint propagation) to improve both qualitative and finite
CSP solvers.

The SAT approach provides robust results for specific hard
instances, particularly where the path consistency algorithm
is known to give bad estimates of satisfiability. In general,
however, it is much more resource consuming and highly de-
pendent on the used encoding scheme—at least the one con-
sidered in this paper seems unsuited for large, but simple
problem instances.

Acknowledgments

This work was partially supported by Deutsche Forschungs-
gemeinschaft (Transregional Collaborative Research Center
SFB/TR 8 Spatial Cognition, project R4-[LogoSpace]).

References

[Allen, 1983] James F. Allen. Maintaining knowledge about
temporal intervals. Commun. ACM, 26(11):832–843,
1983.

[Bennett, 1997] Brandon Bennett. Logical Representations
for Automated Reasoning about Spatial Relationships.
PhD thesis, The University of Leeds, 1997.

[Bessière, 1996] Christian Bessière. A simple way to im-
prove path consistency processing in interval algebra net-
works. In AAAI/IAAI, Vol. 1, pages 375–380, 1996.

[Bessière, 2006] Christian Bessière. Constraint propagation.
Technical Report LIRMM 06020, CNRS/University of
Montpellier, 2006.

[Boussemart et al., 2004] Frédéric Boussemart, Fred
Hemery, Christophe Lecoutre, and Lakhdar Sais. Boost-
ing systematic search by weighting constraints. In ECAI
2004, pages 146–150. IOS Press, 2004.

[Brand, 2004] Sebastian Brand. Relation variables in quali-
tative spatial reasoning. In KI 2004, LNCS: 3238, pages
337–350. Springer, 2004.

[Condotta et al., 2006] Jean-François Condotta, Dominique
D’Almeida, Christophe Lecoutre, and Lakhdar Sais. From
qualitative to discrete constraint networks. In Workshop on
Qualitative Constraint Calculi held with KI 2006, pages
54–64, Bremen, Germany, 2006.

[Condotta et al., 2007] Jean-François Condotta, Gérard
Ligozat, and Mahmoud Saade. Eligible and frozen
constraints for solving temporal qualitative constraint
networks. In CP 2007, LNCS: 4741, pages 806–814.
Springer, 2007.

[Dimopoulos and Stergiou, 2006] Yannis Dimopoulos and
Kostas Stergiou. Propagation in CSP and SAT. In CP
2006, LNCS: 4204, pages 137–151. Springer, 2006.

[Eén and Sörensson, 2003] Niklas Eén and Niklas
Sörensson. An extensible SAT-solver. In SAT 2003,
LNCS: 2919, pages 502–518. Springer, 2003.

[Gantner et al., 2008] Zeno Gantner, Matthias Westphal, and
Stefan Wölfl. GQR – A fast reasoner for binary qualitative
constraint calculi. In AAAI-08 Workshop on Spatial and
Temporal Reasoning, Chicago, USA, AAAI, 2008.

[Hebrard, 2008] Emmanuel Hebrard. Mistral, a constraint
satisfaction library. In Proceedings of the Third Interna-
tional CSP Solver Competition, 2008.

[Ladkin and Reinefeld, 1997] Peter B. Ladkin and Alexan-
der Reinefeld. Fast algebraic methods for interval con-
straint problems. Ann. Math. Artif. Intell., 19(3-4):383–
411, 1997.

[Lecoutre et al., 2006] Christophe Lecoutre, Lakhdar Sais,
Sébastien Tabary, and Vincent Vidal. Last conflict based
reasoning. In ECAI 2006, pages 133–137. IOS Press,
2006.

[Ligozat and Renz, 2004] Gérard Ligozat and Jochen Renz.
What is a qualitative calculus? A general framework. In
PRICAI 2004, LNCS: 3157, pages 53–64. Springer, 2004.

[Moratz, 2004] Reinhard Moratz. Qualitative spatial reason-
ing about oriented points. Technical Report 003/10-2004,
SFB/TR 8 Spatial Cognition, 2004.

[Nebel, 1997] Bernhard Nebel. Solving hard qualitative tem-
poral reasoning problems: Evaluating the efficiency of us-
ing the ORD-horn class. Constraints, 1(3):175–190, 1997.

[Pham et al., 2006] Duc Nghia Pham, John Thornton, and
Abdul Sattar. Towards an efficient SAT encoding for tem-
poral reasoning. In CP 2006, LNCS: 4204, pages 421–
436. Springer, 2006.

[Randell et al., 1992] David A. Randell, Zhan Cui, and An-
thony G. Cohn. A spatial logic based on regions and con-
nection. In KR 1992, pages 165–176, 1992.

[Renz and Nebel, 2001] Jochen Renz and Bernhard Nebel.
Efficient methods for qualitative spatial reasoning. J. Artif.
Intell. Res. (JAIR), 15:289–318, 2001.

[Walsh, 2000] Toby Walsh. SAT v CSP. In CP 2000, LNCS:
1894, pages 441–456. Springer, 2000.


