
Confirming the QSR Promise

Matthias Westphal and Stefan Wölfl
Department of Computer Science,

University of Freiburg,
Georges-Köhler-Allee, 79110 Freiburg, Germany
{westpham, woelfl}@informatik.uni-freiburg.de

Abstract

Within the qualitative spatial reasoning community it has
been a widely accepted commonplace that reasoning in qual-
itative constraint calculi outperforms reasoning in other more
general and expressive formalisms. To check the correct-
ness of this assumption we conducted some empirical case
studies in which we compared the performance of a qualita-
tive constraint solver with different automated reasoning sys-
tems, namely first-order and description logic reasoners. We
also report on some first results from comparing the perfor-
mance of qualitative and finite constraint solvers. Our em-
pirical tests are based on randomly generated instances of
qualitative constraint satisfaction problems, which have been
encoded as reasoning problems for first-order reasoners, de-
scription logic reasoners, and finite CSP solvers, respectively.
Given our currently used encodings, these studies show that
first-order and description logic reasoners are far from being
feasible for problem sizes that can easily be solved by a qual-
itative reasoner. In contrast, finite CSP solvers are compet-
itive, but still outperformed by a qualitative reasoner on the
problem instances considered here.

Introduction
One of the main computational arguments for the develop-
ment of constraint-based formalisms for representing spatial
and temporal knowledge is that these formalisms allow for
solving reasoning tasks in an efficient manner. In this pa-
per we will underpin this research promise of Qualitative
Spatial Reasoning (QSR) by concrete data resulting from
performance tests of different automated reasoning systems.
More precisely, we will compare the Generic Qualitative
Reasoner (GQR) (Gantner, Westphal, and Wölfl 2008) with
the first-order reasoners SPASS (Weidenbach et al. 2007)
and E (Schulz 2004), then with the description logic rea-
soner FaCT++ (Tsarkov and Horrocks 2006), and finally
with the CSP solver Mistral (Hebrard 2008).

Benchmarking of automated reasoners for first-order (FO)
logic has an established tradition. The annual CADE ATP
System Competition (CASC) on automated theorem prov-
ing builds on the problem library TPTP (Sutcliffe and Sut-
tner 1998), which groups reasoning problems into different
mathematical application domains (such as algebra, topol-
ogy, etc.). Problem instances in the TPTP library may be

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

considered natural in the sense that the formulas to be vali-
dated express typical reasoning problems that arise from the
given theory.1 Benchmarking of description logic (DL) rea-
soners are also mostly conducted against natural knowledge
bases, namely DL ontologies expressed in different DL lan-
guages and with varying parameters (number of concepts,
size of the TBox, etc.) (Gardiner, Horrocks, and Tsarkov
2006). Moreover, Tsarkov et al. (2004) report on a perfor-
mance comparison between FO and DL reasoners. Finally,
in the finite CSP domain solver competitions have been con-
ducted since 2005. Comparisons are performed in different
problem categories ranging from real-world instances to ab-
stract academic instances on the one hand and to completely
randomly generated instances on the other.

In the QSR domain, benchmarking of reasoning systems
has not played a similar role so far. Moreover, it has been
a widely accepted assumption that reasoning methods tai-
lored to the considered constraint languages outperform rea-
soning methods that are applicable to suitable encodings of
qualitative CSP instances in other formal languages. This
assumption, however, has been tackled by several authors.
For instance, Brand (2004) pointed out several advantages of
encoding qualitative CSP instances as finite CSP instances,
and Pham et al. (2006) have shown in an empirical study that
SAT solvers applied to SAT encodings of qualitative tempo-
ral reasoning instances can perform better than a qualitative
reasoner.

In this paper we report on the results of empirical perfor-
mance tests, which we set up to compare a qualitative con-
straint solver with different automated reasoning systems.
For our performance analyses we consider three test set-
tings. In the first setting we compare the FO reasoners E
and SPASS with the qualitative CSP solver GQR. The prob-
lem instances generated for this setting are entailment proofs
in the theory of strict linear orders, which we thought to be
easily solvable by first-order reasoners. In more detail, the
problem instances for this test setting are constructed from
randomly generated CSP instances in Allen’s interval cal-
culus (Allen 1983), which are then translated into FO for-
mulas expressing the constraints between interval start and

1In this context it is also worth mentioning that ontology frag-
ments from SUMO and ResearchCyc have been included in the last
CADE competitions (Sutcliffe 2007).

endpoints.

In the second setting the performance of the DL reasoner
FaCT++ is compared with that of GQR. Here we use sat-
isfiability tests on problem instances in the RCC8 calculus
(Randell, Cui, and Cohn 1992), since these can be trans-
lated in a natural manner into the description logic SROIQ
(Horrocks, Kutz, and Sattler 2006): first RCC8 instances
are translated into modal logics by using the encoding pre-
sented by Nutt (1999). DL reasoners can then be applied
to the TBoxes that one obtains from the standard transla-
tion of the relevant multi-modal logic into DL (Schild 1991;
Baader, Horrocks, and Sattler 2007).

In the third setting the finite CSP solver Mistral is com-
pared with GQR. Again, problem instances are randomly
generated instances in Allen’s interval calculus, but with a
different problem generator than in the first setting. Interval
networks are encoded as finite CSP instances by translating
them into a variant of the so-called dual constraint problem
(Renz and Nebel 2001; Brand 2004; Condotta et al. 2006).

GQR and Constraint-based Qualitative

Spatio-Temporal Reasoning

GQR is a solver for binary qualitative constraint networks.
Such networks are defined by a set of variables taking values
in a given domain and a family of binary constraint relations
between pairs of variables (on this domain). The constraint
satisfaction problem is to determine for a given constraint
network, whether there exists an assignment to its variables
such that all constraints of the network are satisfied. Since
the domains considered in qualitative reasoning are usually
infinite, constraint solving techniques need to be applied
to finite, symbolic representations of constraint networks.
These are directed finite constraint graphs, where each edge
is labeled by a set of relation symbols: each symbol (called
base relation) represents a concrete binary relation on the
domain. Sets of base relations are read disjunctively, that is,
they can be used to express imprecise knowledge about the
actual configuration.

We assume that, given a finite set B of base relations, the
set 2B has the algebraic structure of a non-associative rela-
tion algebra. Depending on the considered calculus, this al-
gebra is constructed from functions ` : B → B (assigning to
each base relation its converse) and ◦ : B×B → 2B (assign-
ing to each pair of base relations their composition) if these
are extended to functions on 2B as follows: r` := {b` :
b ∈ r} and r ◦ r′ :=

⋃

b∈r,b′∈r′ b◦b′.

In GQR the constraint satisfaction problem is then solved
on the symbolic level. That is, GQR checks whether the
constraint graph is consistent in the sense that there exists a
refinement of the constraint graph, in which each edge is a
base relation and which is closed under composition (path-
consistent). This is sufficient to prove the satisfiability prob-
lem for the calculi used in our tests. GQR represents reason-
ing problems as constraint graphs, and implements the sym-
bolic path consistency algorithm (also known as algebraic
closure) and heuristic backtracking search for decomposi-
tions of relations, based on tractable fragments (Renz and
Nebel 2001) of qualitative constraint calculi.

Test 1: Comparison with FO Reasoners

In our first test setting we compared the performance of
GQR with that of the first-order reasoners E and SPASS:

The Equational Theorem Prover (E) is a purely equational
theorem prover for first-order logic. The inference system
used by E is based on the superposition calculus for equa-
tional clausal logic (Schulz 2002).2 For our benchmarks
we used the latest version of E, E 0.999, which took part at
CASC-21 and performed reasonably well in many test cate-
gories.3

SPASS, developed at MPI Saarbrücken, is a saturation-
based automated theorem prover for first-order logic with
equality. SPASS is based on resolution and integrates var-
ious other proof procedures (e.g., paramodulation). In the
benchmarks the most recent available version of SPASS,
SPASS-3.0, was used.4

Each reasoner was used with its standard settings, i.e.,
without problem-tailored optimization options.

For our first setting we decided to compare the perfor-
mance of GQR on problem instances that can be encoded as
a reasoning problem in a simple FO theory. Hence we con-
sidered problem instances in Allen’s interval calculus: Prob-
lem instances can here be reformulated using the theory of
strict linear orders, T , as background theory, i.e., the signa-
ture of T has a single binary relation symbol and the theory
consists of three axioms (irreflexivity, transitivity, and lin-
earity).5

Furthermore, instead of satisfiability checks we consid-
ered entailment problems. In constraint-based reasoning the
(minimal) entailment problem can be defined as follows:
Given a conjunctive formula

ϕ :=
∧

i< j≤n

xi ri j x j, i, j,n ∈ N,ri j ∈ 2B

find the (minimal) relation r such that ϕ |= x1 r x2.
We adapted and simplified this entailment task for FO rea-

soners by determining r beforehand. Then the FO reasoners
were asked to prove

T ∪{Φ(ϕ)} |= Φ(x1 r x2),

where Φ is the standard translation, which assigns to each
Allen constraint xi r x j a FO formula expressing the relations
between the start and endpoints of the intervals i and j. For
example, the problem

x1 Before x3, x2 During x3 |= x1 Before x2

2The sources of E can be downloaded from http://www.

eprover.org.
3Vampire (Riazanov and Voronkov 2002), which is considered

one of the best FO reasoners, is not publicly available; the usage of
the source code used in the CASC competition is forbidden by the
Vampire developers.

4Precompiled binaries as well as the sources of SPASS can be
downloaded from http://www.spass-prover.org/.

5Usually, one also assumes density and no first/last elements.
But these existential axioms decreased the reasoning performance
of the first-order reasoners drastically, so that they had to be re-
moved.

is translated into the problem:

T ∪{xs
1 < xe

1, xs
2 < xe

2, xs
3 < xe

3,

xe
1 < xs

3, xs
3 < xs

2, xe
2 < xe

3} |= xe
1 < xs

2.

For the test instances we restricted consideration to tasks,
where the premise, the formula ϕ (and hence Φ(ϕ)), was
satisfiable and further the entailment relation was valid. This
was done since tasks with a valid premise are the interesting
cases and the FO reasoners had problems disproving an en-
tailment relation.

The generation of ϕ was performed by the following pro-
cedure dependent on parameters n, k, and l.6

1. Generate a random assignment of n interval variables,
where each variable xi (i ∈ [1..n]) is taking values in

{(t,t ′) ∈ R
2 : t < t ′} (assuming an equal distribution).

2. Translate this “scenario” into a conjunctive formula ϕ∗

(all relations ri j are base relations).

3. Construct a “noisy variant” ϕ out of ϕ∗ as follows:

• ri j in ϕ is left unchanged (wrt. ϕ∗) with probability k,
otherwise it is removed (density);

• for each relation ri j in the new ϕ , we replace ri j by
ri j ∪ r′ with probability l, where r′ is randomly picked
from an equal distribution of non-empty relations from
2B (noise);

• set r = r1,2 as the universal relation.

In the empirical tests that followed GQR had to solve the
entailment problem, i.e., it computed the entailed relation
r. For the FO reasoners, we incorporated the, now known,
entailed relation r directly into the problem, i.e., they had to
verify: T ∪{Φ(ϕ)} |= Φ(x1 r x2).

Empirical Results

With formulas ϕ generated as described above, we ran GQR,
E and SPASS on an Intel Xeon with 3 GHz, 3 GiB RAM
and a time limit of 5 minutes for each problem instance. For
E the translated problem was written in TPTP format and
for SPASS the generated TPTP file was translated into DFG
format by using the translator from the TPTP problem li-
brary (Sutcliffe and Suttner 1998).

The resulting formulas ϕ used for the benchmarks can
be considered easy instances for constraint-based reasoning,
since they are not close to the phase transition and do not use
any restricted set of “hard relations” (e.g., 3-CNF). In par-
ticular, the actually used number of variables was too small
to find hard instances for GQR (cf., e.g., (Renz and Nebel
2001)), i.e., GQR solved similarly sized instances within a
split second.

The first test was done using the parameters k = 0.9 (den-
sity) and l = 0.3 (noise). We generated 100 problem in-
stances for 15 and 20 nodes, respectively. As the plots in

6By this method we only generate satisfiable formulas based
on an equal distribution of models. This differs from the estab-
lished method of choosing instances based on an equal distribution
of relations. If one uses the latter method, one has to filter the sat-
isfiable instances, which also results in a shift of the distribution of
relations.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

n
u
m
b
e
r

o
f

s
o
l
v
e
d

i
n
s
t
a
n
c
e
s

CPU time (seconds)

GQR
E

SPASS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

n
u
m
b
e
r

o
f

s
o
l
v
e
d

i
n
s
t
a
n
c
e
s

CPU time (seconds)

GQR
E

SPASS

Figure 1: Performance on instances of the entailment prob-
lem in Allen’s interval calculus. From top to bottom: n =
15,20 (nodes), k = 0.9 (density), and l = 0.3 (noise).

Figure 1 show, both SPASS and E did not scale well with
the number of variables. It is interesting that E always solved
around 20% of instances regardless of their size. All of the
instances solved by E within 2 seconds entailed the relation
Before or its converse. Furthermore, the solved instances
which required more than 20 seconds had as entailed rela-
tion During or its converse. In particular, E did not man-
age to solve any instance that entailed a non-atomic rela-
tion. In contrast, SPASS solved a wide variety of instances,
but failed to solve a reasonable amount of instances with 20
variables. Overall, clearly neither of the two FO reasoners
came close to the performance of a constraint-based system.

As a second test we reduced the noise in the instances by
lowering the noise parameter l to 0.1. We generated 100
problem instances each for 10, 20 and 30 nodes. The re-
sults for n = 30 can be seen in Figure 2. Again, E showed
exactly the same behaviour. It solved more instances, but
due to the reduced noise less non-atomic relations were en-
tailed in general. The performance of SPASS improved with
the reduced noise but SPASS still required too much time to
conduct any reasonable comparison with GQR.

Test 2: Comparison with a DL Reasoner

In the second setting we compared the performance of the
DL reasoner FaCT++ with GQR. FaCT++ is a tableaux-
based reasoner and supports the description logic SROIQ

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

n
u
m
b
e
r

o
f

s
o
l
v
e
d

i
n
s
t
a
n
c
e
s

CPU time (seconds)

GQR
E

SPASS

Figure 2: Performance on instances of the entailment prob-
lem in Allen’s interval calculus with n = 30 (nodes), k = 0.9
(density), and l = 0.1 (noise).

which is the formal basis of the OWL 1.1 standard.7

As a basis for our performance tests we used randomly
generated instances in the RCC8 calculus. While GQR
had to check whether the given problem instance is consis-
tent, the FaCT++ reasoner had to check whether the concept
defined by translating the problem instance into DL (Nutt
1999; Schild 1991; Baader, Horrocks, and Sattler 2007) is
satisfiable. Under this translation, for example the RCC8
network

x1 PartiallyOverlaps x2, x2 TangentialProperPart x3

is translated into the problem of checking whether the fol-
lowing concept is satisfiable with respect to a TBox with
two roles u and int, where the latter is assumed to be reflex-
ive and transitive:

⊓
i=1..3

∃u.∃int.Ci ⊓

⊓
i=1..3

∀u.∀int.((¬Ci ⊔∃int.∀int.Ci)⊓ (Ci ⊔∀int.∃int.¬Ci))⊓

(

∃u.∃int.(∀int.C1 ⊓∀int.C2)⊓

∃u.∃int.(C1 ⊓¬C2)⊓∃u.∃int.(¬C1 ⊓C2)
)

⊓
(

∀u.∀int.(¬C2 ⊔C3)⊓∃u.∃int.(C3 ⊓¬C2)⊓

∃u.∃int.(C2 ⊓¬∀int.C3)
)

Here the concept in the 2nd line expresses the regularity
condition for RCC8 regions, i.e., that all regions are regu-
lar closed subsets of a topological space.8 Since FaCT++
performed rather poorly on this encoding, we also consid-
ered an approximative encoding, which simply leaves out
the “regularity condition”. In the following plots this ap-
proximative variant is referred to as “FaCT++-approx”.

Given parameters n,k,s (as explained below), we gener-
ated problem instances ϕ as follows:

7The project webpage is available at http://owl.man.ac.
uk/factplusplus/.

8We used a slightly modified variant of Nutt’s translation of
RCC8 set constraints into modal logic: In (Nutt 1999) the encod-
ings for the relations TPP and NTPP (and their converses) are too
weak since these encodings do not enforce that the relata of those
relations are distinct.

• for each possible relation ri j,1 ≤ i < j ≤ n, set ri j to a
non-empty relation with probability k, otherwise omit the
relation, i.e., we set it to the universal relation (density);

• this non-empty relation is given by a binomial distribution
in which a base relation is included with probability s.

Again, the generated problem instances are considered to
be easy for constraint-based reasoning. Especially the num-
ber of variables that was used in the following tests was too
small to find hard instances for constraint-based reasoning.

Empirical Results

We used similarly sized problem instances as in the first set-
ting for our comparison of GQR with FaCT++. Both GQR
and FaCT++ were run on an Intel Xeon with 3 GHz, 3 GiB
RAM and a time limit of 5 minutes for each problem in-
stance.

In our test series we considered problem instances with
10, 15, and 20 variables, and a fixed density parameter
k = 0.2. For the binomial distribution we considered s = 0.1
and s = 0.3. For s = 0.1, FaCT++ was unable to solve all
such instances. However, the approximative encoding in-
creased performance drastically such that FaCT++ always
terminated within the time limit. For the 100 test instances,
the “FaCT++-approx”-results were only wrong in 8 cases (in
each case an inconsistent description could not be detected
due to the lack of some necessary regularity axiom).

The results for s = 0.3 are shown in Figure 3. Even
the approximative encoding was unable to handle 20 vari-
ables and did not detect inconsistencies in 13 out of the 300
test instances in total. These results show that, given the
used problem encoding, FaCT++ scales poorly with regard
to both the number of disjunctions and the number of vari-
ables. Furthermore, FaCT++ seems unfeasible for problem
sizes easily solved by constraint-based reasoning.

Test 3: Comparison with a Finite CSP Solver

To compare GQR with a finite CSP solver, a CSP solver ca-
pable of handling ternary constraints (cf. below) is needed.
The CSP solver competition 2008 provides an overview of
current state-of-the-art systems. We chose Mistral (Hebrard
2008), the highest ranking available solver, which was not
portfolio-based. Mistral is a library for modeling and solv-
ing constraint problems, which, bundled with a front-end
for reading and modeling problems, ranked fifth in the 2008
CSP competition. The mistral-prime version of Mis-
tral for the CSP solver competition 2008 was used for our
tests.

Qualitative constraint networks can be encoded as fi-
nite CSP instances (Renz and Nebel 2001; Brand 2004;
Condotta et al. 2006): Given the constraint graph of a qual-
itative constraint problem with variables X = {x1, . . . ,xn},
we obtain a finite constraint satisfaction problem by consid-
ering a variant of the so-called dual constraint problem: Let
V be a set of variables containing a variable vi j for each pair
of variables xi,x j ∈ X with i < j. Then the dual problem has
the form

〈

V,B,{Ci j : 1 ≤ i < j ≤ n}∪{Ci jk : 1 ≤ i < j < k ≤ n}
〉

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

n
u
m
b
e
r

o
f

s
o
l
v
e
d

i
n
s
t
a
n
c
e
s

CPU time (seconds)

GQR
FaCT++

FaCT++-approx

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

n
u
m
b
e
r

o
f

s
o
l
v
e
d

i
n
s
t
a
n
c
e
s

CPU time (seconds)

GQR
FaCT++

FaCT++-approx

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

n
u
m
b
e
r

o
f

s
o
l
v
e
d

i
n
s
t
a
n
c
e
s

CPU time (seconds)

GQR
FaCT++

FaCT++-approx

Figure 3: Reasoning in RCC8. From top to bottom: n =
10,15,20 (nodes), k = 0.2 (density) and s = 0.3 (label dis-
tribution).

where Ci j is a domain constraint restricting the values of
vi j to those base relations that are contained in the la-
bel on the arc from xi to x j. Ci jk is a binary constraint
that enforces variables vi j,v jk (“qualitative edges”) to as-
signments, in which x j has the same value. Since this
scheme does not work on infinite domains, these binary con-
straints are replaced by a set of ternary constraints TC =
{((vi j,vik,vk j),R◦) : 1 ≤ i < j < k ≤ n}, where R◦ :=

{(c,a,b) ∈ B3 : c ∈ a ◦ b}. The resulting finite network

features
n·(n−1)

2
variables and

(

n
3

)

= (n−1)3−(n−1)
6

TC con-
straints.

A solution of this finite CSP instance corresponds to an
atomic, consistent refinement of the qualitative constraint
network, and vice versa (Condotta et al. 2006).

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

n
u
m
b
e
r

o
f

s
o
l
v
e
d

i
n
s
t
a
n
c
e
s

CPU time (seconds)

GQR
GQR-no-tract

Mistral

Figure 4: Reasoning about Allen intervals. Instances with
100 nodes, a density of k = 0.106 and labels with parameter
s = 6.5.

Empirical Results

To generate test instances within the phase transition, we
used the same setup as described for Test 2 with the follow-
ing settings: number of nodes n = 100, density k = 0.106,
and for the binomial distribution s = 0.5. Again all tests
were performed on an Intel Xeon with 3 GHz, 3 GiB RAM
and a time limit of 5 minutes for each problem instance.

Our results, depicted in Figure 4, show Mistral to be
slower than GQR. In particular, it solved less instances
within the considered five minute time frame. “GQR-no-
tract” in the plot refers to a variant of GQR, which did not
exploit tractability information. Even in this case, GQR out-
performed Mistral. Moreover, as can be seen from the fig-
ure, Mistral performed always slower than GQR. In com-
parison to Test 1 and Test 2, however, Mistral’s performance
was much closer to the performance of GQR, in particular,
with regard to the size of instances. Note that in the test
GQR failed to solve some of the instances, but that all in-
stances solved by Mistral were also solved by GQR.

Conclusion

In this paper we have presented the results of an empiri-
cal test series in which we compared the performance of
a solver for binary constraint calculi to state-of-the-art rea-
soning systems for first-order logic, description logics, and
finite CSPs. For this we considered standard encodings of
qualitative constraint networks as known from the literature.
On the one hand, these are semantic encodings, in which the
qualitative information is restated in the context of an under-
lying theory, i.e., we represented Allen relations as relations
between start and endpoints of intervals within the theory
of strict linear orders and RCC8 relations by using the in-
terior and closure function of a topological space. On the
other hand, we used a syntactic encoding, namely the finite
CSP encoding, which provides a syntactic reformulation of
the qualitative problem instance (such that the actual search
problem is essentially the same).

Our empirical analysis shows that, given the used transla-
tions into first-order and description logics respectively, the
performance of both FO and DL reasoners is far behind the
performance of tailored methods used in constraint-based

reasoning. Due to our results, it seems necessary to try al-
ternative translations into first-order or description logics in
order to allow for a more useful comparison. Enforcing spe-
cific reasoning procedures (via reasoner options) might also
provide a speedup for both FO and DL reasoners. If it is
possible to increase the performance of FO and DL reason-
ers, one could increase the number of variables and compare
the performance on “hard” instances, e.g., instances with re-
stricted relations (e.g., 3-CNF) taken from the phase transi-
tion. For such instances the comparison is certainly more
interesting than for the instances considered here.

In our third test setting, in which we considered a syn-
tactic encoding of qualitative constraint networks as finite
CSPs, the comparison of reasoners is more interesting. Our
results show that a typical CSP solver is not as fast as a qual-
itative reasoner on instances from Allen’s interval calculus.
Its performance, however, is much more competitive than
FO and DL reasoners, which is not surprising, since the con-
sidered encoding is much closer to qualitative constraint net-
works. Finally, it should be noted that we only used Allen’s
interval calculus in our comparison, which is a rather small
calculus, compared to more recently discussed calculi such
as RCC23 and calculi from the OPRA family. A thorough
performance comparison with finite CSP solvers on large
calculi would be particularly interesting in view of constraint
propagation and heuristics (cf., e.g., (Bessière 1996)). In
particular, this would allow for a detailed search space com-
parison in terms of visited nodes and pruning power.

Acknowledgements

This work was supported by Deutsche Forschungsgemein-
schaft (DFG) as part of the Transregional Collaborative Re-
search Center SFB/TR 8 Spatial Cognition.

References

Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM 26(11):832–843.

Baader, F.; Horrocks, I.; and Sattler, U. 2007. Description
Logics. In van Harmelen, F.; Lifschitz, V.; and Porter, B.,
eds., Handbook of Knowledge Representation. Elsevier.

Bessière, C. 1996. A simple way to improve path
consistency processing in interval algebra networks. In
AAAI/IAAI, Vol. 1, 375–380.

Brand, S. 2004. Relation variables in qualitative spatial
reasoning. In Proc. of KI 2004: Advances in Artificial In-
telligence, LNCS 3238, 337–350. Springer.

Condotta, J.-F.; D’Almeida, D.; Lecoutre, C.; and Sais, L.
2006. From qualitative to discrete constraint networks. In
Proc. of the KI’2006 Workshop on Qualitative Constraint
Calculi, 54–64.

Gantner, Z.; Westphal, M.; and Wölfl, S. 2008. GQR –
A fast reasoner for binary qualitative constraint calculi. In
Proc. of the AAAI-08 Workshop on Spatial and Temporal
Reasoning. AAAI Press.

Gardiner, T.; Horrocks, I.; and Tsarkov, D. 2006. Au-
tomated benchmarking of description logic reasoners. In

Parsia, B.; Sattler, U.; and Toman, D., eds., Description
Logics, volume 189 of CEUR Workshop Proceedings.

Hebrard, E. 2008. Mistral, a constraint satisfaction library.
In Proc. of the Third International CSP Solver Competi-
tion.

Horrocks, I.; Kutz, O.; and Sattler, U. 2006. The even
more irresistible SROIQ. In Proc. of the Tenth Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning, 57–67. AAAI Press.

Nutt, W. 1999. On the translation of qualitative spatial
reasoning problems into modal logics. In Proc. of KI-99:
Advances in Artificial Intelligence, 23rd Annual German
Conference on Artificial Intelligence, LNCS 1701, 113–
124. Springer.

Pham, D. N.; Thornton, J.; and Sattar, A. 2006. Towards
an efficient SAT encoding for temporal reasoning. In Proc.
of Principles and Practice of Constraint Programming (CP
2006), LNCS 4204, 421–436. Springer.

Randell, D. A.; Cui, Z.; and Cohn, A. G. 1992. A spatial
logic based on regions and connection. In KR’92, Princi-
ples of Knowledge Representation and Reasoning: Proc.
of the Third International Conference, 165–176. Morgan
Kaufmann.

Renz, J., and Nebel, B. 2001. Efficient methods for quali-
tative spatial reasoning. J. Artif. Intell. Res. (JAIR) 15:289–
318.

Riazanov, A., and Voronkov, A. 2002. The design and im-
plementation of Vampire. AI Communications 15(2-3):91–
110.

Schild, K. 1991. A correspondence theory for terminologi-
cal logics: Preliminary report. In Proc. of the 12th Interna-
tional Joint Conference on Artificial Intelligence, 466–471.

Schulz, S. 2002. E - A brainiac theorem prover. AI Com-
munications 15(2-3):111–126.

Schulz, S. 2004. System Description: E 0.81. In Proc.
of the 2nd International Joint Conference on Automated
Reasoning, LNAI 3097, 223–228. Springer.

Sutcliffe, G., and Suttner, C. 1998. The TPTP Problem
Library: CNF Release v1.2.1. Journal of Automated Rea-
soning 21(2):177–203.

Sutcliffe, G. 2007. TPTP, TSTP, CASC, etc. In Proc. of
the Computer Science Symposium in Russia, LNCS 4649,
6–22. Springer.

Tsarkov, D., and Horrocks, I. 2006. FaCT++ description
logic reasoner: System description. In Proc. of the Inter-
national Joint Conference on Automated Reasoning, LNCS
4130, 292–297. Springer.

Tsarkov, D.; Riazanov, A.; Bechhofer, S.; and Horrocks,
I. 2004. Using Vampire to reason with OWL. In Proc. of
the International Semantic Web Conference, LNCS 3298,
471–485. Springer.

Weidenbach, C.; Schmidt, R. A.; Hillenbrand, T.; Rusev,
R.; and Topic, D. 2007. System description: SPASS ver-
sion 3.0. In Proc. of Automated Deduction - CADE-21, 21st
International Conference on Automated Deduction, LNCS
4603, 514–520. Springer.

