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Abstract—Several studies in Qualitative Spatial and Temporal
Reasoning discuss translations of the satisfiability problem on
qualitative constraint languages into propositional SAT. Most of
these encodings focus on compactness, while propagation strength
is seldom discussed.

In this work, we focus on temporal reasoning with the
Point Algebra and Allen’s Interval Algebra. We understand all
encodings as a combination of propagation and search. We first
give a systematic analysis of existing propagation approaches for
these constraint languages. They are studied and ordered with
respect to their propagation strength and refutation completeness
for classes of input instances. Secondly, we discuss how existing
encodings can be derived from such propagation approaches. We
conclude our work with an empirical evaluation which shows that
the older ORD-encoding by Nebel and Bürckert performs better
than more recently suggested encodings.

I. INTRODUCTION

Formulating combinatorial search problems in propositional
SAT has become a thriving research direction in Artificial
Intelligence. Among the modeled problems, satisfiability prob-
lems of Qualitative Spatial and Temporal Reasoning (QSTR)
have attracted interest. The key idea of QSTR is the ab-
straction of spatial or temporal data from concrete numerical
information to employ qualitative descriptions of relations for
reasoning. Examples of such qualitative formalisms include
temporal reasoning, in particular, the Point Algebra (PA) [21]
and Allen’s Interval Algebra (IA) [1].

The formalisms in QSTR are often understood as constraint
languages, which are relational fragments of first-order (FO)
logic. The satisfiability problem over such formalisms provides
the fundamentals for applications and further reasoning tasks
such as logic entailment or minimal descriptions. Therefore
a lot of work is directed towards satisfiability both from
a theoretical point of view, e.g., by identifying tractable
classes [18], [4] and a more applied point of view, e.g., by
proposing algorithms [12], [5] or new SAT encodings [10],
[19]. However, combining theory and practice is sometimes
not easy; theoretical results might turn out to be hard to
efficiently use in practice and conversely practical suggestions
might not take into account theoretical aspects.

Recent SAT encodings of such qualitative formalisms are
syntactic reformulations of a given problem instance that aim
at a concise and compact encoding that preserves satisfiability.
As we discuss in this paper preserving satisfiability is usually
done by making the propositional models correspond to a

small tractable class as this provides for a simple and concise
encoding that seems more suitable for practical use. However,
this ignores the utility of larger classes, and in particular does
not take into account existing theoretical work.

Interestingly, recent works in this direction show that
researchers are divided on the question whether there ex-
ist propositional SAT encodings preserving larger tractable
classes. The question is however equivocal and can have a
broad range of interpretations. Some options are to give Unit
Propagation (UP) the ability to decide satisfiability of large
tractable classes, to have propositional models corresponding
to large tractable classes, or to ensure UP establishes strong
k-consistency and a SAT solver mimics a search strategy for
tractable classes. In this paper, we focus on presenting the
satisfiability problem as a matter of constraint propagation and
search. To this end, we study different propagation techniques
and combine recent trends and past ideas to build propagation
approaches weaker than strong 3-consistency which preserve
specific tractable classes.

We start from a general constraint language formalization
and utilize ideas and results by Bodirsky and Chen [3]
who consider FO interpretations of the Interval Algebra,
and Bodirsky and Dalmau [4] who propose to use Datalog
programs to define and study k-consistency for qualitative
constraint languages. We first sketch different propagation
approaches for the Point Algebra and Interval Algebra through
Datalog programs, discuss their properties, and make com-
parisons between them. We then consider different ways of
grounding these programs on problem instances into propo-
sitional CNF. This two-step process gives insights into the
theoretical properties of UP for constraint propagation on
these encodings. In particular, it sheds light on the theoretical
properties of existing SAT encodings. Choosing the Datalog
abstraction has the benefit that we defer the actual formulation
(with a wealth of possible optimizations) in propositional
CNF, and also make it clear that the programs could be used
as propagation algorithms within Constraint Programming or
written as table constraints.

In the next section, we briefly introduce the Point Alge-
bra and Interval Algebra as temporal formalisms. Section II
provides the necessary background on QSTR, constraint lan-
guages, FO interpretations, Datalog, and comparisons between
constraint propagations. In Section III we discuss the Point
Algebra as a constraint language and provide simple Datalog



programs for propagation and their theoretical comparison.
Section IV follows the same idea applied to the Interval
Algebra. In Section V we derive propositional CNF from
input combined with Datalog programs, and compare this with
existing approaches. We present results of an empirical evalua-
tion in Section VI, which complements our theoretical results.
Finally, Section VII discusses related work and Section VIII
finishes the paper with a summary and outlook on future work.

II. PRELIMINARIES

A. Qualitative temporal reasoning
Qualitative Temporal Reasoning deals with relations that

hold between entities in an infinite domain D, e.g., the set Q of
rational numbers for temporal point-like events. In QSTR these
relations are usually assumed to induce a relation algebra. For
this, we define the set B = {R1, . . . , Rm} of base relations
which forms a partition of D2, i.e., a jointly exhaustive and
pairwise disjoint set. Relations in B must include the equality
on D and be closed under converse. This gives rise to a
relation algebra, by first closing the set B under intersection,
union, and complement to form a Boolean algebra (denoted by
2

B), and expanding this algebra (conceived of as an algebraic
structure) by the set-theoretically defined composition and
converse functions. Usually, a crucial question is whether the
resulting set of relations is closed under composition, but
this is well-known to be true for the formalisms we consider
here. In what follows we write [,\, · , ·�1, � to denote the
mentioned operations on 2

B .
We briefly sketch two temporal formalisms which are the

main focus in this work.
The Point Algebra (PA) [21] is the most simple formal-

ism for temporal reasoning with 3 base relations between
time points represented by rational numbers: “precedes” <,
“equals” =, and “succeeds” >. Allen’s Interval Algebra
(IA) [1] describes the possible relations between time inter-
vals. We obtain 13 base relations between intervals (such as
“during”, “overlaps”, etc.) and their disjunctions.

Example 1. In the PA, we can use relations such as {<,=}
denoting “precedes or equals” — the union of two base re-
lations. Given information: u {<,=} v, v {<} w, we can
conclude by composition u ({<,=} � {<}) w that u {<} w.

Fig. 1 shows the base relations (without the converse
relations) of both these formalisms, which are introduced later
in a more general setting as relational FO structures.

B. Relational structures
We define standard concepts of FO logic. The notation we

use is close to [4], [3].
A relational signature � is a countable set of distinct

relation symbols {R1, . . . }, each Ri with an associated arity
ni 2 N. Given a relational signature �, a relational �-structure
� is given by a domain D� and an interpretation of each
relation symbol Ri over D�, R�

i ✓
�
D�

�ni . We say that �
is a finite structure if D� is finite. Further, for �0 ✓ � the �0-
reduct of a relational �-structure � is the �0-structure obtained

Relation Example

I < J
· ·
I J

I = J ·
I, J

Relation Example

I before J I J

I meets J I J

I overlaps J I J

I during J I J

I starts J I J

I finishes J IJ

I equals J IJ

(a) (b)
Fig. 1. Base relations (without converses) of the (a) Point Algebra and
(b) Allen’s Interval Algebra.

from � by forgetting the interpretation of all symbols not in
�0. Conversely, a �-structure � is called an expansion of a
�0-structure �

0 if �0 is the �0-reduct of �.
A constraint language is essentially a relational structure.

One usually refers to constraint languages when relational
structures are used in the context of finding solutions to the
constraint satisfaction problem (CSP). Consider as an example
the simple signature �< := {<} with one binary relational
symbol. The �<-structure over Q with the usual interpretation
of < over Q is a constraint language. All constraint languages
used herein have a natural interpretation of their symbols over
a domain D, and we simply write �D,� to denote the constraint
language for � with this natural interpretation.

C. Constraint satisfaction problems
Let � be a relational �-structure. The constraint satisfaction

problem for � is the decision problem whether there exists a
homomorphism from some given finite �-structure I to �. That
is, a map h : DI ! D� that preserves each relation Ri 2 �,
i.e., for an ni-ary Ri it holds for all v1, . . . , vni 2 DI :

(v1, . . . , vni) 2 RI
i )

�
h(v1), . . . , h(vni)

�
2 R�

i .

An instance I of CSP(�) is denoted by I 2 CSP(�) and we
refer to h as a solution of I .

If h is a homomorphism defined on a subset of DI , we say
that h is a partial solution. A problem instance is said to be
k-consistent if every partial solution defined on k�1 variables
can be extended to any other variable to form a partial solution
on k variables. A problem instance is strongly k-consistent if
it is l-consistent for every l  k.

Example 2. An instance I of CSP(�Q,<
) is given by DI

:=

{a, b, c} with <I
:= {(a, b), (b, c)}. The instance is satisfiable,

due to the solution h with h(a) := 0, h(b) := 1, h(c) := 2, as
(0, 1) 2 <�Q,<

, and (1, 2) 2 <�Q,<

.

The primal constraint graph of an instance I over DI

is the undirected binary graph (DI , E) where a set {v, w}
is included in E if there is a k-ary relation R such that
(v1, . . . , vk) 2 RI and v, w 2 {v1, . . . , vk}.

We here chose the relational structures formulation to rein-
force the view that reasoning approaches in QSTR typically
rewrite finite input structures. Further, Bodirsky and Dal-
mau [4] stated the utility of Datalog for constraint satisfaction



with infinite domains and introduced strong k-consistency on
!-categorical constraint languages for arbitrary k.

D. FO interpretations
We use the definition of interpretation by Hodges [13] which

was also used in [3], but emphasize the syntactic part.
Let �,�0 be two relational signatures and d a positive natural

number. A d-dimensional syntactic interpretation ⇡ of �0 in
� is defined by (i) a FO �-formula (called domain formula)
@⇡(v1, . . . , vd) with d free variables and (ii) a map that assigns
to each relation symbol R 2 �0 of some arity n a FO �-
formula (the defining formula) '⇡(R)(v1, . . . , vn) where the
vi are disjoint d-tuples of distinct variables.

Let �0 be a relational �0-structure and � be a relational �-
structure. We say, �0 has a d-dimensional FO interpretation in
� if there is a d-dimensional syntactic interpretation ⇡ of �0

in � and a surjective map f⇡ : @⇡
�
�

d
�
! D�0

(the coordinate
map) such that for each R 2 � of some arity n and all d-tuples
ai 2 @⇡

�
�

d
�

it holds:

�

0 |= R
�
f⇡(a1), . . . , f⇡(an)

�
, � |= '⇡(R)(a1, . . . , an).

Note, there always exists the trivial 1-dimensional FO inter-
pretation (⇡id , fid) of � in �.

A syntactic interpretation is said to be primitive positive
if @⇡ and all '⇡ are purely conjunctive formulas with at
most existential quantification. This is the case when problem
instances of �0 can easily be conceived of as problem instances
of �. Further, in the context of a d-dimensional interpretation,
we use as notation for d-tuples v = (v(1), . . . , v(d)) and write
V = { v(i) | v 2 V, 1  i  d } for sets of items.

In the following we only work with syntactic interpretations
where @⇡ and all '⇡ are quantifier-free and in CNF. Further,
we consider expansions to a countable signature b� ◆ � in
which arbitrary clauses built on � are denoted by a relation
symbol with the appropriate arity. Thus, all interpretations we
use are quantifier-free and primitive positive (qfpp) for such a
signature b�. It allows us to translate every finite �0-structure I
into a b�-structure ⇡(I). Assuming a d-dimensional syntactic
interpretation ⇡ of �0 in b�, this ⇡(I) is obtained as follows.
We say we add a conjunct R(v1, . . . , vn) for an n-ary R 2 b�
to ⇡(I) if we add (v1, . . . , vn) to R⇡(I). The full translation
procedure is then as follows:

1) set D⇡(I)
:= DI ,

2) for each v 2 DI add all conjuncts of @⇡(v(1), . . . , v(d))
to ⇡(I), and

3) for each R 2 �0 of some arity n and tuple (v1, . . . , vn) 2
RI , add each conjunct of '⇡(R)(v1, . . . , vn) to ⇡(I).

E. Datalog
We give a very brief description of Datalog. In particular,

we decided to introduce it without constants nor distinguishing
intentional and extensional database predicates; for a general
introduction we refer to [8].

We denote by false a distinguished 0-ary relation symbol
representing inconsistency (cf. [4]). A �-Datalog program ⇧

is a set of rules of the form L0 :– L1, . . . , Ln where each Li

is an atomic formula Ri(v1, . . . , vni) with an ni-ary relation
symbol Ri, each vi is a variable, R0 2 �[{false}, and Ri 2 �
for 0 < i  n. Further, each variable occurring in L0 must
occur in some Li, 1  i  n. L0 is referred to as the head
and L1, . . . , Ln as the body of a rule. A rule is a k-rule if it
has k distinct variables.

The operational semantics of Datalog can here be given as
follows. Our input is a finite �0-structure I . The evaluation of
the program is an “extended” finite �[�0-structure ⇧(I). We
initialize ⇧(I) with D⇧(I)

= DI , R⇧(I)  RI for R 2 �0,
R⇧(I)  ; for R 2 � \ �0, and then repeatedly apply all
rules until a fixpoint is reached. Rule application works as
follows. Let w1, . . . , wn be the variables appearing in the rule’s
head and ↵ be any map of the variables appearing in the rule
to D⇧(I). If for each Li = Ri(v1, . . . , vni) in the body it
holds

�
↵(v1), . . . ,↵(vni)

�
2 R

⇧(I)
i , add

�
↵(w1), . . . ,↵(wn)

�

to R
⇧(I)
0 . In case R0 = false, we say ⇧ has derived false,

which we understand as a contradiction. This will be made
explicit later. Note this procedure is polynomial time.

Datalog is here used to sketch different types of con-
straint propagation, in particular ones weaker than strong 3-
consistency. For this, we also consider a limited evaluation
of Datalog programs on chordal graphs. A binary undirected
graph G = (V,E) is chordal if each cycle in G of length
at least four has an edge between two non-adjacent nodes.
We denote by bG = (V, bE) some chordal graph with bE ◆ E.
Such restricted Datalog programs on chordal graphs will only
derive information on edges in bE. We make this explicit in
the following definition.

Definition 1. For signatures �,�0, let ⇧ be a �-Datalog pro-
gram, I be a finite relational �0-structure, and bG = (DI , bE)

be some chordal supergraph of the primal constraint graph
of I . We denote by ⇧| bG the Datalog program that is the
chordal variant of ⇧ on symbols � [ {E} where E is a
distinguished binary relation symbol. We expand I to �0[{E},
set EI

:= { (v, w) | {v, w} 2 bE }, and append to the body of
each rule E(v, w) for all pairs of variables v, w that appear
together in an atomic formula in the rule.

By ⇧| bG(I) we denote the � [ �0-reduct of the result of the
program application, i.e., we forget E after computation.

For our purposes it is irrelevant how bG is computed. How-
ever, we do require for comparisons that it is uniquely defined
for a fixed instance I . In particular, for translated instances
⇡(I) we assume that bG is derived from I and as such for
{v, w} 2 EI we can infer information between all components
of v, w, i.e., we have E⇡(I)

:= { (v(i), w(j)
) | (v, w) 2

EI , 1  i, j  d }.

F. Comparing Datalog programs on different representations

In the following, we write ⇧ � ⇡ to denote the combination
of a syntactic interpretation (the representation) and a Datalog
program (the constraint propagation). Note, the considered
syntactic interpretations are linear time translations and also
include the trivial interpretation ⇡id .



Definition 2 (cf. [4]). Let � be a constraint language, ⇡ be a
syntactic interpretation of the relation symbols of �, and ⇧ be
a Datalog program. The program given interpretation ⇧ � ⇡
solves an instance I 2 CSP(�) if ⇧ derives false on ⇡(I)
if and only if I is unsatisfiable. We say ⇧ � ⇡ is refutation-
complete for CSP(�) if it solves all instances of CSP(�).

In the following we define a partial order on Datalog
programs with interpretations which conveys a notion of
propagation strength. Our definition takes into account the
considered syntactic interpretations.

Definition 3. Let I,� be relational ⌧ -structures with I 2
CSP(�). We denote by PSol�(I) the set of all partial solutions
of I in �. For a ⌧ -Datalog program ⇧, PSol�

�
⇧(I)

�
is the set

of partial solutions of the ⌧ -structure ⇧(I) except if ⇧ derives
false in which case we define PSol�

�
⇧(I)

�
to be empty.

Let � be a relational �-structure such that � has a qfpp
interpretation (⇡, f⇡) in � of dimension d. For ⇡(I), let I 0

be a �-structure defined on the same domain, such that for
each R 2 � it holds R⇡(I) ✓ RI0

. Every partial solution
h0 2 PSol�(I

0
) defined on V 0 for some V 0 ✓ DI induces a

map h : V 0 ! D� by h(v) := f⇡
�
h0
(v(1)), . . . , h0

(v(d))
�
. We

denote the set of these maps by PSol�(I
0
), as they are partial

solutions of I 2 CSP(�).

Definition 4. Let � be a relational structure. Further, let �
be a relational �-structure with a qfpp interpretation of � in
� using the syntactic part ⇡ and ⇧ be a �-Datalog program.
Similarly, consider a second relational �0-structure �

0 with an
analogous setup. We say ⇧�⇡ is strictly stronger than ⇧

0 �⇡0

wrt. �, denoted by ⇧�⇡ �� ⇧

0�⇡0, if and only if for every I 2
CSP(�) it holds PSol�

�
⇧(⇡(I))

�
✓ PSol�

�
⇧

0
(⇡0

(I))
�
, and

there exists an I 0 2 CSP(�) such that PSol�

�
⇧(⇡(I 0))

�
(

PSol�

�
⇧

0
(⇡0

(I 0))
�

.

III. THE POINT ALGEBRA

The signature of the PA is �PA := {=, <,, 6=,�, >,Q2}
where each symbol is binary (we here exclude ; to simplify
matters). Then, the PA is simply �

Q,�PA . It is well-known that
strong 3-consistency implies satisfiability (Th. 2 in [15]) and
instances of CSP(�Q,�PA

) can be solved in polynomial time.
We are further interested in two reducts of �

Q,�PA induced
by the following signatures: (i) �PAB := {<,=, >}, and
(ii) �ORD := {,=, 6=}. The base relation reduct �PAB is
strictly less expressive than the PA as it cannot express
 [3]. However, the �ORD-reduct can express the entire PA.
More precisely, there is a qfpp interpretation of �

Q,�PA in
�

Q,�ORD which we denote by ⇡ORD: the dimension is 1, the
coordinate map is the identity, and the defining formulas are
straightforward, e.g., '⇡ORD(v < w) = v  w ^ v 6= w.

A. Propagation for the PA and reducts

For �Q,�PA the following Datalog program ⇧

PA
3 establishes

strong 3-consistency using composition, converse, and inter-
section as provided by the traditional relation-algebraic view.

⇧

PA
3

⇧

PA
3| bG ⇧

ORD � ⇡ORD

⇧

ORD| bG � ⇡ORD

⇧

PAB
3

⇧

PAB
3 | bG

CSP(�Q,�PA
)

CSP(�Q,�PAB
)

Fig. 2. Lattice of propagation strength of Datalog programs for PA. Frames
indicate refutation completeness for reducts.

For all pairs A,B 2 �PA, we have as rules

x C y :– x A z, z B y. x I y :– x A y, x B y.

y R x :– x A y.

where C 2 �PA denotes the composition A � B, I 2 �PA
denotes the intersection A\B (where we replace the head with
false if the intersection is empty), and R 2 �PA denotes A�1.
Additionally, we add false :– x D x for each D 2 {<, 6=, >}
to establish 1-consistency.

Besides ⇧

PA
3 we consider three variants: (i) ⇧

PA
3| bG,

(ii) ⇧PAB
3 which is ⇧

PA
3 restricted to those rules whose bodies

have symbols in �PAB, and (iii) ⇧PAB
3 | bG.

We further consider the application of the interpretation
⇡ORD. Following Nebel and Bürckert [18], we consider the
theory of weak orders here formulated as ⇧

ORD:

x  y :– x  z, z  y. x  y :– x = y.
x = y :– x  y, y  x. y  x :– x = y.
false :– x = y, x 6= y. false :– x 6= x.

We also obtain the chordal variant ⇧ORD| bG.
The propagation strength of these programs given by

��Q,�PA is shown in Fig. 2, where arrows symbolize the partial
order and a program is refutation-complete for a particular
reduct if it appears in the corresponding frame.

Proposition 1. The partial order shown in Fig. 2 is correct.
It is further complete given the transitivity of ��Q,�PA .

Proof idea: Compare the rules of the programs: ⇧PA
3 is

a strict superset of ⇧

PAB
3 , ⇧

ORD does not propagate <, and
chordal variants only propagate on edges in bG.

Proposition 2. 1) ⇧

PAB
3 | bG is refutation-complete for �

Q,�PAB ,
2) ⇧ORD| bG �⇡ORD is refutation-complete for �Q,�PA , 3) ⇧PAB

3 is
not refutation-complete for �

Q,�PA , 4) refutation completeness
of other programs as indicated in Fig. 2 follows from the
transitivity of ��Q,�PA .

Proof idea: 1), 2) Satisfiability coincides with con-
ditions on cycles [20], [18], [12]. Chordal graphs express
the necessary chords on induced cycles in G such that the
programs recognize cycles. 3) ⇧

PAB
3 does not infer from

symbols �PA \ �PAB, e.g. , 6=.



IV. THE INTERVAL ALGEBRA

We have a signature for the 13 binary base relations of the
IA denoted by �IAB. The IA signature �IA := 2

�IAB \ {;} is
rather large as it has a cardinality of |�IA | = 2

13�1 = 8 191.
It is clear that intervals and points are closely related. We

can construct the intended semantics of the IA based on a
syntactic interpretation ⇡ of �IAB in �PAB (cf. [3]) which
defines the base relations between intervals based on the
relations between their start and endpoints as seen in Fig. 1.
The dimension of this interpretation is 2 and the domain
formula @⇡(v, w) := v < w describes well-formed intervals.
It induces the interpretation of �IAB on the domain of intervals
int(Q) := @⇡(�

Q,�PAB
) = { a 2 Q2 | a(1) < a(2) }. Because

all other symbols in �IA denote unions of �IAB symbols, we
extend ⇡ to �IA by using defining formulas equivalent to
disjunctions of those on base relations. This defines the entire
IA constraint language �

int(Q),�IA based on �

Q,c�PA .
In contrast to the tractable PA, solving instances of

CSP(�int(Q),�IA
) is NP-complete [1]. There are however sev-

eral important reducts of the IA corresponding to relations that
are definable with special qfpp d�PA-formulas. Here the most
important ones are the following.

1) The �P-PAB-reduct of relations that are pointizable over
base relations; those which are definable by qfpp �PAB-
formulas.

2) The �P -reduct of pointizable relations [15]; those which
are definable by qfpp �PA-formulas.

3) The �ORD-H-reduct of ORD-Horn relations [18]; those
which are definable by qfpp [�ORD-formulas that only
consist of negation-free clauses that contain at most one
symbol of {,=}.

It is easy to see that �P is also the set of relations that are
definable by qfpp �ORD-formulas.

Example 3. Consider the following relations and defining
formulas given by Nebel and Bürckert [18]:

• {before,meets, overlaps} is pointizable:
'⇡({before,meets, overlaps})(v, w) = v(2) < w(2)

• {overlaps, starts, finishes�1} is an ORD-Horn relation:
'⇡({overlaps, starts, finishes�1})(v, w) = v(1)  w(1) ^
w(1)  v(2) ^ w(1) 6= v(2) ^ v(2)  w(2) ^ (v(1) 6=
w(1) _ v(2) 6= w(2)

)

• {before, after} is neither pointizable nor an ORD-Horn
relation:
'⇡({before, after})(v, w) = (v(2) < w(1) _ w(2) < v(1))

The well-known relation between these signatures is
�IAB ( �P-PAB ( �P ( �ORD-H ( �IA ,

|�IAB | = 13 < |�P-PAB | = 29 < |�P | = 187 < |�ORD-H | = 867 ,

see, e.g., [18]. Numbers are given for �IA, i.e., excluding the
empty relation, but including the universal relation.

Instances of all these reducts can be solved in polynomial
time using strong 3-consistency and the �ORD-H-reduct is
further the largest tractable reduct containing all base rela-
tions [18]. This of course underlines the interest in having
algorithms that can take advantage of it.

A. Used syntactic interpretations
We define three distinct syntactic interpretations of �IA.

These interpretations constitute FO interpretations and we later
show that their “grounding” to propositional SAT matches
existing SAT encodings of the IA.

The ORD-Horn representation ⇡ORD-H follows [18] and
interprets �IA in [�ORD. The domain formula is here translated
accordingly to @⇡ORD-H(v, w) := v  w ^ v 6= w. Each '⇡ORD-H

is a negation-free CNF [�ORD-formula that consists of prime
implicates necessary to build the relation [18]. This map gives
the right clauses for �ORD-H as defined above.

The syntactic interpretation ⇡P interprets �IA in d�PAB, with
the usual domain formula @⇡ . It follows the same approach
as before; each defining formula is a qfpp d�PA-formula that
consists of prime implicates. This map gives defining formulas
that are qfpp �PA-formulas for relation symbols in �P .

The representation by Pham et al. [19] ⇡Ph interprets �IA
in d�PAB with the usual domain formula @⇡ . For R 2 �P ,
let µ(R) be the corresponding CNF d�PAB-formula consisting
of all 4-conjuncts on { (v(i), w(j)

) | 1  i  j  2 }.
This gives, e.g., µ(before)(v, w) =

V
1ij2 v

(i) < w(j). To
define '⇡Ph for arbitrary R 2 �IA, let bR 2 �P be the smallest
upper approximation of R in �P , i.e., the relation symbol with
smallest set bR�int(Q),�IA such that R�int(Q),�IA ✓ bR�int(Q),�IA .
Further, for such R, bR, let  (R) be the set of all symbols
r 2 �IAB such that r�

int(Q),�IA ✓ (

bR�int(Q),�IA \ R�int(Q),�IA
).

Then, '⇡Ph(R) := µ( bR)^
V

r2 (R) ¬µ(r). Note, this map does
not yield qfpp �PAB-formulas for relations in �P-PAB, however
the only non-unit clauses represent the universal relation.

B. Propagation for the IA and reducts
For �IA we define ⇧

IA
3 for strong 3-consistency similar

as with the PA, and obtain the restricted programs ⇧

IA
3| bG,

⇧

IAB
3 , and ⇧

IAB
3 | bG as before. We consider applying the already

introduced PA Datalog programs to the defined translations.
Further, we consider an extended version of the ⇧ORD program,
⇧

ORD
RES (and ⇧

ORD
RES | bG), which emulates positive unit resolu-

tion on all Horn clauses C in defining formulas of '⇡ORD-H

equivalent to the form P (v, w) _
W

i(vi 6= wi) via rules
P (v, w) :– C(v, w, . . . ),= (v1, w1), . . . , with P 2 {,=}
or the head as false if the clause has no symbol {,=}.

The propagation strength and refutation completeness of the
programs with translations is given in Fig. 3.

Proposition 3. The partial order shown in Fig. 3 is correct.
It is further complete given the transitivity of ��int(Q),�IA .

Proof idea: Use the well-known reduction theorem [13];
formulas on intervals translate into equivalent formulas on
points. This way rules of the programs can be compared.

Proposition 4. 1) ⇧

PAB
3 | bG � ⇡Ph is refutation-complete for

�

int(Q),�P-PAB , 2) ⇧

ORD| bG � ⇡ORD-H is refutation-complete
for �

int(Q),�P , 3) ⇧

ORD
RES | bG � ⇡ORD-H is refutation-complete

for �

int(Q),�ORD-H , 4) ⇧

IAB
3 is not refutation-complete for

�

int(Q),�IAB , 5) ⇧

PAB
3 � ⇡Ph is not refutation-complete for

�

int(Q),�P , 6) ⇧

PA
3 � ⇡P is not refutation-complete for



⇧

IA
3

⇧

IA
3| bG

⇧

IAB
3

⇧

IAB
3 | bG

⇧

PA
3 � ⇡P

⇧

PA
3| bG � ⇡P

⇧

PAB
3 � ⇡Ph

⇧

PAB
3 | bG � ⇡Ph

⇧

ORD � ⇡ORD-H

⇧

ORD| bG � ⇡ORD-H

⇧

ORD
RES � ⇡ORD-H

⇧

ORD
RES | bG � ⇡ORD-H

CSP(�int(Q),�ORD-H
)

CSP(�int(Q),�P
)

CSP(�int(Q),�P-PAB
)

Fig. 3. Lattice of propagation strength of Datalog programs for IA. Frames indicate refutation completeness for reducts.

�

int(Q),�ORD-H , 7) refutation completeness of other programs as
indicated in Fig. 3 follows from the transitivity of ��int(Q),�IA .

Proof idea: 1), 2) from qfpp interpretations and Prop. 2.
3) combine argument of [18] (positive unit resolution) and
Prop. 2. 4) ⇧IAB

3 has disjunctive symbols in heads of some 3-
rules, but is incapable of establishing 2-consistency on them.
5) from qfpp interpretations and Prop. 2. 6) ⇧

PA
3 � ⇡P only

works on symbols in �P , but input instances have symbols in
�ORD-H ) �P .

V. GROUNDING TO PROPOSITIONAL CNF
We show how to write Datalog programs with syntactic in-

terpretations in propositional CNF. Alternatively, all programs
can be used as propagators in Constraint Programming (CP)
with the interpretations as modeling. We first sketch the classic
reasoning approach using strong 3-consistency that forms the
basis of so-called qualitative constraint-based solvers.

A. The classic QSTR approach
For a binary constraint language � with signature � and a

�-Datalog program ⇧3 that establishes strong 3-consistency,
we model a given instance I 2 CSP(�) as a finite constraint
problem where the constraint variables are pairs of elements
from DI , which take as values relation symbols of �. We only
need to express the most constraining relation on a pair, thus
if � = 2

�B \ {;} for some �B , it is sufficient to define the
domain of constraint variables as �B , i.e., constraint variables
get assigned sets of base relations.

Given refutation completeness of ⇧3 on CSP instances
of some �0-reduct �

0 of �, we can use domain splitting in
any search strategy to restrict domains of constraint vari-
ables to take values in �0. Thus, ⇧3 immediately proves

satisfiability or unsatisfiability once all constraint variables
have been restricted to �0. It is well-known that if �,⇧ stem
from a relation algebra, maintaining strong 3-consistency is
equivalent to maintaining generalized arc-consistency on table
constraints [7], [24].

B. Straightforward translations to propositional CNF
Let �0 be the signature of a given instance I , ⇡ a syntactic

interpretation of �0 in b� and ⇧ a b�-Datalog program. We
consider effectively the Herbrand-expansion of the translated
input ⇡(I) (existential quantification) and the Datalog rules
(universal quantification). This gives propositional atoms:
{ pR(v1,...,vn) | R n-ary in � and v1, . . . , vn 2 D⇡(I) }. The
instance ⇡(I) is written as propositional CNF by writing the
conjunction of its b� symbols on their interpretations, where the
symbols themselves are written as the clauses they represent.
We further instantiate the rules of ⇧ on this set of propositional
atoms, where we identify false with ? and for chordal variants
immediately evaluate the special relation E. Assuming the
signature � and interpretation ⇡ are of fixed size, the size
of the resulting CNF is polynomial in the size of the input.

If all heads of ⇧ are symbols in �, the rules can be written
as Horn clauses and UP has at least the propagation strength of
⇧. In particular, this means UP retains refutation completeness.
We note that there are trivial SAT encodings establishing
strong 3-consistency, but they are costly in terms of CNF size.
For n := |D⇡(I) | there are O(nk

) distinct instantiations of a
k-rule and without reductions ⇧

IA
3 contains ⇡ 67 million 3-

rules (cf. ⇧ORD has a single 3-rule).
Given properties of relations and programs we can reduce

the number of atoms and clauses without violating theoretical
properties, e.g., relations R with R�

= D� can be identified



with >, 1-rules can be dropped if checking 1-consistency is
done upon grounding. Atoms that are provably false given
I can be identified with ?. Further, easy examples are the
symmetry of the equality relation = and concurrence of
relations and their converse relations on swapped arguments,
e.g., v < w if and only if w > v. We can easily reduce
the set of propositional atoms in these cases. Additionally, for
relations that constitute complements of each other we can
assign a negated atom to one of them, e.g., in the case of �ORD
where we have both = and 6=. Several rules of ⇧ORD and ⇧

ORD
RES

become tautological statements in propositional logic and can
be removed. Rules for positive unit resolution in ⇧

ORD
RES are thus

removed and both ⇧

ORD and ⇧

ORD
RES have the same grounding.

C. The support encoding of Pham et al.

The perhaps most popular encodings were introduced by
Pham et al. [19] who considered the PA and IA, but used the
classic QSTR approach as the starting point and accordingly
used existing techniques for mapping finite CSPs to SAT.
We can modify our grounding strategy to sketch the support
encoding defined by them. Note, their encoding requires
properties of relation algebras and thus we limit ourselves to
the programs ⇧

PAB
3 and ⇧

IAB
3 . Pham et al. found their support

encoding of ⇧PAB
3 � ⇡Ph to be the best IA encoding compared

to other encodings they proposed (not include here).
To obtain the support encoding we: 1) do not identify the

universal relation with >, instead we assume during translation
that we have the universal relation on all pairs, 2) restrict 3-
rules to instantiations on u, v, w where it holds u / v / w for
/ a total order on D⇡

(I), 3) identify all propositional atoms
R(v, w) for which (v, w) 2 R⇡(I) would violate 2-consistency
with ? to simplify the formula.

Note, 2) does not invalidate correctness of the encoding,
because the first modification guarantees that between each
pair of variables some atom denoting a relation must hold in
a propositional model. Given that 3-rules stem from a relation
algebra this guarantees that these models are valid.

We conclude with refutation properties of the support en-
coding for the considered programs. For this, maps ⇡dIAB, ⇡dPAB
write relation symbols as disjunctions of base relation symbols.

Proposition 5. UP on the support encoding of: 1) ⇧

PAB
3 | bG

is refutation-complete for �

Q,�PAB , 2) ⇧

PAB
3 � ⇡d�PAB is not

refutation-complete for �Q,�PA , 3) ⇧IAB
3 �⇡d�IAB is not refutation-

complete for �

Q,�IAB .

Proof idea: 1) Negative unit resolution substitutes the
missing rules. 2) Several rules on d�PAB are missing, thus
refutations are not guaranteed. 3) Similar to 2).

As a consequence UP on the support encoding of ⇧PAB
3 �⇡Ph

is refutation-complete for �int(Q),�P-PAB , but not �int(Q),�P .
We briefly summarize selected IA reasoning approaches

built on Datalog programs in Table I and also list the CNF
size of the first instance from the A(150, 10.5, 6.5) set of
benchmarks that is used in the evaluation below. Our encoding
using ⇡ORD-H is the smallest one as there is only one 3-rule.

VI. EMPIRICAL EVALUATION

To conclude our study, we consider the empirical per-
formance of the most promising SAT encodings: the Pham
et al. grounding of ⇧

IAB
3 | bG � ⇡d�IAB , ⇧

PAB
3 | bG � ⇡Ph, and our

grounding with optimized encoding of ⇧

ORD
RES | bG � ⇡ORD-H.

As benchmarks we consider random graphs as often used
in this area. We use two different models, where the first
model gives random instances around the phase transition that
range from under-constrained to over-constrained problems,
and the second model gives non-hard instances where chordal
supergraphs have very low density. This should suffice to
demonstrate the performance of the encodings on easy and
hard problems.

The first random generator is commonly known as the A-
model [17]. It has as parameters n 2 N the number of nodes
in the constraint graph, d 2 [0, n� 1] its average degree, and
l 2 [1, 13] the average label size. We initialize a graph with
n nodes and randomly add edges from the complete graph
with n variables until we have reached the average degree d.
Finally, we assign randomly drawn labels from �IA \{int(Q)}
with an average size of l. We simply write A(n, d, l) to denote
a corresponding set of instances. In particular, we choose d to
obtain instances from the phase transition.

The second random model we use builds constraint graphs
according to the well-known Watts-Strogatz model [22] to
which we assign random labels as before. We here denote
the model by W (n, d,�, l). Like the A-model it builds graphs
with n nodes and an average degree of d. However, the graphs
are initially constructed as local clusters and then each edge
is randomly reassigned according to the probability �. For
� ⌧ 1.0 this model has small-world properties, i.e., many
clusters that are well connected and on average short length
of paths. Resulting networks have sparser chordal supergraphs
than those of the A-model. We use this model to provide larger
but easy instances. Instances we generated from this model
were solved with few failed decisions.

The used SAT solver is Glucose-2.2 [2]. As suggested by
Pham et al. we preprocess input with strong 3-consistency, but
our triangulations are based on the original input. Triangula-
tion is done with the GreedyFillIn method [6] as suggested
by Chmeiss and Condotta [9]. Runtime does not include the
time necessary for this preprocessing nor the translation via
syntactic interpretation as this overhead is insignificant given
the 2 hour time limit. The tool we developed to compute the
SAT encodings is available.1

GQR-1500 [23] is a generic qualitative constraint reasoner
written for arbitrary relation algebras that maintains strong
3-consistency for propagation. It here provides the results of
⇧

IA
3 with the ORD-Horn relations for domain splitting. These

are here only listed to put all results in the context of a classic
strong 3-consistency CP approach.

All experiments were run on an Intel Xeon CPU with
2.66 GHz, 4 GB memory, and a CPU time limit of 2 hours.

1See the publication’s entry at
http://www.informatik.uni-freiburg.de/⇠ki/publications/



TABLE I
OVERVIEW OF SELECTED IA REASONING APPROACHES.

Approach (references) Syntactic interpretation Propagation CNF size of first instance in A(150, 10.5, 6.5)
variables clauses

Classic CP approach ⇡id ⇧IA
3 NA

CP with “partial weak consistency” ([9]) ⇡id ⇧IA
3| bG NA

Pham-IAB ([19]) ⇡ d�IAB Modified grounding ⇧IAB
3 138 239 85 221 614

Pham-IAB-chordal ([19], [4], [16]) ⇡ d�IAB Modified grounding ⇧IAB
3 | bG 47 599 13 462 761

Pham-PAB ([19]) ⇡Ph Modified grounding ⇧PAB
3 134 250 38 207 793

Pham-PAB-chordal ([19], [4], [16]) ⇡Ph Modified grounding ⇧PAB
3 | bG 49 626 6 174 476

ORD-Horn ([18]) ⇡ORD-H Grounding ⇧ORD
RES 134 550 26 870 352

ORD-Horn-chordal ([18], here) ⇡ORD-H Grounding ⇧ORD
RES | bG 49 926 4 474 722

TABLE II
RUNTIME IN SECONDS FOR A(150, d, 6.5)

percentile
d name 25th 50th 75th 90th
10.0 GQR-1500 1.64 6.06 30.27 179.38

ORD-Horn-chordal 24.69 53.58 130.73 291.77
Pham-PAB-chordal 112.45 185.64 330.83 587.48
Pham-IAB-chordal 566.03 965.00 1 557.33 2 692.75

10.5 GQR-1500 9.02 78.43 663.80 4 107.85
ORD-Horn-chordal 63.68 227.02 743.84 1 968.07
Pham-PAB-chordal 151.87 423.19 1 066.77 2 739.81
Pham-IAB-chordal 301.41 1 445.11 3 607.48 -

11.0 GQR-1500 1.82 35.19 578.80 6 633.01
ORD-Horn-chordal 14.99 103.02 615.40 2 373.00
Pham-PAB-chordal 34.71 182.19 958.14 3 094.41
Pham-IAB-chordal 49.86 295.69 1 919.98 -

11.5 GQR-1500 0.27 2.53 28.40 285.62
ORD-Horn-chordal 5.27 18.27 86.66 352.47
Pham-PAB-chordal 9.75 37.21 159.74 550.22
Pham-IAB-chordal 14.82 51.68 230.27 948.78

TABLE III
RUNTIME IN SECONDS FOR W (n, 10.0, 0.1, 7.5)

percentile
n name 25th 50th 75th 90th
500 GQR-1500 3.49 3.66 3.90 6.47

ORD-Horn-chordal 18.09 21.41 24.89 28.42
Pham-PAB-chordal 94.88 128.70 180.69 220.14

750 GQR-1500 11.58 12.58 21.30 28.16
ORD-Horn-chordal 62.97 75.13 89.67 103.89

For each considered parameter setting of the A-model we
generated 1 000 problem instances. Table II summarizes the
runtime results. Fig. 4 gives more detailed results for the set
with the overall hard instances. One can notice the stronger
propagation of ⇧ORD

RES | bG pays off in terms of both runtime and
decisions. Further, we can see that Glucose spends more time
on propagation with ⇧

ORD
RES | bG than with the Pham encoding

of ⇧

PAB
3 | bG. The runtime results of the ORD-Horn-chordal

encoding are better than those for Pham-PAB-chordal, and for
most instances are an improvement of factor 2.

For the W -model, we generated 100 instances for each
considered parameter setting. Table III lists the results for these
instances. Here, using ORD-Horn is overall better than the
Pham encoding by a factor of 5 to 8. Note, Glucose exceeded
the available memory with the Pham-IAB-chordal encoding

 1

 10

 100

 1000

 0  100  200  300  400  500  600  700  800  900 1000
C

PU
 ti

m
e 

(s
ec

)

number of solved instances

GQR-1500
ORD-Horn-chordal
Pham-PAB-chordal
Pham-IAB-chordal

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

 0  100  200  300  400  500  600  700  800  900 1000

N
um

be
r o

f d
ec

is
io

ns

number of solved instances

GQR-1500
ORD-Horn-chordal
Pham-PAB-chordal
Pham-IAB-chordal

Fig. 4. Runtime and decisions for A(150, 10.5, 6.5) (both logscale).

on both sets, with Pham-PAB-chordal on the last set, and with
ORD-Horn-chordal on five instances of the last set.

VII. RELATED WORK

The explicit use of FO interpretations was presented in [3]
to analyze pointizable relations. Less explicitly it has been
applied in many works to study the properties of pointizable
and also ORD-Horn relations. We have used syntactic interpre-
tations to derive propositional encodings. We have further used
FO interpretations to study the differences between distinct
constraint propagation approaches. The Datalog approach ties
in with important theoretic results on reasoning with relational
structures on infinite domains, in particular k-consistencies [4].
We have here aimed at refutation completeness with constraint



propagation weaker than strong 3-consistency as this is more
suited for SAT encodings.

The propositional SAT encoding of ⇧

ORD
RES � ⇡ORD has been

used almost 20 years ago in [18] to prove the tractability
of �ORD-H. However, it does seem to not have attracted any
interest for practical use as a SAT encoding. We have opti-
mized and combined this encoding with restricted evaluations
on chordal graphs. The encoding remains refutation-complete
for the tractable class of ORD-Horn relations. We can also
mention an encoding proposed in [10] which takes advantage
of convex relations – a strict subset of ORD-Horn relations.

Chordal variants of encodings trace back to [16] where the
support encoding of Pham et al. on points was combined with
a chordal restriction; there referred to as “divide-and-conquer”.
It was introduced as tree decompositions and chordal graphs
later in [11]. Structural properties have however been con-
sidered before: Bodirsky and Dalmau already discussed tree
decompositions on !-categorical constraint languages [4], van
Beek [20] proposed finding cycles using the strongly con-
nected components for the PA. Further, temporally labeled
graphs defined by Gerevini and Schubert [12] make use of both
the �ORD-reduct of the PA and sparse graphs by not necessarily
deriving relations on all pairs of DI but rather following
longer chains of orderings for cycle checking. On easy sparse
instances propagation with such specialized algorithms [20],
[12], [5] can be expected to be more beneficial than (full)
constraint propagation.

VIII. CONCLUSION AND FUTURE WORK

In this work we have studied existing constraint-based
approaches for reasoning with the Point Algebra and Allen’s
Interval Algebra. These approaches are based on at most strong
3-consistency and we provided lattices showing propagation
strength and refutation completeness for different fragments
of both formalisms. Although all these approaches have been
applied for reasoning in the literature, it seems that no explicit
statement on propagation strength has been provided before.
In particular, we used previous results on FO interpretations
to make the comparison formally explicit.

We further analyzed and improved existing SAT encodings
of these formalisms. One of the oldest propositional SAT
encodings seems to have gone unnoticed when other encodings
were put forward, but its strong theoretical and empirical
results seem superior to newer encodings. We have combined
this encoding with propagation on chordal graphs which turns
out to be the best encoding in our evaluation.

Our results are easily applicable to modeling of qualitative
reasoning problems in Constraint Programming. Further, other
point-based formalisms could be reduced to these encodings
using syntactic interpretations.

For future work it should be useful to combine the ideas
presented here with earlier work on purely syntactical interpre-
tations of arbitrary qualitative relation algebra formalisms [14].
It should further be worthwhile to consider the existing SAT
encodings of other formalisms, e.g., the Region Connection
Calculus in the same way as the temporal formalisms in here.
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