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Abstract. Thesuccessof CSFreiburg at RoboCup2000canbeattributedto an
effective cooperationbetweenplayersbasedon sophisticatedsoccerskills anda
robustandaccurateself-localizationmethod.In thispaper, wepresentourmulti-
agentcoordinationapproachfor both,actionandperception,andour rich setof
basicskills whichallow to respondto alargerangeof situationsin anappropriate
way. Furthermoreour actionselectionmethodbasedonanextensionto behavior
networks is described.Resultsincludingstatisticsfrom CSFreiburg final games
at RoboCup2000arepresented.

1 Introduction

After winning RoboCupin 1998andcoming in third in 1999,CS Freiburg won the
competitionin the F2000leagueat RoboCup2000again.Oneof the reasonsfor this
successis mostprobablythe accurateandreliableself-localizationmethodbasedon
laserrangefinders[10]. However, while this wasbasicallyenoughto win thecompeti-
tion in 1998,it wasnecessaryto work on a numberof differentproblemareasin order
to staycompetitive.

Our main researchaim this year was to develop and test new techniquesin the
areasof actionselectionandmulti-robotcooperation. In orderto do sowe alsohadto
redesigntheactionrepertoire andto rethinkwhatkind of problemscouldbesolvedby
a groupof robotsin which way. In additionto theseissueswe further enhancedour
perceptiontechnology. However, mostof the work in this areawasalreadydonelast
year[13] andwill bedescribedonly briefly.
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Figure1 depictsthe softwarearchitectureof our players.Theperceptiontechnol-
ogy asdescribedin Section3 is thebasisof our team.In theareaof cooperativesen-
sor interpretation we were able to comeup with interestingand significantresults.
As describedin Section3.3, thegroupestimationof the ball positionis doneusinga
combinationof Markov localizationandKalmanfiltering. For RoboCup2000wecom-
pletelyredesignedourstrategy component.We employ a variationof thedynamicrole
assignmentasusedin theARTteam[5] anda variationof theSPAR [14] techniquefor
determiningoptimalpositionson thefield for eachplayer. Oneof theobjectivesin the
developmentthisyearwasto enhancethebasicskillsof thesocceragents.In particular,
weaddedadribbling skill anda ball-shootingskill. For bothof thesenew skills, it was
necessaryto modify the hardwareandto accountfor thesemodificationsby incorpo-
ratingnew software.In orderto choosetheright actionin eachsituation,someaction
selectionmechanismis necessary. Wedesignedanew actionselectionmechanismbased
on Dorer's [6] extendedbehavior networks,which areusedin Dorer'ssimulationteam
[7], therunner-upin the1999competition.

All in all, it turnedout that the combinationof techniqueswe employed allowed
us to staycompetitive, to demonstratethat our robotscanplay an attractive (robotic)
soccergame,andto win thecompetitionasecondtimeafter1998.

2 Hardware

The basichardwaresetupof CS Freiburg hasremainedmainly unchangedsincethe
teamfirst participatedat RoboCupin 1998[9]. Figure2(a)shows a pictureof oneof
our Pioneer1 robotsenhancedby a custom-madekicking device, the Cognachrome
vision systemfor ball recognition,a SICK laserrangefinder for self-localizationand
objectrecognition,a ToshibaLibretto Notebookfor local informationprocessingand
theWaveLanradioethernetfor communication.

(a) (b)

Fig. 2. A CSFreiburg player(a)andasketchof thenew kicking device (b).

In 1999we alreadyput effort in improving our perceptiontechnology[13]. We re-
placedtheold PLS200laserrangefinderswith thenew LMS200modelswhichprovide
depthinformationfor a
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�
field of view with an angularresolutionof
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�
andan

accuracy of 1 cm. With a serialconnectionof 500KBaudwe now getup to 25 scans



per second.We alsomodifiedandextendedthe Cognachromesoftwareto reducethe
amountof vision databy discardingall informationsnot neededfor our ball recogni-
tion module.Doingsowewereableto raisetheframerateto 60framespersecond.The
overall performanceof our perceptionmodulewasfurther improvedby exploiting the
featureof RTLinux to assignmillisecondaccuratetimestampsto all sensorreadings.

The major hardwareimprovementof this year is a new powerful kicker andball
steeringmechanism.Figure2(b) shows a sketchof thecompletelyrebuild device.The
kicker is basedon a wind-screenwiper motorwhich compressesfour springsattached
to the ball steeringplate when turning. The springscan be unlocked by a solenoid
with the result of a very strongkick. The ball steeringflippers can be turnedto an
uprightpositionandbackby two separatelyworkingDC motors.Themovableflippers
helpedtoavoid situationswhererobotswouldgetstuckor accidentallyhit theballwhile
turning towardsit. In the future we intendto exploit the new featurefor an elaborate
ball interceptionbehavior.

3 Perception

Back in 1998,theCSFreiburg teamhasbeendesignedunderthehypothesesthat it is
of greatadvantageif every robotwould know its exactpositionandorientationon the
soccerfield. Thegeneralperceptionapproachcanroughlybedivided into laser-based
perception,vision-basedperceptionandmulti agentsensorintegration.

3.1 Laser-Based Perception

As our researchgroupalreadygot a lot of experiencewith differentself-localization
methodsusinglaserrangefinderdata[8] it hasbeenanobviousstepto adapta variant
of themfor oursoccerrobots.Themethoddevelopedfor theCSFreiburg teamextracts
line segmentsfrom alaserscanandmatchesthemto ana priori linemodelof thesoccer
field.Only linesof acertainminimumextendaretakeninto accountfor discardingother
playersthat arepresentin the field of the rangefinder. The scan-matchedpositionis
fusedin a Kalmanfilter with theestimatefrom odometry.

Severalexperimentshavebeenperformedusingthislocalizationmethodandacom-
parisonwith otherscan-matchingmethodsshows that the line-basedmethodis faster
andmorerobustthanpoint-basedscan-matchingmethodswhile still retainingthepre-
cisionof theothermethods[10].

After matchingascanto thea priori modelof thesoccerfield, playersareextracted
from the scanby removing all pointsbelongingto the field walls andclusteringthe
remainingones.For eachclusterthe centerof gravity is computedandconsideredas
the centerof a player. Inherentto this approachis the systematicalerror due to the
differentshapesof therobots[17]. At leastfor someplayersthis errorcanbereduced,
e.g.in our systemwe assumethattheopponentgoalkeeperis usuallyorientedparallel
to the goal line, thusaddinga constantoffset to the centerof gravity canreducethe
positionerrorfor theopponentgoalie1.

1 Of coursethis offset dependson the shapeof the opponent's goalieandhasto be adjusted
beforethegame.



3.2 Vision-Based Perception

For recognizingandtrackingtheball we make useof theCognachromevision system
whichdeliverspixel-areainformation(socalledblobs) of previouslytrainedcolors.We
extendedthesuppliedsoftwareto overcomeproblemswith noisyreadings,to enhance
color training,andto customizethecomputedblob informationto ourneeds.

A filter doesplausibility teststo discardblobswhoseshape,sizeor positionmakeit
veryunlikely to correspondto theball. Fromtheremainingblobstheoneclosestto the
previouslyselectedblobis chosenand– by fitting acircleto it – variouspropertiessuch
ascenter, radius,or sizein pixelsaredetermined.Fitting a circle to theblobseemedto
improve the overall position estimationof the ball as localizationwas still accurate
whentheball waspartiallyoccludedby otherrobots.

Fromthecomputedblob centertheglobalball positionis determinedby usingan
off-line learnedmappingtablethatcontainsdistanceandheadingvaluesfor eachpixel.
This lookuptableis autonomouslylearnedby therobotbeforethegameby positioning
itself at variouspositionon thefield andtakingmeasurementsof theball which stays
atafixedposition.Interpolationis thenusedto computethedistanceandheadingpairs
for pixelswherenoexplicit informationis available[15].

Despiteof theappliedfilterswestill observedinfrequentwrongball measurements
dueto reflectionson shiny surfacesor badlytrainedcolors,e.g.we hadproblemswith
thewhite field markingsbecausewhentrainingtheball color, shiny reflectionson the
ball appearedto have a similar color. In orderto detectsuchwrongball measurements
a global sensorintegrationmodulecomparesthe observationsof all players.This is
describedin thenext section.

3.3 Multi Robot Sensor Integration

The perceptionsof all playersare sentto the multi robot sensorintegration module
for building and maintaininga global view of the world. Becausethe global model
integratesmoredatathana singleplayeris ableto perceive,it shouldbemoreaccurate
andcomprehensive thanany local world modelof a singleplayer. After merging the
player's perceptionsinto the global world model it is sentbackto all players.Using
thesensorinformationsof thewholeteamenablesa playerto take into accounthidden
objectswhen selectingan action.This proved to be especiallyadvantageousfor the
global ball position,sincethe ball is seenalmostall the time by at leastoneplayer.
Furthermoreknowing whetheranobservedobjectis anopponentor a teammateis, of
course,veryhelpful for aneffectivecooperativeteamplay.

In the first versionof our multi robot sensorintegration modulewe wereusinga
simpleaveragingmethodfor computingglobalpositionsof all objectson thefield [9].
However, we encounteredproblemswith very inaccurateor even completelywrong
measurements,e.g. wrong ball observationsas mentionedabove, which corrupteda
coherentglobalposition.Thereforea moresophisticatedmethod,namelyKalmanfil-
tering,for fusingobservationsandrejectingoutliersis now employed.Whentracking
theball, however, rejectingoutliersby usinga validationgate[3] hasa big disadvan-
tage:Oncethesystemis trackingtheball basedon a wrongball observation,thefilter
needsseveralcyclesuntil it acceptsotherobservationsagain.

Therefore,we followed the proposalof Gutmannet al.[8] andcombinedMarkov
localization[4] which employs a multi-modalprobability distribution for fusing ball
observationswith a uni-modalKalmanfilter for preciseball localization.Thisway, the
Kalmanfilter alwaystrackstheball usingobservationsvalidatedby oneor morerobots
andonly few cyclesareneededin casethesystemwastrackinga ball basedon wrong
observations.
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Fig. 3. Probabilitygrids after (a) correctmeasurements,(b) oneadditionalwrongmeasurement
and(c) anothercorrectone.

Figure3 illustratesour Markov localizationvarianton the basisof real measure-
ments.At first theball estimateis very reliable.An erroneousmeasurementmakesthis
estimatelesslikely, but still moreprobablethanthenew estimate.Anothercorrectmea-
surementstrengthenstheassumptionsthatthepreviousonewaswrong.

4 Strategy

Coordinationamongour playersand their positioningon the field followed a rather
inflexible schemeat thelasttournaments.In orderto achievea moreflexible andmore
effectivecoordinatedteamplaywe redesignedourstrategy componentcompletelythis
year. As describedin thefollowingsectionsweintroduceddynamicrolesfor theplayers
anddynamictargetpositionsfor eachrole.

4.1 Role Assignment

The CS Freiburg playersorganizethemselves in roles, namelyactive, supportand
strategic. While theactive playeralwaystries to get andplay theball, the supporting
playerattemptsto assistby positioningitself appropriately. Thestrategic playeralways
occupiesa gooddefensiveposition.

Eachplayerconstantlycalculatesits utility to pursuea certainrole andcommuni-
catesthe result to its teammates.Basedon its own andthe receivedutilities a player
decideswhich role it wantsto take. This approachis similar to the onetaken by the
ART team[5],2 however, the CS Freiburg playersadditionallycommunicateto their
teammateswhich role they arecurrentlypursuingandwhich role they desireto take.
A role canonly betakenfrom anotherplayerif theown utility for this role is thebest
of all playersandthe robot currentlypursuingthe role alsowantsto changeits role.
Following this strategy makesit lesslikely that two or moreplayersarepursuingthe
sameroleat thesametimethanassigningrolesbasedonutility valuesonly.

Figure4 shows a screenshotof the global view during a game.While the active
player dribblesthe ball aroundan opponentthe supportingplayer moves to its tar-
get positionandthe strategic playerobservesthe ball. Rolesfor the field playersare
assignedin theorderactive, strategic, support. Sincethegoalkeeperhasaspecialhard-
waresetup,it' s role is fixedby assigningappropriateutility valuesto all roles.

2 Note,however, thatourapproachwasdevelopedindependently.



Fig. 4. Visualizationof theresultsof theglobalsensorintegrationtogetherwith aplayersutilities
for takingacertainrole, its currentroleandits currentaction.Thesmallwhitecircledenotesthe
positionof theball asdeterminedby theglobalsensorintegration,whereasthesmallgrey ones
correspondto theball asperceivedby theindividualplayers.

4.2 Positioning

The targetpositionsof theplayersaredeterminedsimilar to theSPAR methodof the
CMU teamin the small size league[14]. From the currentsituationobserved by the
robotsa potentialfield is constructedwhich includesrepulsive forcesarisingfrom op-
ponentplayersandattractingonesfrom desirablepositions,e.g.positionsfrom where
theball is visible.Positionsarethenselectedbasedon therobot'scurrentrole,e.g.the
positionof theactiveplayeris setcloseto theball, thesupportingplayeris placedto the
sideandbehindtheactiveone,andthestrategic playertakesadefensivepositionwhich
is abouthalf waybetweentheown goalandtheball but behindall opponentplayers.

(a) (b)

Fig. 5. Traceof the positionsof the ball (black) and the CS Freiburgs' playersduring (a) the
quarterfinal and(b) thefinal.

Figure5 showsatraceof thepositionsof ourplayersandtheball duringthequarter
final againstCMU andthefinal againstGolem. While in thequarterfinal ourteamspent
mostof thetime in theopponentshalf our playerswereforcedinto our own half most
of thetimeduringthefinal game.Thehighcorrelationbetweenthepositionof theball
andourplayershoweverdemonstratestheeffectivepositioningof our team.



5 Tactics: Basic Skills and Action Selection

In orderto play an effective andsuccessfulgameof robotic soccera powerful setof
basicskills is needed.This sectiondescribesthebasicskills implementedfor thegoal-
keeperandthefield playersin CS Freiburg, aswell asthemethodof actionselection
developedfor thefield players.

5.1 Goalkeeper

As in mostotherrobotsoccerteamsin themiddlesizeleaguethehardwareconfigura-
tion of ourgoalkeeperdiffersfrom theoneof thefield playerswhich is mainlybecause
of thedifferenttasksthegoalkeeperandfield playersaredesignedfor. Our goaliehas
a specialhardwaresetupwheretheheadof therobot,containingthesonararray, laser
rangefinderandvisioncamera,is mounted� 	
� to onesideallowing therobotto move
quickly parallelto thegoalline (seeFigure6). Thiskind of setupis quitepopularin the
middlesizeleagueandusedby otherteams,too,e.g.theAgilo team[2].

α α

(a) (b) (c)

(d) (e) (f)

Fig. 6. Goalkeeper's tacticsfor saving CSFreiburg'sgoal:(a)ball searching,(b) minimizingarea
of attack,(c) turning to corner, (d) interceptingball, (e) intelligent interceptionusingopponent
heading,and(f) intelligent interceptionusingopponentto ball heading.

Ourgoalkeeperusessix skills sketchedin Figure6 for keepingtheball from rolling
over our goal line. If therobotdoesn't know wheretheball is, it rotatesleft andright
searchingfor it (SearchBall). If the ball doesnot directly roll towardsour goal, the
areaof attackis minimizedby moving to a positionfrom wherebothsidesto therobot
allow approximatelythe sameamountof angularspacefor the ball passingbetween
goalieandgoalposts(BlockBall). On theleft andright sideof thegoal,therobotturns
towardsthecornersgiving lesschancesfor anopponentto scorea directgoal.Thelast
threeskills concerncasesof directgoaldangerwheretheball or anopponentis moving
directly towardsourgoal(InterceptBall). Heretherobotmovesto aninterceptionpoint
basedon theheadingof theball (Figure6(d)), theheadingof anopponentowning the
ball (Figure6(e)),or theheadingof anopponentto theball (Figure6(f)). Thelast two
andmoresophisticatedtacticsarebasedontheassumptionthattheattackingrobotwill
kick the ball in a straightway which is true for mostrobot teamsparticipatingin the
middle sizeleaguebut is not true for teamslike Golemor Alpha++. Thereforethese
two tacticscanbeturnedonor off beforea gamestarts.



5.2 Basic Skills for Field Players

To getholdof theball aplayermovesto apositionbehindtheball following acollision-
free trajectorygeneratedby a pathplanningsystemwhich constantly(re)planspaths
basedon theplayer's perceptionof theworld (GoToBall). Thesystemis basedon po-
tential fields anduses��� searchfor finding its way out of local minima. If closeto
the ball a playerapproachesthe ball in a reactive mannerto get it preciselybetween
the fingerswhile still avoiding obstacles(GetBall). Oncein ball possession,a player
turnsandmovestheball carefullyuntil facingin a directionwhichallows for anattack
(TurnBall). If the player is right in front of the opponentsgoal it kicks the ball in a
directionwherenoobstaclesblock thedirectway to thegoal(ShootGoal). Otherwiseit
first headstowardsa clearareain thegoalandturnssharplyjustbeforekicking in case
theopponentgoalkeepermovedin its way (MoveShootFeint). However if obstaclesare
in thewayto thegoal,theplayertriesto dribblearoundthem(DribbleBall) unlessthere
is not enoughroom.In this casetheball is kickedto a positioncloseto theopponents
goalby alsoconsideringreboundshotsusingthewalls(ShootToPos). In theeventof be-
ing toocloseto anopponentor to thefield bordertheball is propelledawayby turning
quickly in an appropriatedirection(TurnAwayBall). If a playergetsstuckcloseto an
obstacleit triesto freeitself by first moving awayslowly and(if thisdoesn't help)then
trying randommoves(FreeFromStall). Howevera playerdoesn't giveway if theball is
stuckbetweenhimselfandanopponentto avoid beingpushedwith theball towardshis
own goal(WaitAndBlock).

Againstfastplaying teamsour robotswereoftenoutperformedin the racefor the
ball whenapproachingit carefully. We thereforedevelopedtwo variantsof a skill for
situationsin whichspeedis crucial.Bothlet therobotrushto theball andhit it forwards
while still avoiding obstacles.In offensive play BumpShootOffenseis employedto hit
the ball into the opponentsgoal when very closeto it. In defensive play the useof
BumpShootDefensecanbeswitchedonor off accordingto thestrengthof theopponent.

Playersfulfilling strategic taskspositionthemselvesfollowing collision-freepaths
to dynamicallydeterminedpositions(GoToPos). From thesepositionsthe playersei-
ther searchthe ball if not visible (SearchBall) by rotatingconstantlyor observe it by
turninguntil facingit (ObserveBall). In offensiveplay a strategic playermayalsotake
a positionfrom whereit shouldbeableto scorea goaldirectly (WaitForPass). Oncein
suchapositionhesignalsto his teammatesthatheis waiting to gettheball passed.The
decisionis thenupto theball owningplayerwhetherto passtheball (PassBall) or try to
scorea goalby itself. Especiallyagainstfastplayingteamswerarelygot thechanceto
try outball passingbetweenplayers.Equippedwith thestrongkicking deviceshooting
at theopponentsgoalalwaysappearedmorepromisingthanpassingtheball to another
teammate.

To complywith the”10-secondsrule” aplayerkeepstrackof thetimeheis spending
in a penaltyarea.Whenever he spentmore than the allowed time he leaves the area
followingacollision-freepathgeneratedby thesamepathplanningsystemasemployed
in theGoToBall skill (LeavePenaltyArea).

At RoboCup2000,our teamseemedto beoneof the few teamscapableof effec-
tively dribbling with theball andtheonly onewhich exploiteddeliberatelythepossi-
bility of reboundshotsusingthewalls.Thereforetheseskills will bedescribedin more
detail.

Figure7(a) shows a screenshotof a player's local view while dribbling. In every
cycle, potentialcontinuationsof the currentplay areconsidered.Suchcontinuations



arelinesto pointscloserto theopponentsgoalwithin a certainanglerangearoundthe
robot's heading.All the possiblelines areevaluatedandthe directionof the bestline
sampleis takenasthenew desiredheadingof therobot.A line is evaluatedby assign-
ing it a valuewhich is thehigherthefurtherit is away from objects,thelessturningis
necessaryfor theplayerandthecloserits headingis to theopponentsgoalcenter. Deter-
mining therobotsheadingthis way andadjustingthewheelvelocitiesappropriatelyin
everycycle letstherobotsmoothlyandsafelydribblearoundobstacleswithout loosing
theball. TheCSFreiburg teamscoredsomebeautifulgoalsin this year's tournament
aftera playerhaddribbledtheball over thefield aroundopponentsalonganS-like tra-
jectory. Of course,all thisonly worksbecausetheball steeringmechanismallowsfor a
tight ball control.

(a) (b)

Fig. 7. A CSFreiburgplayer'sview of theworld while (a)dribblingand(b) ball-shooting.Circles
denoteotherrobotsandthesmallcirclein frontof theplayercorrespondsto theball.Linesalmost
parallelto thefield bordersareperceivedby thelaserrangefinder. Theotherlinesleadingaway
from theplayerareevaluatedby theskills.

Figure7(b) shows a screenshotof a playerduringball-shooting.For this skill the
linesarereflectedat thewalls andareevaluatedto find thebestdirectionwhereto kick
the ball. A lines value is the higher the further away from obstaclesit is, the closer
its endpointis to theopponentsgoalandthe lessturning is requiredfor the playerto
facein thesamedirection.Takinginto accountthattheball doesn't rebounceatthefield
bordersin aperfectbilliard-likemannerwecalibratedmanuallythecorrelationbetween
theanglesof reflection.Using the passingskill our playerswereableto play theball
effectively to favorablepositionsandevento scoregoalsdirectly.

Figure8 shows statisticsof how long a skill wasactive for a certainrole.Sincewe
constantlyimprovedandmodifiedthe actionselectionmechanismduring the prelim-
inary gamesthe statisticsarebasedon the threefinal gamesonly. We found it quite
surprisingthat theplayersweresearchingfor theball up to 10 % of theplaying time.
Howeveranalysisof thelog-filesshowedthatthehighnumberscanbeeitherattributed
to communicationproblemsor to oneof few situationswherenoplayerwasseeingthe
ball. In thefinal gamestheball wasseenby theteamin 95%of theplayingtime.

Thestatisticsshow thatthegoalkeeperwasmostof thetimeminimizingtheareaof
attackbut notunderdirectthreatsincetheInterceptBallskill wasonly activein 11% of
thetime.Thesupportingandstrategicplayerspentmostof their timeobservingtheball.
Thiswasintendedsincemoving moreoftenor moreaccuratelyto their targetpositions



Fig. 8. Time in percentaskill wasactive in thefinal gamesbrokendown for thedifferentroles.

resultsin averynervousbehavior aswecouldobservein oneof ourpreliminarygames.
It turnedout that for our ratherclumsyrobotsstayingat onespotwasmoreeffective
thanmoving and turning constantly. Becausethe strategic playerusuallyoccupieda
gooddefendingpositionweallowedit to moveevenless.

At first view it seemssurprisingthattheactive playerwasmostof thetime (64 %)
occupiedwith gettinghold of theball. However the fact thatafterkicking theball the
activeplayerusuallystartsto follow theball againexplainsthehighnumbersfor GoTo
andGetBall.Neverthelessit madeuseof all theskills availableto it. Thisdemonstrates
that the active playerin fact distinguishedbetweena large numberof differentgame
situations.

5.3 Action Selection for Field Players

Ouractionselectionmoduleis basedonextendedbehavior networksproposedby Dorer
[6]. They area revisedandextendedversionof the behavior networks introducedby
Maes[11] andcanbeviewedasa particularform of decision-theoreticplanning.The
mainstructuralelementsin extendedbehavior networksarecompetencemoduleswhich
consistof a certainbehavior to beexecuted,preconditionsandpositive or negative ef-
fects.Goalscanexplicitly be specifiedandcanhave a situation-dependentrelevance,
reflectingtheagent'scurrentmotivations.Thestateof theenvironment,asit is perceived
by theagent,is describedvia a numberof continuouspropositions������� 	�������� . Compe-
tencemodulesareconnectedwith goalsif they areableto influencegoalconditionsand
alsowith eachother, if a competencemodulehasaneffect thatis a preconditionof an-
other. Along theresultingnetwork connectionsanacitivationspreadingmechanismis
defined,with goalsbeingthesourceof activation.An actionis selectedby considering
eachcompetencemodule'sexecutabilityandreceivedactivation.

Figure9 showsa partof theextendedbehavior network thatwasusedin thisyear's
competition[12]. The ellipsesrepresentthe competencemoduleswith their precon-
ditions below andtheir effectson top of them.Currentlyour playershave two goals:
Shoota soccergoal or cooperatewith teammates.Therelevanceconditionrole active
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Fig. 9. A partof CSFreiburg'sextendedbehavior network.

(playerhasrole active) ensuresthat only oneof thesegoalsis relevant at a time de-
pendingon theplayer's currentrole. Thestrengthof theeffect connections(indicated
by thenumbersnext to arrows)aresetmanuallysofar andreflectprioritiesamongthe
competencemodules.

6 Conclusion

Thegamesplayedby CSFreiburg at RoboCup2000lookedmuchmoredynamicthan
thegamesin 1999and1998.So, thecooperationmechanismandtheactionselection
(with thenew actionrepertoire)seemto have improvedourplayconsiderably.

However, alsotheotherteamshave improvedtheir play. In general,it seemsto be
the casethat the performanceof all F2000teamshave increasedover the yearsand
that therearemorevery goodteamsnow – providedwe measuretheperformanceby
goals/minute.As canbeseenin Fig. 10,theaveragegoalratehasalmostdoubledfrom
1997–2000,3 andthegoalrateof thetwo bestteamsbecamebetterover theyears.

Fig. 10. GoalratesatRoboCuptournamentsin goalsperminute.

Furthermore,at RoboCup2000therewasa large numberof teamswith a perfor-
mancevery closeto theperformanceof CSFreiburg. In fact,while in previousyears,
CSFreiburg wastheonly teamwith anaveragegoalrateof morethan

	� �
goals/minute,

thisyeartherewere5 teamswith asimilargoalrate.Furthermore,it wasobviousto ev-
erybodythatthemechanicaldesignof CE SharifandGolemwasdefinitelysuperiorto

3 Note,however, that theconclusionthat thegoal ratein 2000washigherthanthegoal ratein
1997is statisticallysignificanton the90%level only.



ours.Thatweneverthelesswereableto stayaheadcanat leastpartiallyattributedto the
carefuldesignof ouractions,theactionselectionmechanismaswell asthecooperation
mechanisms.It shouldalsobenoted,however, thatsomegameresultswereveryclose.
In particular, thefinal andthethird/fourthplacegamesweredecidedby penaltykicks.

In thefuture,we intendto enhanceour robotbaseto make it faster, to uselearning
techniquesfor tuningskill parameters,to refinethemethodof actionselection,andto
enhanceteamplay.
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